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Structure prediction has become a key task of the modern atomistic sciences and depends on the rapid and
reliable computation of energy landscapes. First-principles density functional based calculations are highly
reliable, faithfully describing entire energy landscapes. They are, however, computationally intensive and slow
compared to interatomic potentials. Great progress has been made in the development of machine learning, or
data derived, potentials, which promise to describe entire energy landscapes at first-principles quality. Compared
to first-principles approaches, their preparation can be time consuming and delay searching. Ab initio random
structure searching (AIRSS) is a straightforward and powerful approach to structure prediction, based on the
stochastic generation of sensible initial structures and their repeated local optimization. Here, a scheme, com-
patible with AIRSS, for the rapid construction of disposable, or ephemeral, data derived potentials (EDDPs) is
described. These potentials are constructed using a homogeneous, separable many-body environment vector and
iterative neural network fits, sparsely combined through non-negative least squares. The approach is first tested
on methane, boron nitride, elemental boron, and urea. In the case of boron, an EDDP generated using data from
small unit cells is used to rediscover the complex γ -boron structure without recourse to symmetry or fragments.
Finally, an EDDP generated for silane (SiH4) at 500 GPa enables the discovery of an extremely complex,
dense structure which significantly modifies silane’s high pressure phase diagram. This has implications for
the theoretical exploration for high temperature superconductivity in dense hydrides, which have so far largely
depended on searches in smaller unit cells.
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I. INTRODUCTION

The knowledge of the arrangement, and nature, of atoms
in a system is an essential starting point for its theoretical
or computational study. First-principles approaches to crystal
structure prediction have provided a route to this knowl-
edge which is independent of experiment or intuition [1].
Early approaches were based on evolutionary algorithms [2],
or random search [3,4], but many related algorithms have
been proposed since [5,6]. Over the last decade and a half,
first-principles structure prediction has led to a number of
computational discoveries. These include dense transparent
sodium [7], the structure of phase III of hydrogen and its
mixed phase IV [8], and complex host-guest structures in
aluminium at terapascal pressures [9]. The first application
of random structure search [3] was testing Ashcroft’s pre-
diction [10] that compressed hydrides might offer a route
to high-temperature superconductivity [11]. This has been
dramatically confirmed with the experimental discovery of su-
perconductivity in hydrogen sulphide at 203 K [12] and 250 K
in LaH10 [13]. In both cases, the structures were predicted
from first principles and the superconductivity anticipated
computationally [14–16].

Ab initio random structure searching (AIRSS) is a partic-
ularly simple yet powerful approach to structure prediction

*cjp20@cam.ac.uk

[4]. Random structures are generated and relaxed to nearby
local minima of the energy landscape, repeatedly and in par-
allel. With a focus on exploration rather than exploitation,
the initial random structures are generated to broadly sam-
ple a subvolume of the total configuration space, see Fig. 1.
This subvolume is defined by the search parameters. These
parameters include the range of unit cell volumes and shapes,
species-dependent minimum distances, structural or molecu-
lar units, and symmetry. If these settings are well chosen, the
initial random structures are sensible and steer the search to
promising regions of the energy landscape. AIRSS depends
on features of the first-principles energy landscape for its
effectiveness, in particular, its relative smoothness [4].

The development of robust first-principles codes to calcu-
late the total energy of extended systems, through periodic
boundary conditions [17–19] along with databases of ac-
curate pseudopotentials [20], has enabled high throughput
computational approaches. One high-throughput approach is
to compute properties of structures derived from experimental
databases, such as the ICSD [21,22]. Structure prediction, and
especially AIRSS, also depends on high-throughput computa-
tions, with the structures rather generated stochastically.

Density functional theory (DFT) offers a very efficient way
to compute electronic properties from first principles at the
quantum mechanical level [23] but it remains computationally
expensive in the Kohn-Sham formulation, as single-particle
wave functions must be optimized for all the electrons in the
system. During the 1980s, as the techniques behind modern
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FIG. 1. A sketch of configuration space, highlighting regions
which may be reached starting from structures assembled according
to physically motivated biases and/or constraints. In general, the
volume of configuration space accessible from these sensible initial
structures will be very small compared to the total volume of config-
uration space.

