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Modeling sample-to-sample fluctuations of the gap ratio in finite disordered spin chains
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We study sample-to-sample fluctuations of the gap ratio in the energy spectra in finite disordered spin chains.
The chains are described by the random-field Ising model and the Heisenberg model. We show that away from
the ergodic-nonergodic crossover, the fluctuations are correctly captured by the Rosenzweig-Porter (RP) model.
However, fluctuations in the microscopic models significantly exceed those in the RP model in the vicinity of the
crossover. We show that upon introducing an extension to the RP model, one correctly reproduces the fluctuations
in all regimes, i.e., in the ergodic and nonergodic regimes as well as at the crossover between them. Finally, we
demonstrate how to reduce the sample-to-sample fluctuations in both studied microscopic models.
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I. INTRODUCTION

Switching on interactions in low-dimensional Anderson
insulators leads through the interplay between the quantum
interference and many-body interactions to fascinating new
phenomena. While turning on interactions at small disorder
delocalizes the system, the strong disorder is believed to cause
many-body (MBL) localization [1–4] at least on finite-size
lattices. Even though research in this field predominantly fo-
cused on a few simplest prototype model Hamiltonians for
MBL, such as the disordered XXZ model [5–16], the type
of the transition and even the existence of the MBL phase
in the thermodynamic limit are still under intense consider-
ation [17–28]. The latest results based on the studies of the
avalanche instability suggest that the transition to the MBL
phase occurs for much stronger disorder then it follows from
the previous numerical studies of finite systems [26].

At small disorder, the quantum many-body system is
ergodic; its energy spectrum can be analyzed within the
framework of the random matrix theory (RMT), while the
eigenstate thermalization hypothesis can describe the relax-
ation of physical observables of a closed system [29–46].
Increasing the disorder strength leads to the ergodicity break-
down that is reflected in the departure from the RMT
prediction and can be studied through the behavior of different
ergodicity indicators such as the anomalous level statistics
and the eigenstate entanglement entropies [17,18], the fidelity
susceptibility [22], the anomalous distribution of observable
matrix elements [47,48], the opening of the Schmidt gap [49],
the gap in the spectrum of the eigenstate one-body density
matrix [11], and the correlation-hole time in the survival prob-
ability reaching the Heisenberg time tH [50].

Strong disorder is also reflected in unusual transport prop-
erties of the system, such as the onset of slow relaxation
[7,11,51–69], subdiffusive transport [7,57,59,62,70–75], and

an approximate 1/ω scaling of the spin density spectral func-
tion [22,60,76]. Recently, the latter scaling was analyzed in
a framework of a phenomenological theory based on the
proximity to the local integrals of motion of the Anderson
insulator, which describes the dynamics of the observables at
infinite temperature [24].

The shift from the ergodic regime by increasing disorder
is accompanied by the increase of fluctuations of various
physical quantities. Non-Gaussian fluctuations of the resis-
tivity ρ follow the departure from the ergodic regime while
the probability distribution of ρ reveals fat tails that appear
generic for different disordered many–body models [77]. The
time evolution of fluctuations of the return probability has
been recently used to explore the possibility of the existence of
different types of MBL phases [78]. Lately, the level statistics
of disordered interacting quantum system has been analyzed
throughout the crossover from the ergodic to many–body lo-
calized phase [79,80].

In this work, we discuss sample-to-sample fluctuations
of the gap ratio [80] in two basic models used for study-
ing crossover from the ergodic system with the GOE level
statistics to the nonergodic one with the Poisson statistics in
disordered finite spin chains: the random-field Ising model
and the random-field Heisenberg chain. In the vicinity of the
crossover, both models display similar distribution of fluc-
tuations. We show that this distribution can be adequately
described within the framework of the Rosenzweig-Porter
(RP) [81,82] model with a modification that accounts for dif-
ferent realizations of disorder in finite systems. Further on, we
refer to the modified model as the Rosenzweig-Porter model
with sample fluctuations (RPSF model). The only difference
between both models is that the variance of the off-diagonal
matrix elements in RPSF model is not set directly by the
dimension of the Hilbert space (as it is the case in the RP
model) but is drawn from the normal distribution with its
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spread given by the dimension of the Hilbert space. We further
show that the standard RP and the RPSF models are equivalent
in the thermodynamic limit. Using this property, we show
that the sample-to-sample fluctuations may be reduced also
in both spin chains, provided one studies the gap ratio not for
a fixed disorder strength but for fixed norms of the diagonal
and off-diagonal parts of the Hamiltonian.

