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Optimal control of a nitrogen-vacancy spin ensemble in diamond for sensing in the pulsed domain
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Defects in solid-state materials provide an ideal, robust platform for quantum sensing. To deliver maximum
sensitivity, a large ensemble of noninteracting defects hosting quantum states with long coherence is required.
Control of such an ensemble is challenging due to the spatial variation in both the defect energy levels and
in any control field across a macroscopic sample. In this work, we experimentally demonstrate that we can
overcome these challenges using Floquet theory and optimal control optimization methods to efficiently and
coherently control a large defect ensemble, suitable for sensing. We apply our methods experimentally to a
spin ensemble of up to 4 × 109 nitrogen-vacancy centers in diamond. By explicitly including the hyperfine
interaction to the intrinsic 14N nuclear spin in the optimization, we design shaped microwave control pulses
that can outperform conventional (π ) pulses when applied to sensing schemes, with an improvement in the
strength of ensemble response of between 11% and 78%. Through simulation of the ensemble dynamics, we
shed light on the bandwidth limitations of large-ensemble reinitialization and propose alternative routes for
further improvement.
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I. INTRODUCTION

Solid-state defects are a promising platform for quantum
sensing, where purely quantum mechanical properties such as
superposition and entanglement can be utilized to overcome
classical limitations [1,2]. Particularly in semiconductors,
where they can be controllably created and manipulated,
solid-state defects can host quantum states that are both long
lived and sensitive to the local environment in discrete energy
levels within the band gap. A typical and extensively used de-
fect system is the nitrogen-vacancy (NV) center in diamond.
This consists of a substitutional nitrogen atom and an adjacent
lattice vacancy, having discrete electronic and nuclear spin
states with long coherence times up to room temperature [3].
The optical properties of the negatively charged NV center
(NV−) are highly sensitive to a range of parameters including
magnetic field [4–9], electric field [5,10], temperature [11,12],
and pressure (strain) [13]. Applications include sensing using
a scanning diamond tip [14,15], nanoscale nuclear magnetic
resonance (NMR)/electron spin resonance (ESR) [16,17], and
in biophysics [18–21], where the robustness and high biocom-
patibility of diamond makes it an ideal platform for sensing,
even within biological samples [22,23].

The level structure for a single NV− is illustrated schemati-
cally in Fig. 1(a), consisting of spin-triplet ground and excited
states and metastable spin-singlet states [6,9,24–26]. When
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green laser light is absorbed by an NV in ms = 0, red fluores-
cence is emitted from decay back into the triplet ground state.
However, when absorbed in the spin split ms = ±1, decay
back to ms = 0 may occur through singlet shelving states, via
nonradiative and infrared emission at 1042 nm. The popula-
tions of ms = 0 and ±1 can be controlled by applying resonant
microwaves (at 2.87 GHz in the absence of an external bias
magnetic field). This results in a detectable decrease in red
fluorescence output on resonance, yielding a typical contrast
C of up to 30 % for a single NV [26] or ∼1% − 2% for a large
ensemble with random orientation of NV centers (without
preferential NV alignment through growth engineering [27])
and with intrinsic variability in local fields and material strain
across the NV centers. The ms = ±1 states can be split in en-
ergy, e.g., via the Zeeman effect by an external magnetic field,
giving rise to multiple spectral features including additional
subfeatures due to hyperfine splitting introduced by coupling
to the nuclear spin of the 14N or 15N impurity atom [28].
By sweeping microwave frequency, these resonances can be
identified by the drop in fluorescence output, a process termed
optically detected magnetic resonance (ODMR) spectroscopy.
By fixing the microwave drive frequency on or close to a
resonance, any frequency shift resulting from the level shift of
ms = ±1 by magnetic field, electric field, or local temperature
can be detected.

Sensing using NV centers can be performed by a simple
continuous-wave (cw) method, maintaining a constant inten-
sity of microwave and laser irradiation [25,29]. Alternatively,
laser and microwave pulses can be used to control and read
the ensemble [26,30]. This relies on the NV behaving as
a two-level quantized system [31], with one (bright) maxi-
mally fluorescent state, |0〉, and one (dark) state with reduced
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FIG. 1. (a) Simplified level diagram for a single NV− center
within the diamond band gap, with the ground-state levels shown
in detail. At zero magnetic field there is a splitting of 2.87 GHz
[zero-field splitting (ZFS)] between the ms = 0 and ms = ±1 states.
At finite field B, the Zeeman effect shifts the ms = ±1 states in
energy by γ B. The ms = ±1 states are further split into three hy-
perfine levels (mI = 0, ±1) separated by δI = 2.16 MHz. (b) Bloch
sphere representation depicting this ms = {0, −1} two-level system
and the time evolution and result vector for a shaped optimal control
microwave (MW) pulse applied to the initial ms = 0 bright ground
state (|0〉, black arrow). Here we show the time evolution into the
ms = −1 dark state for each of the hyperfine resonances mI (|−1〉,
colored arrows).

fluorescence under illumination with green light, |±1〉. For
a single NV, these correspond to the electron spin states
ms = 0 and ±1, respectively. Rabi oscillations can be ob-
served in C on application of a microwave field resonant
with the ground-state splitting. This system allows coherent
control using discrete laser and microwave pulses, offer-
ing improvement over cw methods through reduction in the
power broadening of the resonance linewidths. Techniques
such as Ramsey interferometry [32,33] and Hahn echo-type
sequences have been demonstrated [34,35], realizing single-
molecule sensing in nanoscale diamond NMR experiments
[36–38].

Pulsed schemes are used extensively for quantum sensing
measurements using single- or few-NV centers, often in a
confocal microscopy setup [39–41]. However, as extensive
nuclear magnetic and electron spin resonance experiments

have shown, a macroscopic ensemble of many billions of
electron or nuclear spins in a larger volume can also be
manipulated by microwave pulse sequences in the same
manner [42]. From a quantum sensing perspective, large en-
sembles are desirable for imaging applications [19], for vector
sensing [43], or to maximize bulk sensitivity where spatial
resolution is not required since the shot-noise-limited sensi-
tivity scales as 1/

√
N , with N the number of defect centers

[4]. However, ensemble NV sensing with flat (fixed amplitude
and phase) microwave pulses suffers from nonuniform pulse
operation. Inhomogeneous broadening due to strain and field
gradients spreads the distribution of resonance frequencies of
the NV centers, detuning many from the microwave drive fre-
quency. These problems are further exacerbated by variation
in near-field microwave drive frequency, power, and phase
across the ensemble [44].