DFT codes were being developed, there was a parallel in-
terest in accelerating computations using empirical potentials
[24–26]. Physically inspired functional forms for the inter-
atomic potentials were constructed, and the free parameters
fit to experimental data or small data sets of first principles
data [25]. With the advent of high-throughput computation,
which can rapidly generate large data sets, these approaches
to fit potentials have been revisited, in the context of machine
learning [27].

Machine learning has a long history in the materials sci-
ences [28,29]. In the 1990s, attempts were made to use neural
networks to learn electronic band structures to accelerate
Brillouin-zone integration for electron energy loss spectra
prediction [30]. Neural networks were also used to fit complex
energy landscapes of isolated systems [31], density function-
als [32], and to predict alloy properties [33].

Hampered by a relative lack of data and the computational
costs of training neural networks, it has taken some time for
these approaches to become ubiquitous. Key to a revitalization
of the application of machine learning to interatomic poten-
tials has been the work of Behler and Parrinello [34], who
emphasized the importance of decomposing the total energy
into atomic contributions for neural network potentials, and
Csanyi et al. [35], who introduced the alternative Gaussian
approximation potentials. A wide variety of machine-learning
potentials are now available [36–43]. They vary depending on
the strategy for assembling the training data [44], describing
the local environments [45], and the machine-learning model
for regressing the energy landscape.

Structure prediction can be accelerated if the computa-
tional cost of evaluating the energy landscape can be reduced
through efficient approximation [46–54]. If that approxima-
tion is robust and of sufficiently high quality, for all, or most,
sampled configurations, AIRSS can be attempted. Here the
development of a data-derived potential, based on a many-
body environment descriptor and the combination of many
small neural networks, is described. Coupled with an iterative

training scheme, it is shown that potentials can be constructed,
as needed, for a given set of search parameters. They are
described as ephemeral, as there is no attempt to build a
definitive potential for any given chemical system, and a new
potential can be constructed from scratch at little cost.

In what follows, the scheme for generating the data-
derived—ephemeral or disposable—potential designed for
random structure search is described. It is benchmarked first
against a CH4 data set, then validated for boron nitride, ele-
mental boron and urea. Finally, in a true test of the approach,
it is used to uncover a complex dense phase of silane.

II. A DATA-DERIVABLE POTENTIAL

An idea central to the development of potentials is that the
total energy of a collection of N atoms can be decomposed
into the individual contributions of each atom:

E =
N∑
i

Ei. (1)

When combined with the approximation that the energy of
each atom, Ei, depends on the environment of that atom within
some localized region, typically a sphere with cutoff radius rc,
fast linear scaling computational schemes are possible.

The energy of each atom, Ei, can be further decomposed
into terms that depend on the interactions between increasing
numbers of surrounding atoms:

Ei = E (0)
i + E (1)

i + E (2)
i + E (3)

i + E (4)
i + · · · . (2)

The zero body term, E (0)
i , is typically dropped as it de-

scribes a chemical species independent energy offset, leading
to a rigid shift of the total energy of the system regardless of
composition.

The one-body term, E (1)
i , depends only on the chemical

species of atom i. In an elemental system, or one of any fixed
composition, it again leads to an overall rigid shift of the
total energy and can be ignored. It is vital, however, for the
description of compounds with variable composition.

A. Two-body interactions

The two-body term, E (2), is the first that leads to a non-
trivial energy landscape. Physically, it describes the attraction
or repulsion between pairs of atoms. The earliest potentials
applied to model materials, such as the Lennard-Jones poten-
tial, were two-body potentials. The Lennard-Jones potential,
with its linear, homogenous form compromises between com-
putational efficiency and physical motivation. This might be
contrasted with the inhomogeneous, and nonlinear, Buck-
ingham potential with an exponential term describing the
repulsion between closed electron shells, a 1/r6 term describ-
ing attractive dispersion interactions, and a Coulomb term.

Here, we follow the compromise made by Lennard-Jones
and choose a homogeneous linear potential with the form

E (2)
i =

N∑
j �=i

(
w

(2)
1 f (ri j )

p1 + w
(2)
2 f (ri j )

p2
)

(3)

014102-2



EPHEMERAL DATA DERIVED POTENTIALS FOR RANDOM … PHYSICAL REVIEW B 106, 014102 (2022)

or

E (2)
i =

N∑
j �=i

2∑
m

w(2)
m f (ri j )

pm , (4)

in the case of two terms (as for the Lennard-Jones potential),
and with a general form

E (2)
i =

N∑
j �=i

M∑
m

w(2)
m f (ri j )

pm . (5)

The sum is over the N − 1 other atoms and over M fixed
exponents or powers, pm. The linear weights wm are parame-
ters to be determined and f (r) is a fixed functional form.