II. MODELS AND FLUCTUATIONS OF THE GAP RATIO

We discuss the level statistics in two models which have
been commonly studied in the context of the many-body-
localization. First, we consider the random-field Ising chain

HI =
∑

i

(J + δJi )S
z
i Sz

i+1 +
∑

i

hiS
z
i + f

∑
i

Sx
i , (1)

where we set the transverse field f /J = 0.5. In order to break
the integrability of the system without disorder (W = 0),
we add also a small randomness to the coupling constant,
δJi ∈ [−WJ ,WJ ] with WJ/J = 0.2. The second model is the
random-field Heisenberg chain, which has been mostly used
in the numerical calculations

HH =
∑

i

J �Si · �Si+1 +
∑

i

hiS
z
i . (2)

In both cases, we consider chains with L sites and with peri-
odic boundary conditions. We also set J = 1 as the energy unit
and assume uniformly distributed random field hi ∈ [−W,W ].

In order to distinguish between ergodic and localized
phases, we follow a commonly used procedure and calcu-
late the gap ratio (introduced in Ref. [3]), defined as rn =
min{δn, δn−1}/ max{δn, δn−1}, where δn = En+1 − En is the
gap between the consecutive energy levels. Usually, one in-
vestigates rn that is averaged over multiple energy levels from
the middle of the spectrum as well as over various realizations
of disorder, i.e., over multiple sets {h1, ..., hL}. One expects
rPoisson ≈ 0.386 for the localized phase and rGOE ≈ 0.5295 for
the ergodic one.

In this work, we focus on the gap ratio that is averaged
only over the energy levels with a given realization of disorder
and discuss fluctuations of such quantity between various
realizations of disorder (sample-to-sample fluctuations). This
problem has previously been studied for the Heisenberg chain
in Ref. [80], which reported large fluctuations of the gap ratio
in the vicinity of the crossover between GOE and Poisson
level statistics. Such fluctuations hinder accurate finite-size
scaling and precise location of the crossover. As a main result
of this work, we show that the sample-to-sample fluctuations
may be reduced via appropriate identification of more ergodic
and less ergodic samples. In the thermodynamic limit, the
latter feature is expected to be uniquely determined by W ,
which is, however, not the case for finite systems.

To this end, we study the gap ratio rS which is a mean
value of rn studied separately for each disorder realization
rS = 1

Nr

∑Nr
i=1 rn, where Nr + 2 is the number of energy levels

taken from the middle part of the spectrum. If not otherwise
stated, we use Nr = 1

3 Z where Z is the dimension of the
Hilbert space.

FIG. 1. Cumulative distribution functions (CDF) of rS obtained
for different realizations of disorder and fixed W . CDF’s for various
W are fitted with the error function (dashed curves). Results in
panels (a)–(c) are for the Ising model with L = 14 and 4000 disorder
realizations; panels (d)–(f) show results for the Heisenberg chains
with L = 16 and 700 samples of disorder.

III. FLUCTUATIONS OF THE GAP RATIO

Numerical studies of the Heisenberg chain have been car-
ried out in the sector with the total spin projection Sz

tot = 0.
Since Sz

tot does not commute with the Ising Hamiltonian, HI ,
we use the full Hilbert space in the latter case. Consequently,
in the case of the Heisenberg chain, we may access larger sys-
tem sizes than for the Ising chain. Figure 1 shows cumulative
distribution functions of rS obtained from multiple realiza-
tions of disorder for fixed W and various panels correspond
to different values of W . In both models, results for weak
disorder [Figs. 1(a) and 1(d)] or strong disorder [Figs. 1(b)
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and 1(e)] can be accurately fitted by the error function, and the
fits are shown as dashed curves. In both regimes, one observes
Gaussian sample-to-sample fluctuations centered at rGOE (for
weak disorder) or rPoisson (for strong disorder). However, for
intermediate disorders [Figs. 1(c) and 1(f)], the distributions
visibly deviate from the error functions. In particular, the val-
ues of rS obtained for the Ising model at W = 1.5 span almost
the whole window between rPoisson and rGOE; see Figs. 1(c).
Similar observation holds true also for the Heisenberg model
at W = 2.5, as shown in Fig. 1(f).