These effects have constrained state-of-the-art NV sens-
ing to use of diamonds with a high degree of material
optimization, including specialized high-energy (MeV-scale)
irradiation [45], isotopic purification to reduce the diamond
13C content or to modify 15N content [46], strain engineering
[47], preferential NV alignment via chemical vapor deposition
(CVD) growth [27], and nanofabrication to increase fluores-
cence emission from the diamond [48]. However, it is not
always possible to use such material optimization techniques.
This can be due to limited accessibility to the necessary tech-
niques and facilities, or can be due to application constraints,
particularly for nanodiamonds, photonic devices including
NV centers coupled to optical fiber [49,50], and portable
microfabricated integrated devices [51]. In these applications,
design limitations may impose constraints on the use of high-
energy irradiation or leave high levels of mechanical strain or
paramagnetic impurities [30] in the diamond.

An alternative approach is to manipulate the control fields
(laser and microwave) to overcome nonuniform pulse oper-
ation. For higher-frequency AC sensing (>10 kHz), this in-
cludes techniques such as dynamical decoupling [7,35,52,53]
and adiabatic chirped pulses [8]. However, these are not
necessarily suitable for applications that require DC to low-
frequency sensing, particularly for applications in biosensing
[20,54–56]. An alternative in this frequency range is to deliver
shaped microwave pulses (varying phase and amplitude), in
order to boost fidelity in a Ramsey or pulsed ODMR [31]
scheme. Such pulses can be designed using optimal control
methods [34,57–59]. Optimal pulses have been used with
small ensembles of NV centers for Hahn-echo [34,60] or
Carr-Purcell sequences [61] to improve the robustness and
temperature sensitivity of the D-Ramsey scheme [62], to ex-
tend the coherence time of an NV [63], and to improve the
accuracy of entanglement operations [64].

In this work, we demonstrate the use of shaped microwave
pulses produced by optimal control methods combined with
Floquet theory that can deliver improved coherent control over
a large solid-state defect ensemble of diamond NV centers.
We show enhanced NV ensemble ODMR contrast an im-
proved ensemble response to the environment, in terms of an
applied test magnetic field, as compared to a conventional flat
π -pulse scheme. Our scheme is widely adaptable to a range
of solid-state systems where a two-level quantum system can
be realized, although we specifically test our methods using
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NV centers in diamond. We achieve our improvement through
a full consideration of the physics of the system, including
the hyperfine interaction with the nuclear spin of the substi-
tutional nitrogen in the NV center (both 14N and 15N). We
model ensemble behavior to further understand the physics
of the system, in particular to explain the dynamics when a
readout laser pulse is applied and to uncover new routes for
improvement for sensing. We demonstrate our methods ex-
perimentally in off-the-shelf, standard grade material without
significant processing or fabrication. Furthermore, we demon-
strate operation at low Rabi frequencies, typical of those
achievable using low-power microwave amplification, e.g., in
a portable sensor device [65].

The paper is structured as follows. In Sec. II A we outline
the basic methodology we use to construct and generate our
shaped microwave pulses using optimal control theory, in-
cluding our derivation for explicitly including the hyperfine
interaction in the optimization algorithm. We describe a num-
ber of key control parameters, the limits of which we discuss
in Sec. II B. In Sec. II C we describe in detail our experimen-
tal setup and methodology and in Secs. III A and III B we
demonstrate the use of optimized shaped pulses for ODMR
spectroscopy and detection of a test applied AC magnetic
field. We compare using shaped pulses with a conventional
π -pulse scheme using a flat microwave pulse, and analyze
and discuss the optical behavior and how this relates to the
physical dynamics of the NV ensemble.

II. METHODS

A. Optimal control

Our optimal control algorithm maximizes a functional
that describes the desired transfer of one quantum state to
another [25,34,58,59,66]. We define our state transfer func-
tional as

Fst = |〈ψ f |Û (tp)|ψi〉|2, (1)

where Fst is the fidelity, of value between 0 and 1, which
describes how well the pulse transfers the system from an
initial state |ψi〉 to a final state |ψ f 〉. A fidelity of 1 represents
a complete transfer to the desired state. The influence of
the pulse is described by the unitary time-evolution operator
Û (tp), where tp is the control pulse duration.

To represent the state transfer of a real ensemble, we
calculate Fst for each member of a representative simulated
ensemble of defects with a specified range of frequency de-
tuning �̂ and relative control amplitude α̂. These factors are
set to be representative of the variation across a real ensem-
ble. The relative control amplitudes αi represent the drive
field inhomogeneity across the ensemble, and each value is
the ratio between the Rabi frequency at which a given sin-
gle defect is driven (due to drive field inhomogeneity) and
the Rabi frequency at which the pulse is designed to drive
the defects. The values of αi thus vary around unity across the
representative ensemble. The relative control amplitude only
relates to the changes in Rabi frequency caused by drive field
inhomogeneity and does not include the effects of frequency
detuning on the Rabi frequency. The detuning is included in

FIG. 2. The simulated weighted average fidelity of optimal con-
trol pulses Fst optimized with different ensemble sizes as a function
of representative ensemble size for three values of the maximum
allowed Rabi frequency Rlim. The pulses were optimized for �̂ =
±1 MHz detuning, α̂ = 1 ± 0.1 amplitude variations, and a duration
of tp = 1.85 μs with the indicated values of R = Rlim.

the optimization separately via the �i values, which represent
the inhomogeneous broadening. We thus assign each defect
in the representative ensemble a value of αi and �i within the
specified range �̂ and α̂ and seek a pulse that maximizes the
average fidelity of the entire representative ensemble. Using
this model assumes that interaction between defects is mini-
mal, such that each defect can act as a single, isolated quantum
system.

We assume our detunings �i follow a Gaussian distribution
centered at zero. The full width at half-maximum (FWHM)
of this Gaussian distribution is set equal to half of the width
of the considered detuning range �̂. The αi values are as-
sumed to follow a flat distribution over the considered range
α̂. The weight of each defect in the representative ensem-
ble is thus equal to the weight of its �i value. These are
normalized such that the sum of the weights of all defects
in the representative ensemble is equal to 1. We therefore
also use a weighted average of the fidelity. For numerical
optimization, we use throughout this work a representative
ensemble of size 12 × 12 (12 values to cover the ranges �̂

and α̂, respectively). This was based on a series of simu-
lations of the performance of pulses transferring state |0〉
to |−1〉 [Fig. 1(b)] optimized using different representative
ensembles. As shown in Fig. 2, 12 × 12 more than ensures
convergence of the fidelity, while minimizing computational
time.