For the original Lennard-Jones potential, f (r) = 1/r,
w1 = 1, w2 = −1, p1 = 12, and p2 = 6. Extended Lennard-
Jones potentials [55] resemble our general form, which can be
written as a scalar product between a weight vector w(2) and a
vector F(2)

i , which contains information about the environment
of atom i:

E (2)
i =

M∑
m

w(2)
m

N∑
j �=i

f (ri j )
pm = wᵀ

(2)F
(2)
i . (6)

B. Range cutoff

The Lennard-Jones potential is long-ranged, in that there
is no natural cutoff. This range is physically motivated but
it presents problems for computations of condensed systems.
This has long been recognized and managed through the im-
position of range cutoffs, along with shifting and adjusting
the potential so it is zero at the cutoff radius, rc, potentially
along with the gradient and higher derivatives. This is known
to have an important impact on the energy landscape and
indeed the ground state crystal structures [56]. Recently, Wang
et al. [57] proposed an alternative to the Lennard-Jones poten-
tial that is appropriately cut off by construction, recognizing
the importance of both computationally efficient and well-
defined potentials. Their approach is taken here and f (r) is
constructed so it is zero at and beyond rc. There are many
functions which satisfy this condition, but we choose

f (r) =
{

2(1 − r/rc) r � rc

0 r > rc.
(7)

When all the exponents, pk , to which f (r) is raised are
two or greater, both the resulting potential and its gradient at
rc are zero, by construction. Higher derivatives can also be
forced to be zero by further increasing the minimum exponent.
Exponents that are less than one (but greater than zero) gen-
erate steplike functions, with steep gradients approaching rc,
as shown in Fig. 2 for p = 1/2. In what follows, all exponents
are chosen to be two or greater.

C. Three-body interactions

Without the careful design of unphysical two-body poten-
tials [58], the range of structures that can be supported in the
elements is extremely limited to those that are well packed.
However, the elements are known to exhibit extremely rich
and potentially open structures. For example, the diverse poly-
morphism in carbon and the extremely complex phosphorous

FIG. 2. The function f (r), defined in Eq. (7), raised to a range of
exponents for the cutoff radius, rc = 2.

and boron structures. Contributions are required to the poten-
tial that can distinguish between bond angles in triplets of
atoms. A three-body interaction term can achieve this, and
since three distances ri j , rik , and r jk uniquely determine the
triangle formed by the three atoms, i, j, and k, it can be written
generally as

E (3)
i =

N∑
j �=i

N∑
k> j �=i

V (ri j, rik, r jk ). (8)

The function V (ri j, rik, r jk ) remains to be parameterized.
Consistently with our treatment of the two-body interactions,
we write it as a linear, homogeneous, and separable approxi-
mation [25]:

E (3)
i =

N∑
j �=i

N∑
k> j �=i

M∑
m

O∑
o

w(3)
mo f (ri j )

pm f (rik )pm f (r jk )qo. (9)

The individual terms must be invariant to the swapping of
the j and k atoms, as is the case in the above by construction.
The summation can be rearranged, as for the two-body terms:

E (3)
i =

M∑
m

O∑
o

w(3)
mo

N∑
j �=i

N∑
k> j �=i

f (ri j )
pm f (rik )pm f (r jk )qo, (10)

and so

E (3)
i =

M∑
m

O∑
o

w(3)
moF (3)

i,mo = wᵀ
(3)F

(3)
i . (11)

The three-body terms can therefore also be written as a
scalar product between the weight vector w(3) and the vector
F(3)

i , which describes the environment around atom i, taking
into account three-body interactions.

In principle, the construction we have adopted to de-
scribe the three-body interactions can be readily extended to
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FIG. 3. Contributions to the environment vectors due to one, two,
three, and four bodies. The exponent p is applied to functions of the
distance from the central atom, i, and the exponent q between the
other atoms.

four-body interactions (see Fig. 3) and beyond. However, what
follows is limited to three-body potentials throughout.

Our construction is related to atomic body-ordered
permutation-invariant polynomials, where our basis is not
complete, but carefully chosen to be computationally efficient
and provide sufficient accuracy [59].