In order to identify the origin of these fluctuations, we
calculate the variances of the distributions shown in Fig. 1,
σ 2 = 〈r2

S〉d − 〈rS〉2
d , where 〈...〉d means averaging over Nd

samples of disorder. In Fig. 2, we show how this quantity
depends on the number of energy levels, Nr , used for evalu-
ation of rS for each sample. For weak or strong disorder, the
variances scale as σ 2 ∝ 1/Nr while the dependence of σ 2 on
L is rather insignificant. This behavior is shown in Figs. 2(a)
and 2(d) for the Ising model and in Figs. 2(e) and 2(h) for
the Heisenberg chain. Therefore, in the regime of weak or
strong disorder the fluctuations of the gap ratio seem to have
purely statistical origin which can be linked solely to the
number of energy levels which are accessible in finite systems.
The correlations between rn and rm should not be essential
for sufficiently distant m and n. Then, rS = 1/Nr

∑Nr
i=1 rn is

a random variable. Its distribution tends toward the normal
distribution for large Nr with the variance that is inversely
proportional to Nr .

Such picture breaks down for the intermediate disorder
strengths, as can be observed from Figs. 2(b) and 2(c) for
the Ising model and Figs. 2(f) and 2(g) for the Heisenberg
chain. The distributions are much broader than for the previ-
ously discussed cases; 1/σ 2 almost saturates for large Nr and
shows strong dependence on the system size L. Departure of
the distribution of rS from the normal distribution for large
Nr suggests that certain realizations of disorder {h1, ..., hL}
are more relevant for the “ergodic system” while the others
are more relevant for the “localized system” despite being
drawn for the same disorder strength W . In other words,
we expect that for the accessible system sizes, the sequence
{h1, ..., hL} is too short to be fully specified by a single
quantity, W .

In order to test this conjecture and to decrease the sample-
to-sample fluctuations of rS we introduce a new parameter to
describe the properties of the random sequence {h1, ..., hL},

V = Zδ2
nd/δ

2
d , (3)

where δd and δnd are, respectively, the variances of the di-
agonal and off-diagonal elements of the Hamiltonian matrix,
Hs̄,s̄′ = 〈s̄|H |s̄′〉, in the real-space basis |s̄〉 = |Sz

1, Sz
2, ..., Sz

L〉.
The ratio is rescaled by the dimension of the Hilbert space, Z ,
in order to have a nonzero value for L → ∞.

The result for V can be obtained from the high-temperature
expansion. In the case of the Heisenberg model, the variance
of the off-diagonal part equals, up to the 1/Z factor, the
Hilbert-Schmidt norm of the spin-flip term, δ2

nd = L/(8Z ).
The diagonal variance is determined by the norms of the SzSz

term and the random field term, δ2
d = L/16 + 1/4

∑L
i=1 h2

i .

FIG. 2. The inverse variances of distributions shown in Fig. 1 vs
number of energy levels, Nr , used for averaging of rn. Results in
plots (a)–(d) are for the Ising model with L = 12 or L = 14 sites
and Nd = 4000 realizations of disorder. Plots (e)–(h) show the same
but for Heisenberg model with L = 14 or L = 16 sites and Nd = 700
realizations of disorder.