For the design of our shaped microwave pulses, we use
smooth optimal control. Here we choose a basis of periodic
functions with the same periodicity T and discretized fre-
quency components, resulting in the shaped pulses becoming
smooth in time [57]. In this work, we use a basis of sine
functions with a fundamental frequency determined by the
pulse duration tp [34]. Smooth optimal control has advantages
over alternatives such as gradient ascent pulse engineering
(GRAPE) [67] in that the bandwidth and the individual fre-
quency components are known in advance, and the number of
high-frequency components in the pulse Fourier spectrum is
reduced, making modulation in experiments less technically
demanding [57]. Our smooth optimal control pulse has the
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FIG. 3. Plot of I (t ) and Q(t ) in units of Rabi frequency for two
optimal control pulses that were optimized by including state transfer
using all three 14N hyperfine levels. The pulses were optimized for
�̂/2π = ±1 MHz detuning and α̂ = 1 ± 10 % amplitude variations
with a duration of tp = 1.85 μs and a maximum allowed Rabi fre-
quency Rlim of (a) 1.4 MHz and (b) 3.0 MHz.

general form

S(t ) = I (t ) cos(ωDt ) + Q(t ) sin(ωDt ), (2)

I (t ) =
Nf∑
j=1

2a jx sin( j	 f t ),

Q(t ) =
Nf∑
j=1

2a jy sin( j	 f t ). (3)

Here, ωD is the central driving frequency, 	 f = 2π/(2tp) is
the fundamental frequency, Nf is the number of frequency
components, and the real a jk values are control amplitudes.
The bandwidth of such a pulse is then Nf 	 f . The fundamental
frequency is not related to the Rabi frequency and purely
serves to enforce the desired periodicity of T = 2tp. The a jk

values are defined in units of Rabi frequency R. As an exam-
ple, Fig. 3 shows the in-phase and quadrature components I (t )
and Q(t ) used to modulate the microwave carrier for two of
the specific pulses that we designed. In our experiments, the
microwave carrier has a frequency ωD/2π ≈ 2.8 GHz corre-
sponding to the splitting between the ms = 0 and −1 levels of
the NV center 3A2 ground state with an applied bias magnetic
field.

It has been previously shown [60] that the performance
of smooth optimal control pulses improves with increasing
Nf until it saturates for Nf � 7. We use Nf = 10 for all of
our pulses to ensure that we are in the saturated regime. This
yields 20 different control amplitudes ajk per shaped pulse,
and these are the parameters that are optimized by the con-
trol algorithm. The optimization is carried out iteratively by
stepping along the gradient of the fidelity with respect to the

control amplitudes with a step size β. Starting with initial con-
trol amplitudes a jk , we compute the resulting Û (tp), Fst, and
∂Fst
∂a jk

, before updating the control amplitudes by adding β ∂Fst
∂a jk

.
This process is then repeated until Fst converges. The choice
of time-periodic basis functions yields a time-periodic Hamil-
tonian that can be solved using Floquet theory [57,68,69].

In this work, we extend previous methods to include the ef-
fects of hyperfine splitting during the optimization. Although
we specifically calculate for diamond NV centers here, this
method is generally adaptable and applicable to any such
splitting for a defect ensemble. The goal is to create a shaped
pulse that performs the state transfer |0〉 to |−1〉 simultane-
ously and with as high fidelity as possible for each of the
ml hyperfine levels. For an NV center ensemble, this results
in a higher ODMR contrast than would be otherwise achiev-
able by acting on only one ml . This approach is analogous
to continuous-wave methods driving multiple hyperfine lines
previously described in the literature [70]. By doing this in the
pulsed domain, we seek to achieve similar benefits, but with-
out the negative effects of power broadening of the ODMR
resonance linewidths. In order to explicitly account for the
hyperfine splitting, it is necessary to modify the expression for
the Fourier components of the Hamiltonian that make up the
Floquet matrix. The Fourier components of the Hamiltonian
are generally defined as

Ĥn = 1

T

∫ T

0
exp(−in	 f t )Ĥ(t ) dt, (4)

where T = 2tp is the periodicity of the Hamiltonian and Ĥ(t )
is the time-domain Hamiltonian that describes the system to
be optimized. The nitrogen in an NV can be either 14N with
I = 1 (highest natural abundance) or 15N with I = 1

2 , yielding
either three or two hyperfine levels, respectively, as illustrated
in Fig. 1(a). We assume hyperfine interaction between the 14N
nuclear spins and the NV electron spins in the ensemble so
that three hyperfine states are possible. The nuclear spins are
assumed to be in a thermal state such that all ml hyperfine
states are equally represented in the ensemble. The ODMR
spectrum then contains three resonances separated by δl =
2.16 MHz, corresponding to the three hyperfine resonances
ml = −1, 0, 1. We also assume that the different NV electron
spins do not interact and that the ms = ±1 states are clearly
split by a static magnetic bias field. A single set of three NV
centers that each correspond to one of the hyperfine transitions
can then be reasonably approximated as three independent
two-level systems. The drift Hamiltonian thus has the form

Ĥ0 =
3∑

k=1

ω0,k

2
σz,k, (5)

where h̄ = 1, ω0,k is the transition frequency of hyperfine
transition k, and σz,k is a Pauli spin-z matrix that is specific to
transition k. Note that the above expression applies to any two-
level defect with three equidistant hyperfine resonances that
fulfills the underlying assumptions. The transition frequencies
are related via ω0,1 = ω0,2 − δI and ω0,3 = ω0,2 + δI . Given
that the states of the three two-level systems can be completely
described by a single vector of length 6, the σz,k matrices can
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also be represented by 6 × 6 matrices (see Appendix). The
same is true of the σx,k and σy,k matrices. The control Hamil-
tonian describes the interaction between the control pulse of
the form given in Eq. (2) and the three allowed transitions.

Assuming the control field is linearly polarized in the x
direction, which is perpendicular to the NV defect axis, the
control Hamiltonian can be written in the form

Ĥc =
3∑

k=1

σx,k[I (t ) cos(ωDt ) + Q(t ) sin(ωDt )], (6)

and the total Hamiltonian thus reads as

Ĥ(t ) =
3∑

k=1

(
ω0,k

2
σz,k + σx,k[I (t ) cos(ωDt )

+ Q(t ) sin(ωDt )]

)
. (7)

We can simplify the rest of the calculations by working in a
rotating frame given by the unitary rotation operator

R̂ = exp

(
3∑

k=1

iωDtσz,k/2

)
, (8)

which will commute with every term in Ĥc except for σx,k .
More precisely, [σz,k, σx,k′ ] = 2iσy,kδk,k′ and [σz,k, σy,k′ ] =
−2iσx,kδk,k′ .