D. Vectorization and multiple species

For a system containing multiple species, the one-body
contribution to the atomic energy, Ei, is important:

E (1)
i = wᵀ

(1)F
(1)
i . (12)

The one-body environment vector, F(1)
i , has the size of the

total number of species, and assuming full occupancy, one
(1) is added to the nth element if atom i is of species n. The
two-body environment vector, F(2)

i , is constructed by concate-
nating environment vectors for each of the species pairs. For
example, for two species, A and B:

F(2)
i = F(2)

AA,i ⊕ F(2)
AB,i ⊕ F(2)

BA,i ⊕ F(2)
BB,i. (13)

Note that in the case of full occupancy, and if atom i is of
species A then the second half of the vector will be precisely
zero. This leads to substantial sparsity. The three-body en-
vironment vector is similarly constructed from concatenated
contributions from triplets of species, where F(3)

ABA,i, for ex-

ample, is equivalent to F(3)
AAB,i, and dropped. While it is not

explored further here, this construction is suited to fractional
and mixed occupation.

It is computationally convenient to further concatenate the
one-, two-, and three-body environment vectors through the
direct sum:

Fi = F(1)
i ⊕ F(2)

i ⊕ F(3)
i . (14)

This single vector, Fi, describes the environment of atom i,
considering up to three bodies, and taking atomic species into
account.

III. FITTING THE POTENTIAL

Once the environmental (or feature) vectors have been
chosen, there are many possible choices when it comes to
the functional form and fitting procedure. We now describe
the scheme selected in this paper. To guide the choices, a
number of considerations are made. The goal is to produce
a method that is robust, in that a large fraction of the struc-
tures obtained, on relaxing random sensible structures, remain
sensible and physical. Further, the method should be com-
putationally rapid. The aim is structure prediction, and the
more time and computational resources spent searching for
structures the better. There should also be a minimum number
of parameters, and reasonable settings that apply to many
systems are preferred. The overall method should demand as
little intervention from the user as feasible.

A. Cost function

The design of the cost function influences the nature of the
resulting fit. While it is common to fit to both the energy land-
scape itself and the forces (and sometimes stresses), which
are readily available within DFT, here we construct a cost
function based on total energy alone:

C = 1

S

∑
s

∣∣∣∣∣
Ns∑
i

(E (Fs,i ) − Es)

∣∣∣∣∣
p

. (15)

The sum is over the S structures, s, in the training data set,
with energies Es and number of atoms Ns. The concatenated
vectors, Fs,i, describing the environment of atom i in structure
s are the input for the function E (F) which computes the local
energy for an atom with environment F. The magnitude of
the difference between the predicted and target energies is
raised to the power p. For p = 2, the standard least-squares
cost function is recovered, whereas for p = 1, minimizing the
cost function reduces the mean absolute error. To deemphasize
the impact on the cost function of a few very poorly predicted
local energies (which will typically be encountered in highly
energetic and unphysical structures far from the low-energy
structural minima), an intermediate value of p = 1.25 is cho-
sen. In principle, the individual terms in the cost function can
be weighted. This is not found to be necessary in the current
scheme.

B. Neural network

In Sec. II, a linear potential was developed from the envi-
ronment vectors, F, and weights w: Ei = wᵀFi. For p = 2, a
closed form for the weights that minimizes the cost function
C can be computed. However, such a potential is limited in
the form of the potential energy surface that can be modeled.
Nonlinear fits promise to describe more complex surfaces,
but are more challenging to perform. Neural networks are
recognized as a powerful way to carry out general nonlin-
ear fits [60]. They have proven to be particularly adept for
tasks of computational two-dimensional image processing,
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such as classification. These breakthroughs have been built
on deep (multilayer) neural networks [61] with a large num-
ber of nodes in each layer. The resulting very large number
of weights are optimized through specialist computer codes
running on GPUs [62,63]. In this paper, in contrast, shallow
narrow neural networks are found to be sufficient, and con-
siderably easier to manage computationally. The architecture
consists of an input layer of the size of vector F, a hidden
layer with between five and ten nodes, and a single output
node for the predicted atomic energy. The total number of
weights required is modest. Both the inputs and outputs are
normalized on the training data, and a tanh activation is used
between the input and hidden layer, and a linear activation on
output.