Since hi are independent random variables, one finds

δ2
d = L

(
1

16
+ W 2

12
+ 1

4
√

L
y

)
, (4)

where y is a random variable which for large L is described
by a normal distribution with mean zero and the variance
4W 4/45. Then, one may calculate V for the Heisenberg model
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in the thermodynamic limit

VH
∞ = 6

3 + 4W 2
. (5)

Similar analysis applied for the Ising chain yields

V I
∞ = 12 f 2

3 + W 2
J + 4W 2

. (6)

The properties of a finite system are not determined by W
but rather by the sequence of random potentials {h1, ..., hL}.
Then, the question is whether the physical properties of a finite
system with a fixed sequence are more accurately encoded
in the value of W (used to generate the sequence) or in the
ratio V . In order to answer this question, one needs to check
whether the sample-to-sample fluctuations are smaller within
results obtained for fixed W or for fixed V . Further on we
demonstrate that the latter case holds true. The motivation
for discussing V comes from that it is directly related to the
norm of the perturbation term relatively to the norms of the
other terms of the Hamiltonian. In other words, it allows us
to distinguish “more localized” samples with larger

∑L
i=1 h2

i
from “more ergodic” cases where the latter quantity is smaller.
An essential observation following from Eq. (4) is that in
the thermodynamic limit there is one-to-one correspondence
between the values of W and V , so the system’s properties
are fully specified by either of these quantities. An additional
support for using V is discussed in the subsequent section,
where we introduce a phenomenological model which accu-
rately reproduces broad, non-Gaussian fluctuations of rS in
finite systems.

IV. PHENOMENOLOGICAL MODEL FOR THE
SAMPLE-TO-SAMPLE FLUCTUATION OF GAP RATIO

Our phenomenological approach is motivated by the
Rosenzweig-Porter model [81,82], where the ergodic-
nonergodic crossover originates from different variances of
the diagonal and off-diagonal elements of random matrices.
In that model, one considers random matrices, Hs̄,s̄′ , such
that diagonal elements and all off-diagonal elements in the
upper triangle of the symmetric matrix are sampled from a
normal (Gaussian) distribution with δ2

d = 1 and δ2
nd = Z−γ /2,

respectively, and where the crossover takes place at γ = 2.
In order to account for the finite-size fluctuations discussed
in the preceding section, we consider a generalization to the
RP model with sample fluctuations (RPSF), where δnd is not
a constant for different samples but rather a random variable
that changes from sample to sample. We assume that δnd is
drawn from the normal distribution with the variance Z−γ /2
with the probability density function

fδ (δnd ) = 2√
πZ−γ

exp

(
− δ2

nd

Z−γ

)
, δnd � 0. (7)

Note that despite this generalization, the RPSF model re-
mains a single parameter (γ ) model, just like the standard
RP model. Within the RP and RPSF models, one gener-
ates dense matrices where all matrix elements are nonzero.
However, in microscopic models discussed in the preceding
section, the number of nonzero off-diagonal elements grows
as ∼Z ln(Z ).

FIG. 3. Cumulative distribution functions for rS . Panel (a) shows
numerical results for the random-field Heisenberg chain with L = 16
sites and various W . Points in panel (b) show CDF’s for the standard
Rosenzweig-Porter model and lines show results for the latter model
that is generalized to account for the sample-to-sample fluctuations,
the RPSF model. In order to obtain results in panel (b), we have
generated random 3500 × 3500 matrices.

In order to carry out simulations of such model, first
we draw random δnd and then for fixed δnd and δd = 1 we
generate normally distributed real-valued matrix elements. In
Fig. 3, we compare the distributions of rS obtained for the
random-field Heisenberg chain with L = 16 sites [Fig. 3(a)]
and for the RP or RPSF models [Fig. 3(b)]. In the latter case,
we have diagonalized random 3500 × 3500 matrices gener-
ated according to the procedure discussed in the preceding
paragraph. We recall that in the case of the Heisenberg chain,
the dimension of the Hilbert space is approximately 12 000.
One observes that the standard RP model [points in Fig. 3(b)]
correctly captures the distributions of rS only for parameters
which are far away from the GOE/Poisson crossover, i.e., for
γ 
 2 or γ � 2. Even though random matrices are smaller
than the matrices representing the Heisenberg Hamiltonian,
the standard RP model fails to reproduce the broad distribu-
tions observed in the vicinity of the crossover at γ = 2. In
contrast, the generalized RPSF model correctly reproduces
the numerical studies of the microscopic model for arbitrary
γ . Interestingly, both versions of the RP model give almost
indistinguishable results for γ 
 2 or γ � 2. Therefore, the
generalization affects predominantly the sample-to-sample
fluctuation observed in the vicinity of the crossover.