The Baker-Campbell-Hausdorff lemma thus allows us to
write

R̂ĤcR̂† =
3∑

k=1

[σx,k cos(ωDt ) + σy,k sin(ωDt )]

× [I (t ) cos(ωDt ) + Q(t ) sin(ωDt )]. (9)

Using this expression and defining the detuning � = ω0,2 −
ωD as the difference between the transition frequency of the
central hyperfine transition ω0,2 and the central driving fre-
quency ωD, we obtain the expression

Ĥ′ =
3∑

k=1

(
� + wkδI

2
σz,k + [σx,k cos(ωDt ) + σy,k sin(ωDt )]

× [I (t ) cos(ωDt ) + Q(t ) sin(ωDt )]

)
, (10)

where w1 = −1, w2 = 0, and w3 = 1. Expanding by using
trigonometric relations, the above expression can be simpli-
fied by using the rotating-wave approximation to eliminate the
fast-oscillating terms

Ĥ′ =
3∑

k=1

(
� + wkδI

2
σz,k + I (t )

2
σx,k + Q(t )

2
σy,k

)
. (11)

Combining Eq. (11) with Eq. (3) and inserted into Eq. (4), the
Fourier components of the Hamiltonian become

Ĥn =
3∑

k=1

1

T

∫ T

0
exp(in	 f t )

(
� + wkδI

2
σz,k

+
Nf∑
j=1

[a jxσx,k + a jyσy,k] sin( j	 f t )

)
dt . (12)

The above expression can be further simplified by using the
exponential form of a sine and the integral form of a Kro-
necker delta. Doing so yields the final expression for the
Fourier components of the Hamiltonian when the effects of
hyperfine splitting are taken into account

Ĥn =
3∑

k=1

(
� + wkδI

2
σz,kδn,0 +

Nf∑
j=1

1

2i
[a jxσx,k

+ a jyσy,k][δn, j − δ−n, j]

)
. (13)

We use Eq. (13) in the construction of the Floquet matrix
for the computation of Û (tp) and ∂Fst

∂a jk
as part of the update step

of the optimal control algorithm. We include the correspond-
ing derivation for two hyperfine levels (15N for NV centers) in
the Supplemental Material [71]. Control amplitude variations
are included by multiplying the control amplitudes ajx, a jy

by the αi value for the given defect in the representative
ensemble.

In order to ensure the optimization of our control am-
plitudes converging while remaining within experimentally
achievable limits, we include a penalty functional

Fpen = −ptp

∑
j,k

a2
jk (14)

in our algorithm, applied at each update step. The penalty
functional includes a specified penalty constant p > 0 and
scales with the control amplitudes. We optimize using the
gradient of the sum of the penalty functional and the state
transfer fidelity Ftot = Fpen + Fst. After each update step, the
maximum amplitude of the optimal control pulse is computed
in units of Rabi frequency, and if it exceeds the maximum
allowed Rabi frequency Rlim, the penalty constant is increased
by a step size �p. If the maximum amplitude of the optimal
control pulse does not exceed Rlim, the penalty constant is
reduced by �p. Rlim is one of the inputs to the algorithm
and is limited by the maximum achievable experimental Rabi
frequency Rmax. This method also prevents the algorithm re-
maining at local maxima compared to optimizing without a
penalty functional.

As a demonstration of the effect of explicitly including
all three hyperfine levels in the optimization, Fig. 4 shows a
series of simulated fidelity maps for a single NV subject to
a flat π pulse and optimal control pulses with and without
including the hyperfine components. The fidelity of a |0〉 to
|−1〉 state transfer is directly proportional to the resulting
ODMR contrast C since the contrast will be maximal when
all NV electron spins are in the | − 1〉 state and minimal in
the |0〉 state. All three pulses are in the regime Rlim < δl .
It is clear that the regular optimal control pulse has supe-
rior performance for a single hyperfine resonance. However,
when considering the average of all three, the shaped pulse
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FIG. 4. Simulated maps of the state transfer fidelity [Eq. (1)] from |0〉 to |1〉 for a single NV (i = 1) subject to (a), (d) a flat (π ) pulse,
(b), (e) an optimized shaped pulse, and (c), (f) a shaped pulse optimized while taking all three hyperfine levels into account. The top plots
(a)–(c) show the fidelity of the transfer experienced by the central hyperfine transition while the bottom plots (d)–(f) show the average of the
transfer fidelities for each of the three hyperfine levels. Each point in the top plots is the fidelity for a single NV electron spin with the given
values of α1 and �1. Each point in the bottom plots is the average of the fidelities for three NV electron spins with the given value of α1

and transition frequencies detuned by �1, �1 + δl , and �1 − δl , respectively, from the driving frequency. The flat pulse has a Rabi frequency
of 1.4 MHz, and the optimal control pulses were both optimized using �̂ = ±1 MHz detuning, α̂ = 1 % ± 10 % amplitude variation, Rlim =
1.4 MHz, and a pulse duration tp = 1.85 μs.

optimized while taking the effects of hyperfine splitting into
account is significantly better, albeit within a narrower range
of detuning. Figure 4(f) indicates that the optimal control
pulse including the hyperfine splitting in the optimization is
capable of simultaneously performing state transfer using all
three hyperfine levels with high fidelity. The narrow range
of high fidelity dropping rapidly with detuning indicates that
the optimal pulse will yield high contrast when applied with
drive frequency ωD/2π close to any one of the three hyperfine
resonances and low contrast when applied off resonance. This
behavior naturally translates to higher contrast and narrow
resonance linewidth and thus to a stronger ensemble response
to the environment (higher sensitivity, with the same measure-
ment noise floor). As can be seen in Figs. 4(c) and 4(f), as
α1 is increased, the |0〉 to |−1〉 fidelity (i.e., ODMR contrast)
further improves in the narrow range of high fidelity with-
out significantly broadening the range of high fidelity. We
therefore experimentally apply our optimal control pulses at
applied microwave power equivalent to a higher maximum
Rabi frequency than we use for optimization, empirically
chosen to maximize the slope.

B. Optimization details

All of our pulses were made using an initial value of the
penalty constant p = 1 and �p = 0.05. They were optimized

to perform a state transfer from |0〉 to | − 1〉. We used 150
update steps for all of the optimizations, as this was found to
be sufficient to achieve convergence of Fst. For the first 51
steps, the step size along the gradient was kept constant at
β = 0.007 and for the remaining steps, the optimal step size
was determined using a line search. This was done to speed
up the optimization without compromising the quality of the
resulting optimal control pulses. We designed pulses using
different values of Rlim, tp, and the ranges �̂ and α̂ and tested
them experimentally. We determined the maximum achiev-
able experimental Rabi frequency, i.e., the upper limit on the
maximum allowed Rabi frequency Rlim � Rmax = 3.2 MHz
through prior experimental measurements using flat pulses on
the same diamond NV ensemble. Based on this, we defined a
range of Rlim to generate testable optimized shaped pulses for
between Rlim = 0.8 MHz and Rlim = 3.2 MHz. The minimum
value of tp necessary to achieve improvements over a com-
parable flat pulse was limited by the need to apply sufficient
power to perform the desired state transfer. We set the lower
limit of tp to be at least twice the duration of a flat π pulse
with Rabi frequency equal to Rlim. The maximum value of tp

was ultimately by the T2 coherence time of a single NV, but
practically limited in this work to tp < 20 μs by waveform
generator technical constraints. Based on this, we defined a
range of tp to generate testable optimized shaped pulses for s
between tp = 1.0 and 5.0 μs.
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FIG. 5. (a) Schematic of our experimental setup. The pump laser
was modulated by the AOM, at 2.6 MHz and controlled by the AWG.
Microwave pulses were delivered to the diamond using a near-field
antenna. The AWG provided IQ modulation to the signal generator
to create the required control pulses. An ADC, synchronized with the
AWG, digitized the analog AOM modulation signal, the signal from
the APD collecting the diamond fluorescence Vfl and the signal from
an amplified photodetector that collects a small amount of the pump
laser Vref, balanced with Vfl. (b) Pulsed ODMR sequence as applied
in our measurements, showing the repeating sequence of pump laser
pulses Pl and microwave pulses PMW. This sequence was repeated
continuously by the AWG.