C. Levenberg-Marquardt iteratively reweighted least squares

Deep neural networks are typically fit (trained) using
stochastic gradient descent [64] in which gradients are com-
puted from random subsets (batches) of the training data.
Given the small size of the neural networks employed here, di-
rect minimization is more appropriate. General quasi-Newton
optimizers empirically did not perform particularly well for
this task, converging slowly to poor solutions. Given the suit-
able structure of the cost function, the powerful Levenberg-
Marquardt algorithm can be used [65,66]. Excellent fits are
reliably obtained in modest numbers of iterations. Although
implemented, geodesic acceleration [67] was not observed
to significantly improve or speed up the fits in this case.
As originally formulated, the Levenberg-Marquardt algorithm
performs an optimization of a least-squares cost function.
For p �= 2, an approach based on iteratively reweighted least
squares is required [68]. Overfitting is avoided through early
stopping [69]. As the optimization progresses, the cost of a
validation data set, Cv , is monitored. If the validation cost
increases for, typically, ten steps, the optimization is halted
and the weights for the minimum Cv are selected.

D. Non-negative least-squares combination

In contrast to linear least square fits, fitting nonlinear
functions is a task of nonconvex optimization, leading to a
multitude of potential solutions corresponding to the many
local minima of the cost function depending on the initial-
ization of the weights. It is claimed that for neural networks,
many of these individual solutions lead to good fits [70]. An
alternative is to average a number of fits to produce stabilized
ensemble neural networks [71,72]. An attempt was made to
linearly combine multiple fits to minimize the cost function
for the validation data set (to which the neural networks had
not been directly fitted). Extremely low cost functions for
both the training and validation sets can be achieved, given
a sufficient number of individual fits, suggesting that these
fits are diverse. However, it was observed that many of the
weights were large and alternating in sign, and the large costs
for the held-out testing set implied overfitting. In any case,
such a combination is unphysical. Ideally one would hope to
observe many small positive weights, resulting in an adding
of the individual potentials or fits. To directly enforce positive
weights, non-negative least squares (NNLS) [73] can be em-

FIG. 4. A flow diagram outlining the iterative approach to fitting.
The use of marker structures is optional. A typical value for N is 5.

ployed. NNLS has the property of producing sparse solutions,
in that the weights are either positive or precisely zero. For this
application, it is found that out of, for example, 256 individual
neural network fits, around 20 are selected by the NNLS. The
combined NNLS potentials are found to be considerably more
robust than potentials based on single fits. At the same time,
they are more computationally efficient than ensemble aver-
ages, automatically discarding any relatively poor individual
fits.

IV. ITERATIVE FITTING

Closely following the approach developed in Refs. [49,74],
the fitting is carried out iteratively, in the manner of the
scheme described in Fig. 4. First, random sensible structures
are generated, according to the structure building parameters
chosen for the specific AIRSS search for which the potential
will be used. Without relaxation, the total energies are com-
puted using DFT and stored along with the structures. These
structures will span the entire region of configuration space
accessible, consistent with the biases implied by the AIRSS
parameters (for example, unit cell volume ranges, minimum
separations, and space groups). Because the structures are un-
relaxed, the typical total energies will be high. These samples
instruct the potential about the high-energy regions of the en-
ergy landscape and play an important role in the generation of
robust potentials that are suitable for random search. Without
these samples at high total energy it is likely that the potential
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will adopt low and unphysical total energies for these regions
of configuration space. On structural optimization, this can
lead to pathological structures with, for example, extremely
close contacts.

The second step is optional, and involves taking so-called
marker structures and applying random small amplitude dis-
placements to their ionic positions and lattice vectors. Again,
the unrelaxed DFT total energies are computed and stored.
The marker structures are typically chosen to be known
structures in the system of interest. They may be derived
from experiments or earlier traditional AIRSS searches. Given
that forces and stresses are not present in the cost func-
tion, the role of the shaking of the structures is to provide
information about the gradients of the potential energy land-
scape. A related approach is the Taylor expansion method of
Ref. [75].

At this point, a data set has been generated that is both
broadly representative of the accessible configuration space
and, if marker structures as selected, of some of the low energy
portion of the energy landscape. The environmental vectors
Fs,i are computed for all the structures, which are randomly
divided into training, validation and testing subsets in an
approximately 80:10:10 ratio. A potential is then generated
using the scheme described in Secs. III B to III D.