Next we demonstrate that the sample-to-sample fluctuation
in RPSF vanish in the termodynamic limit, Z → ∞, and
discuss how these fluctuation depend on the system size. To
this end, we transform the random variable δnd in Eq. (7) and
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introduce � such that Z−�/2 = δ2
nd . It is clear that � plays that

same role in RPSF model as the exponent γ in the standard RP
model except that � changes from sample to sample. In order
to obtain the probability density function f� (�), we compare
the cumulative distribution functions∫ ∞

�

d�′ f� (�′) =
∫ X (�)

0
dδnd fδ (δnd ), (8)

where X (�) = Z−γ /2/
√

2. Differentiating Eq. (8) with respect
to �, one obtains

f� (�) = ln(Z )g[ln(Z )(� − γ )],

g(x) = 1√
2π

exp

(
− x

2
− 1

2
e−x

)
. (9)

Note that g(x) is normalized and the corresponding cumula-
tive distribution gives G(x) = 1 − erf (e−x/2/

√
2), where erf

is the Gaussian error function. The distribution function f� (�)
approaches the delta function δ(� − γ ) for Z → ∞. Conse-
quently, the standard RP and the RPSF models are equivalent
in the thermodynamic limit. One may also find the finite size
fluctuations

〈�2〉 − 〈�〉2 = π2

2 ln(Z )2
. (10)

Interestingly, the standard deviation of � decays as the inverse
of the linear system’s dimension, ln(Z ), even though such
dimension does not explicitly enter the RPSF model. To con-
clude this section, we note that a simple extension to the RP
model allows reproducing the sample-to-sample fluctuations
in a finite system, whereas, in the thermodynamic limit, both
models (RP and RPSF) are equivalent.

V. NUMERICAL RESULTS FOR DISORDERED ISING
AND HEISENBERG CHAINS

Here we demonstrate that using results from the proceed-
ing section one may reduce sample-to-sample fluctuations
also in both microscopic models. In Fig. 4, we show corre-
lations between the gap ratio, rs, and V , see Eq. (3), where
both quantities are calculated separately for each disorder
realization. We use different symbols to distinguish between
disorders drawn for various W and vertical guidelines mark
V I

∞ [Eq. (6)] and VH
∞ [Eq. (5)] obtained for the Ising and

the Heisenberg chains, respectively. One observers that results
obtained for various realizations of disorder form a single
sigmoid-like curve. The points are scattered in both directions.
The vertical scattering means that V does not fully specify rS

in finite systems, whereas the horizontal scattering means that
W does not fully specify V . The scattering in the horizontal di-
rection is responsible for fluctuation of rs which are intensified
on the steep section of the sigmoid, i.e., in the vicinity of the
crossover between the Poisson and the GOE level statistics.

The latter contribution to σ may be eliminated once one
studies fluctuations for fixed V instead of fixed W . To this
end, in each step of simulations, we first randomly choose
W , 0.7 < W < 3.5 for the Ising chain and 1 < W < 8 for the
Heisenberg model, we draw the random fields hi, we construct
the Hamiltonian, and we obtain V and rS . The results are iden-
tical to those in Fig. 4 except that now points almost uniformly

FIG. 4. Correlations between the gap ratio rS and V; see Eq. (3).
Each point corresponds to a single realization of disorder and differ-
ent symbols distinguish between values of W for which the sequence
of random fields, h1, ..., hL , was drawn. Panels (a)–(d) and (e)–(h)
show results for the Ising and Heisenberg models, respectively. The
vertical lines mark results the values of V in the thermodynamic
limit, given by Eqs. (6) and (5), respectively.