Although the possible values of detuning �i are in prin-
ciple not limited, higher Rabi frequencies are required to
compensate for higher levels of inhomogeneous broadening.
Based on the considered values of Rlim, we therefore used �̂

up to ±2 MHz. The possible values of αi are similarly not
limited in principle, but higher Rabi frequencies are required
to compensate for higher levels of drive field inhomogeneity.
We therefore chose to optimize up to α̂ = 1 ± 0.2 relative
control amplitude range.

Our initial ajk values were set using pseudorandom values
within a range sufficient to yield a maximum Rabi frequency
of the corresponding initial pulse R > Rlim. This was done in
order to ensure that the optimization algorithm approached
the region of allowed pulses from the outside, so that pulses
utilizing Rlim were considered. For this work, the initial Rabi
frequency was 2.8 times greater than the maximum allowed
Rabi frequency.

C. Experimental setup

A schematic of our experimental setup is shown in
Fig. 5(a). We used an off-the-shelf, general grade single
crystal diamond (SC Plate CVD, P2, Element Six) with <1
ppm nitrogen impurities, ∼0.5 ppb NV− concentration, of
dimensions 6 × 6× 1.2 mm3. For this diamond, we measured
a T ∗

2 -limited linewidth of 0.75 MHz. We measured best fit
T1 to be as 7.1 ms and T2 and T ∗

2 times of 387 and 0.44
μs, respectively, using Hahn-echo and Ramsey schemes, with
a maximum ensemble-averaged Rabi frequency of Rmax =

3.2 MHz driven by our antenna. In our Hahn-echo measure-
ment we observe collapse and revival features arising from
interaction with 13C spins [72]. Full details of these measure-
ments are given in the Supplemental Material [71]. A bias
field of 2.9 mT aligned along the [111] crystallographic axis
was applied by fixed permanent magnets on electromechan-
ical translation stages in order to split the ms = ±1 states.
We measured the field and optimized alignment using the
ODMR recorded from the diamond and by using a gaussmeter
to verify field amplitude. We addressed only the ms = 0 −→
ms = −1 transition to use an effective two-level system within
the antenna’s resonance linewidth of ∼100 MHz.

The diamond was optically pumped using a 532 nm diode-
pumped solid-state laser. For all work except Fig. 13 we used
a Cobolt Samba 1500 capable of maximum 1.8-W output. For
the data in the final figure, we used a lower power diode laser
(Roithner Lasertechnik CW532-100F) of maximum output
100 mW. The linearly polarized laser beam was focused to
a waist diameter of 120 μm and directed into the diamond
at Brewster’s angle to optically address (with at least 1/e2

the center intensity) an ensemble with a minimum estimated
size of ≈4 × 109 NV centers in a volume of ≈0.04 mm3

based on the focused waist of the pump beam. The maximum
pump laser power we delivered to the diamond using the
Cobolt laser was 500 mW (62 mW using CW532-100F). This
resulted in a total of 84 μW (10.1 μW using CW532-100F)
of red fluorescence escaping the front face of the diamond, of
which we collected 0.91 μW (0.16 μW using CW532-100F)
onto a small area avalanche photodiode (Thorlabs APD120A)
using condenser lenses (Thorlabs ACL25416U) either side
of a low-pass optical filter (FEL0550). Our APD operating
in linear mode produced an amplified analog voltage output
Vfl sampled by an analog-to-digital converter (ADC, Gage
Octopus CS8300) at 50 MSa/sec. We optically modulated our
pump laser using an acousto-optic modulator (AOM, Isomet
532C-4) at fAOM = 2.6 MHz, allowing us to perform software
lock-in detection to minimize noise in the electronic readout.
A fraction of the pump beam was also sampled by a second
detector (Thorlabs PDA10A) to provide a reference, Vref for
common-mode noise rejection.

We generated the microwave pulses necessary for im-
plementation of the optimal control protocols using an
arbitrary waveform generator (AWG, Tektronix 5000), in-
phase/quadrature (IQ) modulating a Stanford SG394 RF
signal generator. The microwave output was amplified (Mini-
Circuits ZHL-16W-43-S+) and delivered to the diamond
using a near-field antenna based on a square split-ring
resonator design [73,74]. This antenna was designed for
uniformity of near-field intensity in a 5 × 5 mm2 region
centered on the diamond with a resonance at approximately
2.8 GHz. Our AWG also controlled a switch (Minicircuits
ZASWA − 2 − 50DRA+) through which the AOM modula-
tion drive was passed, allowing the pump beam incident on
the diamond to be pulsed and modulated.

D. Pulse sequencing and readout

In our experimental setup, we measured contrast C, the
change in fluorescence output as a result of a control pulse.
We define C as the change in fluorescence output in the
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initial period of a pump laser readout pulse after application
of a preceding microwave pulse [31,35,75]. C was measured
across an ODMR resonance feature by varying microwave
drive frequency ωD. We measured this change in fluorescence
signal Vfl after application of either a shaped or flat microwave
pulse, relative to the laser reference signal Vref. We obtained C
by scaling the reference to the size of the fluorescence signal,
subtracting the two, and integrating the resulting signal Vref −
Vfl over a time window tw = 0.3–2.7 ms at the start of the
laser pulse (see Supplemental Material [71] for full details).
This subtraction method allowed us to reject both DC and
higher-frequency (>kHz) common-mode noise from the laser
on the readout signal within the integration window. It also
allowed us to measure a value for C from every laser pulse,
rather than measuring a reference with no microwave pulse on
every other fluorescence readout, maximizing the bandwidth
of our readout. From C we also derived C′ the change in
contrast with microwave drive frequency. This quantity, the
slope of the ODMR resonance, gives a measure of the strength
of ensemble response, in turn proportional to sensitivity to
environmental factors such as magnetic field.