It is quite likely that the quality of this first fit will not
be particularly good, as monitored through the cost of the
held-out testing set, Ct . To expand the data set, and to en-
sure the final potential does not lead to a large number of
unphysical low-energy local minima, the following iterative
procedure is followed. An AIRSS calculation is carried out,
using the same structure building parameters and the most
recently generated potential to generate a number of local
minima of the potential energy landscape. These structures
are subjected to a number of random distortions, as for the
marker structures, and the DFT total energies are computed
and stored without relaxation. The combined data set is again
randomly split into training, validation, and testing subsets,
and a new potential computed. The next iteration then begins.
Either a fixed number of iterations can be performed, or the
procedure halted when the quality of the fit, as measured by
Ct , no longer significantly improves.

V. IMPLEMENTATION

The implementation consists of a collection of OpenMP
Fortran codes, and bash scripts, assembled into three sep-
arate packages. The nn package is a Fortan implementation
of multilayer neural networks, which is used by the ddp
package to generate the EDDP potentials, and the repose
code which performs variable cell structural optimizations
using a preconditioned [76] Barzilai-Borwein [77] scheme.
The ddp package consists of several codes. The frank code
and franks script generate the environment vectors for a
given input structure, singly and multiply, respectively. The
franks script exploits the parallel tool [78] to parallelize
the environment vector generation. The forge code performs
individual potential neural network fits, while the farm script
manages the high-throughput multiple fits. The flock code
combines the multiple individual fits into a single ephemeral
data derived potential (EDDP) using NNLS. The chain script

automates the iterative fitting scheme, and the repose code
is integrated into the GPL2 AIRSS package [79]. The ddp,
repose, and nn packages are also available under GPL2 [80].

The following examples were computed using a head node
with 28 cores attached to 32 compute nodes, each with 32
cores and accessible by ssh. Each neural network was trained
using four OpenMP cores, permitting 256 fits to be performed
in parallel. The CASTEP plane-wave total energy package
[18] is used to compute the non-spin polarized DFT properties
throughout.

VI. METHANE MOLECULE

As a first, and challenging, test, we follow Ref. [81] and
generate a data set of randomly distorted methane (CH4)
molecules. As in Ref. [81], the central carbon atom is fixed
and the four hydrogen atoms are randomly added within a
sphere of radius 3 Å. If any interatomic distance is less
than 0.5 Å, the configuration is rejected. The molecule is
placed in a unit cell of side length 10 Å, and the single-
point total energies computed using DFT as implemented
in the CASTEP code [18] with the Perdew-Burke-Ernzerhof
(PBE) exchange correlation functional [82]. The QC5 on-the-
fly pseudopotentials (1|0.9|7|7|9|10(qc=5) for H and
2|1.4|8|9|10|20:21(qc=5) for C) are used, with a plane-
wave cutoff of 340 eV. Generating 10 000 configurations and
dividing them into training, validation, and testing subsets
in an approximately 80:10:10 ratio, a three-body EDDP is
generated five times, with rc = 6, 8 exponents ranging from
2 to 10, and five hidden nodes. Typically, of 256 individ-
ual fits, NNLS selects less than 10%. The best potential of
the five resulted in a root mean square error (RMSE) of
0.13 eV/mol, and the worst 0.18 eV/mol. Repeating with
50 000 configurations the best and worst were 0.12 eV/mol
and 0.13 eV/mol, respectively. The RMSE for 10 000 config-
urations is somewhat lower than the best reported in Fig. 4(c)
of Ref. [81], but the 50 000 configuration result is similar. This
suggests that this EDDP, with its modest number of parame-
ters, performs very well, but the fit does not improve rapidly
with larger data sets. This is an acceptable compromise for
the current application, where low-energy candidate structures
will ultimately be relaxed using DFT.

VII. BORON NITRIDE

As a first test of the iterative scheme described in Sec. IV,
we explore the construction of a three-body EDDP for boron
nitride. Boron nitride adopts a hexagonal layered polymorph
as its most stable form, with the denser tetrahedral cubic
polymorph being metastable. Cubic boron nitride can be syn-
thesised at high pressures and temperatures. A hexagonal
dense wurztite tetrahedral structure can also be formed at high
pressure.