cover the entire range of V . Then in narrow windows of V we
calculate the variances, σ 2. Results are shown in Figs. 5(b)
and 5(d) for the Ising and Heisenberg chains, respectively.
In Figs. 5(a) and 5(c), we show the spreads of distributions
in Fig. 1, i.e., distributions generated in a standard way for
fixed W . In order to facilitate the comparison of both types
of results in Figs. 5(a) and 5(c), we plot σ 2 versus V I

∞(W )
and VH

∞(W ), respectively. For the Ising model, we observe that
σ 2 obtained from fixed V is approximately five times smaller
than σ 2 obtained from fixed W . In the case of the Heisenberg
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FIG. 5. The variance of the gap ratio obtained for fixed W in
panels (a) and (c) or fixed V in panels (b) and (d). Results in panels
(a), (b) are for the Ising chain and in panels (c), (d) for the Heisenberg
model. For the clarity, results in panels (a) and (c) are plotted as
functions of V I

∞(W ) and VH
∞(W ). The vertical guidelines mark the

values of V in the thermodynamic limit for selected W listed in the
legend.

model, the reduction of fluctuations is less significant but still
clearly visible.

Following the suggestion in Ref. [26], we have con-
centrated our efforts on statistics of energy levels in the
crossover regime from GOE to MBL observed on finite-size
lattices. There is particular attention devoted to the inter-
mediate crossover regime as it appears on finite lattices in
the hope that a better understanding of this regime would
yield additional new information about the nature of the
MBL phase transition [26,83] in the thermodynamic limit.
Our research was also inspired by the notion that in the
regime of strong disorder where the MBL phase is pre-

dicted to occur, the finite-size effects critically affect results
obtained from exact diagonalization approaches on a small
lattice sizes [47,84,85]. Our approach demonstrates how to
reduce the finite-size sample-to-sample fluctuations and it
does not relay on any particular picture that holds in the
thermodynamic limit.

VI. CONCLUSIONS

In finite disordered systems, we have studied the sample-
to-sample fluctuations of the gap ratio, rS , which are expected
to show the GOE/Poisson crossover. In order to single-out
generic model-independent properties, we have numerically
studied the random-field Heisenberg chains as well as the
random-field Ising model. Far from the crossover, the fluc-
tuations of rS are set by the dimension of the Hilbert space.
Consequently, the standard RP model correctly reproduces the
fluctuations obtained for microscopic systems. Random ma-
trices of comparable sizes as the matrices of the microscopic
Hamiltonians give rise to similar fluctuations. However, this
is not the case in the vicinity of the crossover when the
fluctuations in the microscopic models significantly exceed
the results for the standard RP model. This discrepancy is be-
cause the relatively small sets of random fields, h1, ..., hL may
be very different despite being drawn for the same disorder
strength, W . As a result, specific samples drawn for finite sys-
tem appear more ergodic while the others are more localized.
We have demonstrated that this feature may be implemented
in the generalized RP model rather straightforwardly. In its
generalized version, i.e., in the RPSF model, the variance
of the off-diagonal matrix elements is a normally distributed
random variable that changes from sample to sample. The
width of the latter distribution is the same as the constant
variance in the standard RP model. The generalized RPSF
model accurately captures the distributions of the gap ratio
in finite chains essentially for all studied regimes. Moreover,
far away from the GOE/Poisson crossovers, both ver-
sions of the Rosenzweig-Porter model give almost identical
distributions.

Utilizing the latter result, we have demonstrated that the
sample-to-sample fluctuations in the finite microscopic model
can be reduced. Instead of studying the distributions of the
gap ratio for fixed W , we have evaluated them in terms of
a fixed ratio of the Hilbert Schmidt norms of the diagonal
and off-diagonal parts of the Hamiltonian. The norm of the
random-field term depends on W but also accounts for differ-
ences between various realizations of the random fields. The
latter ratio of norms is a counterpart of the ratio of variances
in the RPSF model. We have shown that this procedure sig-
nificantly reduces sample-to-sample fluctuations in the Ising
model, while the reduction for the Heisenberg model is less
pronounced.
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