Using the pulsed protocol shown in Fig. 5(b), we first
initialized the NV ensemble into the ground state using pump
laser pulse Pl,n−1 of duration tl . The pump laser was then
blocked by the AOM during application of microwave control
pulse n of duration tp. A subsequent laser pulse Pl,n of the
same duration tl was then applied and the state readout via NV
fluorescence emission. This pulse also acted to reinitialize the
system back into the |0〉 state, allowing the next (n + 1) pulses
to read and initialize. This method enabled measurements
using only a short repeating sequence in the AWG memory.
We acquired data continuously for repeated sequence sets up
to the memory limit of the ADC (n = 110 pulses when using
tl = 3 ms). Once this limit was reached, the data were trans-
ferred to computer memory and processed, averaging over all
pulse sequence sets in the acquisition to reduce noise, and then
integrating to obtain C.

For direct comparison, we performed the same pulse se-
quence with the same readout methods for C using both
shaped microwave pulses and standard fixed amplitude and
phase (flat) pulses. We also used the same method for cal-
culating C throughout our measurements, to ensure accurate
comparison between the different microwave pulses. For flat
pulses, we used pulses with a single microwave drive fre-
quency of the form cos(ωt ) and three-frequency drive pulses
of the form

∑
n∈{0,±1} cos[(ω + nδl )t + φn] to drive multiple

14N hyperfine transitions [70]. The latter were generated using
the AWG with randomized phases φn for each ADC acquisi-
tion to eliminate time-dependent artifacts.

III. RESULTS

A. Laser pulse duration

Our previous measurements [24] demonstrated long opti-
cal reinitialization times, requiring many milliseconds on an
approximately exponential decay with laser pulse duration to
fully return the ensemble to the ground state. For the compara-
bly sized ensemble in these experiments, we observed similar
exponential behavior with a decay constant of of ≈1.4 ms.

FIG. 6. Contrast as a function of laser pulse time tl . Below 3
ms, tl is too short to sufficiently reinitialize the ensemble, leaving to
a reduction in contrast C with shorter readout/reinitialization laser
pulse length tl .

Waiting tens of milliseconds per readout would severely
limit the number of pulses we could read and average in a
single ADC acquisition and thus our contrast resolution and
ultimately measurement bandwidth. We therefore first per-
formed experiments varying laser pulse duration to determine
whether we could initialize and control the ensemble using
shorter laser pulses without suffering hysteresis effects, either
from incomplete initialization or reionization delay across the
readout laser pulses [76–78].

Figure 6 shows the contrast C as a function of laser readout
pulse duration tl < 20 ms as measured using an optimal con-
trol pulse. We observed C to be reduced for times shorter than
≈3 ms, indicative that an increasing number of NV centers in
the sample were not fully reinitialized into the ground state.
For tl = 3 ms and above, we observed negligible hysteresis
effects in the fluorescence readout. This is supported by Fig. 7,

FIG. 7. Raw fluorescence readout signal Vfl,n and relative contrast
Cr,n(t ) = Vfl,n − Vref,n for the first (n = 1) and last (n = 110) 3 ms
readout laser pulse in a single ADC acquisition of 110 readout
sequences. No difference within the readout noise was observed at
this readout duration, as would be expected from hysteresis effects
arising from insufficient reinitialization of the ensemble. Note that
the artifact due to AOM switch-on is not included in the integration
window tw .
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FIG. 8. Modeled variation in laser intensity I (r) and the decay
time τR[I (r)] of the reinitialization of the NV centers into the ms = 0
ground-state level as a function of beam radius, relative to r0 the 1/e2

beam width. The reinitialization time increases substantially at the
lower intensity edges of the beam. The four dashed lines show the
profile radii chosen to represent different regimes of beam intensity
for hysteresis simulation in Fig. 9(a).

comparing the raw fluorescence readout and relative contrast
calculated from the first and last individual readout pulses in
a 110-pulse ADC acquisition using tl = 3 ms.

We note that the fact we could achieve the same hysteresis-
free contrast for a short 3-ms laser pulse as for one much
longer is somewhat surprising. We consider that this effect
primarily arises due to the Gaussian intensity profile of the
laser, whereby the NV centers at the low-intensity edges of
the beam require more time to reinitialize back into the ground
state, but contribute far less to the overall fluorescence output,
especially in the first few milliseconds of the readout laser
pulse where contrast is measured [35]. In order to further
investigate the physics of our NV ensemble and to determine
the size of ensemble we address, we implemented a simple
physical model of the NV population dynamics. Our model
consists of a fixed NV density addressed by a radially (Gaus-
sian) varying laser beam intensity, with an NV at radius r
from the beam center receiving a pump intensity I (r). We then
solve a rate model for all NV centers [79,80], from which
we estimated the relative fluorescence output and ensemble
contrast C. We model our microwave pulses as an ideal π

pulse with instantaneous population transfer in the rate model
between levels ms = 0 to ms = −1. Further details of the
implementation of the model are given in the Supplemental
Material [71].

In Fig. 8, we plot the relative intensity I (r) and the reinitial-
ization time τR[I (r)], the exponential decay time required for
the pump beam to return all NV centers at r into the ms = 0
ground state, as a function of beam radius r/r0. Here r0 rep-
resents the 1/e2 beam width as in our experiment. From this
simulation, it is clear that the time period over which we in-
tegrate to derive the experimental contrast (tw = 0.3–2.7 ms)
corresponds to near complete reinitialization of the NV cen-
ters within r/r0 ≈ 0.5, or 25 % of the ensemble. Although this
does not represent the entire ensemble, this still corresponds
to ≈1 × 109 NV centers, based on estimated ensemble size

FIG. 9. (a) Simulated dynamics of the ms = 0 population for
NV centers receiving pump beam intensity I (r) at four different
increasing values of r/r0 corresponding to Fig. 8. The simulation is
initialized in P(|0〉) = 1 and evolved over 10 sequences of reinitial-
ization and ideal π pulses as in Fig. 5(b). (b) The ensemble-averaged
|0〉 spin population from the simulation in (a), weighted by the
radial distribution of fluorescence emission I (r)r. The hysteresis-free
behavior of the defects within r/r0 < 0.5 dominates the fluorescence
output. The NV centers at the beam edge that are not fully reinitial-
ized reduce the ensemble contrast as laser pulse length is reduced, as
modeled in (c).

(4 × 109) from our experimental measurement of fluorescence
emission.

The simulated reinitialization dynamic behavior can be
seen in Fig. 9(a), plotting the time evolution of the ms = 0
state population for the first 10 readout/MW pulses of length
tl = 3 ms for 4 increasing values of r/r0. Below r/r0 = 0.5,
hysteresis-free behavior can be achieved in our model almost
immediately after the first microwave pulse. Hysteretic behav-
ior is observed for NV centers further towards the edge of
the beam (r/r0 > 0.5). For these NV centers, the ground-state
occupancy decays to ≈50 % within the first 10–20 pulses.
These NV centers therefore contribute by a reduced amount
to the contrast (as measured in tw) as compared to the NV
centers in the beam center (r/r0 < 0.5), which exhibit the
correct dynamics of full reinitialization by the laser and full
state transfer by the microwave π pulse. Since the outer NV
centers are not fully reinitialized into the triplet ground state,
they also act to produce a lower fluorescence emission as
compared to the level expected with all NV centers reinitial-
ized into the spin-triplet ground state. This can be seen in
Fig. 9(b), showing the total ensemble fluorescence emission
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as a function of time for tl = 20 and 3 ms laser pulses. For the
shorter pulse length, a greater number of NV centers are not
fully reinitialized (τR < tl ), reducing the overall fluorescence
emission to approximately 90% of the maximum reached for
tl = 20 ms. Since the NV centers on the beam edge are not
properly reinitialized into the ground state, they also cannot be
correctly manipulated by the microwave state transfer pulse.
As laser pulse length tl is reduced and this fraction of NV
centers not fully reinitialized increases, this also contributes to
a reduction in contrast C. This modeled behavior can be seen
in Fig. 9(c) which qualitatively replicates our experimental
data in Fig. 6.

The ability to rapidly read and reinitialize in this manner is
an extremely useful result since it gives a means to adequately
control and read a large NV ensemble with shorter laser pulses
than that required to fully reinitialize every defect center.
This significantly increases the measurement bandwidth for a
pulsed sensing scheme, while still addressing a large number
of defects.

B. ODMR using shaped optimal control pulses

Using our optimal control algorithm including all three
hyperfine levels for 14N, we first calculated a series of shaped
microwave pulses spanning the parameter space of �̂ and
α̂, the Rabi frequency limit Rlim, and the pulse duration
tp. Their performance was then tested experimentally to ex-
plore the limits of these parameters that yield high contrast
C and ODMR slope C′. We found that extending �̂ and
α̂ beyond ±1 MHz and ±10 %, respectively, had negligible
impact, likely indicating that the real ensemble distribution
in our diamond was within these ranges. Having found that
pulses in the range of 1.1 MHz < Rlim < 2.4 MHz and 1 μs <

tp < 2 μs performed well, we experimentally searched the
parameter space of these optimal control pulses applied by
producing ODMR spectra using the shaped pulses and search-
ing for the maximum slope C′. We also applied each optimal
control pulse with experimental Rabi frequencies throughout
the range Rlim � Rexpt � Rmax. We found the best-performing
pulse optimized with tp = 1.85 μs and Rlim = 1.4 MHz, with
similar performance from larger Rlim up to 2 MHz at the same
Rexpt. The modulation components I (t ) and Q(t ) for this pulse
are shown in Fig. 3(a), and the control amplitudes are given in
the Supplemental Material [71].

The experimental ODMR spectrum from the best shaped
control pulse found is shown in Fig. 10(a). By differentiating
the spectrum, we also show the frequency versus contrast
slope C′ in Fig. 10(b). Here the largest possible slope is
desired since this produces the maximum ensemble response.
For comparison, we plot in the same figure the ODMR spec-
trum obtained using the best-performing conventional flat
three-frequency drive (π ) pulse. We found the maximum
slope to be 11 % higher for the shaped optimal control pulse
than for this conventional flat pulse. Compared to the best-
performing flat single-frequency drive (π ) pulse, we measured
a significant improvement of 73 %. This corresponds directly
to the same factor of improvement in sensitivity.

We note that the length of the flat and shaped pulse that
delivered maximum slope were significantly different. This
could potentially lead to the longer shaped pulse achieving

FIG. 10. Comparison of pulsed ODMR measurements using the
best performing optimized shaped pulse and the flat pulse that deliv-
ers the highest contrast using three-frequency drive. The slope data
shown in (b) are the slope of the fit to the ODMR data in (a).

higher performance purely by delivering more microwave
power over an extended time period. To ensure this was not
the case, we compared the optimized pulse against single- and
three-frequency drive flat pulses over an extended parameter
space of pulse lengths (up to tp = 1.35 μs) and applied mi-
crowave power (up to Rabi frequency Rmax = 3 MHz). These
data are shown in Fig. 11 for single-frequency drive and in
Fig. 12 for three-frequency drive. The flat pulses performed
best at the length and power that corresponded to perform-
ing a π pulse on the largest possible subset of NV centers
(maximizing contrast). However, as can be seen from these
figures, the shaped microwave pulse we created using our
optimal control methods always produced an ODMR slope
far higher than any unshaped drive. This was the case for any
pulse length or microwave power, with the optimum for the
flat pulses reached well within experimental limits of Rmax and
tp.

To directly demonstrate the enhancement of NV center en-
semble sensing response, we used a field coil aligned parallel
to the static offset field to apply a test AC magnetic field to
the diamond. We recorded the response in terms of the change
in fluorescence emission (ODMR contrast) as a function of
time, while using microwaves at central drive frequency ωD

corresponding to the point of maximum ODMR slope C′. We
used the same experimental setup for both optimal and shaped
pulses, with the same level of intrinsic noise. The results of
these measurements for the best-performing shaped pulse as
used for the ODMR plot in Fig. 11 and for a flat pulse can be
seen in Fig. 13, the shaped pulse enhancing the response by
≈70%. This level of response was directly proportional to the
enhancement of ODMR contrast and slope seen in Fig. 10.
We verify this result further in the Supplemental Material
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FIG. 11. The maximum ODMR slope C′ measured for flat
single-frequency drive pulses over the relevant parameter space of
applied Rabi frequency Rexpt and duration tp. The red stripe in the
color bar shows the maximum ODMR slope of the best optimal
control pulse from Fig. 10. The equivalent plot for three-frequency
drive is given in the Supplemental Material [71].

[71] through measurements of the amplitude spectrum of the
response signal while varying coil current and AC frequency,
including characterization of the readout noise and control
measurements taken on and off microwave resonance.

IV. CONCLUSION

In this work, we demonstrate that a large ensemble of solid-
state defects in a macroscopic sample can be manipulated
and coherently controlled in a manner beneficial for quantum
sensing. We demonstrate this for an ensemble of NV centers
in diamond through the use of shaped microwave pulses gen-

FIG. 12. Maximum ODMR slope C′ for three-frequency drive
pulses of the best-performing duration tp for the given Rabi fre-
quency Rexpt, compared to the best-performing optimal control pulse.
The error bars of the three-frequency drive data and the y range of
the optimal control pulse data represent 1σ uncertainty. The data
covering the full parameter space in duration tp and Rabi frequency
Rexpt are shown in the Supplemental Material [71].

FIG. 13. (a) ODMR taken using an optimized shaped pulse, plot-
ted as the change in C with respect to the value at maximum slope
C′ at ωD = 2786.1 MHz and (b) time series of the ensemble response
when a 111-Hz AC magnetic field was applied to the diamond. The
applied field was recorded as a clear signal in the fluorescence emit-
ted by the NV centers. In (c) and (d) we show the equivalent ODMR
and time response (ωD = 2788.75 MHz) measured using a flat MW
pulse. We observed a clear increase in the ensemble response to
the applied field using the shaped as compared to the flat pulse.
The amplitude of the recovered signal was ≈70% larger, directly
proportional to the enhancement of ODMR slope C′ achieved by
using the shaped pulse.

erated using Floquet theory and optimal control methods. Due
to the scaling of sensitivity with the number of defects, such
large ensembles are key for quantum sensing applications,
either using NV centers or other solid-state defects. Both our
overall NV ensemble volume within the estimated Gaussian
beam width (≈4 × 109 NV centers in a ≈0.04 mm3 volume)
and our estimated NV ensemble contributing maximally to
the contrast signal (≈25% of the total) was larger than NV
ensembles previously studied and reported in the literature
using optimal control methods largely studied using confocal
microscopy [34,57,60–63,81].

By fully considering the physics of the defect system
and including the hyperfine interaction in our optimization,
we demonstrate an 11 % enhancement in ODMR slope with
optimized shaped pulses when compared to the best alter-
native three-frequency drive flat (fixed amplitude and phase)
(π ) pulses and a 78 % improvement over standard single-
frequency-drive flat (π ) pulses most commonly used for
coherent control in the literature. This improvement is directly
proportional to the same factor of sensitivity increase when
used in an applied sensing scheme, as we demonstrate via
sensing of an applied AC magnetic field. This significant
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improvement offers potential for wider impact for DC and
low-frequency sensing, for example, in precision measure-
ment of slowly varying temperature where ensemble probe
bandwidth limitations imposed by the ≈5 μs shaped pulse
length would be less constraining. Our method is not specific
to the apparatus we used. By measuring the ODMR contrast
by referring to the signal from an additional photodetector,
we were able to reject more of the laser technical noise
while maximizing the number of contrast measurements we
could achieve as compared to alternative time-domain noise-
rejection methods [35].

Through modeling of the physical dynamics of the read-
out and initialization of the defect ensemble, we show that
although many tens of milliseconds are required to fully
reinitialize the whole NV ensemble, a shorter laser pulse can
address and reinitialize a large proportion of the NV centers.
By demonstrating consistent contrast measurements free of
hysteresis, we show that these NV centers can be addressed
and controlled reliably. Further work is required to fully
understand the dynamics of the system and the distribution
of pump light in the diamond. However, our measurements
suggest the primarily limiting factor on the readout is the
Gaussian shape of the laser beam, hinting at considerable
future improvement using a non-Gaussian profile.

The shaped microwave pulses we generate in this work
almost certainly represent local maxima of performance in a
wide parameter space. We consider it very likely that advances
in methods for optimization as well as experimental improve-
ments could provide even better solutions in the future. A
particular disadvantage of our approach is the assumption of
simple Gaussian distributions for detuning and other parame-
ters, which are a poor representation of the actual properties
of a real sample. A route forward may be to use experimental
feedback in the optimization algorithm. This would be sim-
plified by producing a more homogeneous microwave field
through antenna improvements, increasing the ensemble Rabi
frequency through better use of the microwave power, and the
use of alternative laser beam profiles to improve uniformity of
initialization and readout. Additionally, in this work we opti-
mize for state transfer |0〉 to |−1〉, which aims to maximize
contrast C. By instead explicitly optimizing for the change in
contrast in response to the control field (the slope C′ in our
results above), better optimized pulses could be generated. A
further future approach would be to implement spin-bath driv-
ing [82] or use dynamic nuclear polarization [83] with shaped
pulses that couple to longer-lived nuclear spins, including 13C
[84], acting as an ancillary qubit to enhance sensing properties
[32].

We consider our pulse shaping approach to be especially
suitable to systems with a relatively large degree of inho-
mogeneous broadening and/or microwave drive variation. In
particular, such a system arises in wide-field imaging of mag-
netic field using NV centers [85]. For a useful field of view of
up to many tens of micrometers, suitable for biosensing or in-
tegrated circuit imaging, intrinsic factors within the diamond
such as variation in strain and ODMR contrast along with
extrinsic factors such as variation in pump laser power can
produce a high degree of inhomogeneous broadening across
NV centers in the imaged region. Furthermore, creating a

uniform power near-field microwave field across such a wide
field of view is challenging, especially in the presence of vari-
ation in dielectric properties of the target system to be imaged.
In this application, it is therefore extremely difficult for a
single flat microwave pulse to correctly address all NV centers
in the image, given a wide variation in Rabi and microwave
drive frequency across the field of view. For a π pulse or
Ramsey sensing scheme, this then means highly nonuniform
sensitivity and potentially even regions with zero sensitivity
within the image.

The furthest extreme example of this type of wide-field
imaging is sensing using a distribution of nanodiamonds
across the imaging field of view. This configuration is highly
suitable for NV temperature sensing, each diamond acting
as a local probe of heat generation and flow, particularly
from processes in biophysics [86]. It is extremely desirable
to sense simultaneously from all such nanodiamonds, in order
to monitor the interaction and operation of such processes.
However, there exists extremely high variation in broadening
between the few NV centers in each nanodiamond, which is
induced by the geometry and high strain of the diamonds, plus
potentially high variations in microwave drive, induced by
variations in dielectric coupling due to local conditions (e.g.,
composition and density variation of of ionic solutions, such
as intercellular or intracellular fluid). This far, existing imple-
mentations have had to rely on continuous-wave sensing, with
sensitivity compromised by microwave power broadening of
the ODMR resonances. For this application, pulse shaping
offers the possibility to apply a single, shaped microwave
pulse that is capable of interrogating NV centers across the
field of view simultaneously, with higher sensitivity than cw
and with image-wide high sensitivity and sensing bandwidth
in a way a flat pulse cannot deliver.

Our work represents an important step in the direction of
using optimal control and other techniques widely used in
nuclear magnetic and electron spin resonance experiments to
explore the physics of new systems suitable for quantum sens-
ing. These techniques, including those we outline here, can be
adapted to be widely applicable, not only to diamond but to
other defects in both bulk and novel quantum materials, such
as those in two-dimensional (2D) materials [87]. Using con-
trol pulses shaped by optimal control methods, which could be
either microwaves, optical fields, or some other means, offers
a good route to reach the ultimate T ∗

2 -limited performance, es-
pecially where extensive material optimization is not desirable
or possible.
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APPENDIX: SPIN MATRICES

Following are shown the 6 × 6 matrix representations of the Pauli spin matrices that are each specific to one of the three
nitrogen-14 hyperfine transitions:

σz,1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, σz,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A1)

σz,3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠, σx,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A2)

σx,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, σx,3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, (A3)

σy,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, σy,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −i 0 0
0 0 i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A4)

σy,3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎠. (A5)
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