A. Potential generation

The EDDP is generated from four formula unit (f.u.) boron
nitride structures (eight atoms). The volumes of the unit cells
are chosen randomly and uniformly from 4 to 8 Å3/atom,
no symmetry is applied, and minimum separations of 1 to
2 Å are randomly selected. No marker structures are used.
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FIG. 5. The energy per atom predicted by the EDDP plotted
against PBE DFT energies for the 650 boron nitride testing con-
figurations. Note that despite the relatively large overall RMSE of
86 meV/atom, the error at low energies is small, around 18
meV/atom up to 0.5 eV above the ground state, and around 34
meV/atom up to 3 eV.

One-thousand fully random structures are generated in the
first phase, and then five cycles of performing random search-
ing using the current EDDP is performed, generating 100
local minima per cycle. Each of these minima are shaken
ten times, with an amplitude of 0.02 (AIRSS parameters
POSAMP and CELLAMP). The total energy of each configu-
ration is computed using CASTEP [18], the PBE exchange
correlation functional [82], QC5 on-the-fly pseudopotential
(boron definition string 2|1.4|7|7|9|20:21(qc=5), and
nitrogen 2|1.4|13|15|17|20:21(qc=5)), with a 440 eV
plane wave cutoff and k-point sampling of 0.05 × 2π Å−1.
Each generation of EDDP is constructed using the same pa-
rameters. The cutoff radius, rc, is 3.75 Å, and four exponents,
ranging from 2 to 10, are used. Nonlinear fits (256 in to-
tal) are performed with a neural network with 114 inputs,
five hidden nodes in a single layer, and a single output for
the predicted atomic energy, and 581 weights in total. The
subsequent NNLS fit to the validation data selects 28 po-
tentials with a nonzero weight. The final EDDP is based on
6495 structures and energies, split into training, validation
sets in the ratio 5196:649:650, and has training, validation,
and testing RMSE of 42, 55, and 86 meV/atom, respectively.
The testing RMSE is considerably larger then those of the
training and validation data sets. However, as is clear in
Fig. 5, this is the result of deviations of the predicted energy
landscape from the DFT one only at high energies, and so
is benign. The data set contains structures with energies up
to 11.84 eV/atom above the minimum. The Spearman rank
correlation coefficient is above 0.99 for all sets, suggesting a
good ordering of the predicted energies. Including iteratively

building the DFT data set, the EDDP took just 23 minutes to
construct.

B. Structure searches

Extensive structure searches with the final EDDP and the
same structure generation parameters as used in its construc-
tion were performed for a larger unit cell of 8 f.u. None of
the 55 000 fully relaxed structures contained close contacts.
The lowest energy structures were either layered hexagonal
or dense cubic boron nitride or related stackings. The energy
difference between relaxed hexagonal and cubic boron nitride
is 77.5 meV/atom in PBE DFT, and 79.5 meV/atom using
the EDDP, suggesting that the potential provides an excel-
lent ranking at a greatly reduced computational cost. The
55 000 structures were generated in just 12 minutes using
1024 Intel Xeon Gold 6142 CPU @2.60GHz compute cores.
Performing an identical structure search, using CASTEP for
the first-principles structural optimizations results in 1080
structures over 11.5 h. This suggests that searching using
an EDDP is over 250 times faster than DFT for this ap-
plication. It should be noted that the EDDP optmizations
are performed to machine precision, while the DFT relax-
ations are terminated when the forces and stresses fall below
0.05 eV/Å and 0.1 GPa, respectively, which results in far
fewer DFT optimization steps. The EDDP calculations scale
linearly with the number of atoms, so the acceleration for
larger systems will grow rapidly. For example, the computa-
tion of the forces and stresses for a 256-atom boron nitride
structure is nearly 105 times faster using the EDDP as com-
pared to DFT. Should the DFT data have been computed
using, for example, a denser k-point mesh, as would be re-
quired for the accurate description of a metallic system, the
acceleration would be larger still.

C. Parameters

The EDDP potential for boron nitride was created without
particular consideration as to the optimal parameters, such as
the cutoff radius, number of exponents, or size of the neural
network. The aim is to perform an accelerated structure search
with as little time invested into potential generation and pa-
rameter refinement as possible. However, it is interesting to
investigate how sensitive the resulting potential might be to
the chosen parameters. In Fig. 6, the impact of varying the
number of exponents, cutoff radius, and number of hidden
nodes, is explored. The previously iteratively generated data
is randomly resplit into training, validation, and testing sets
(in the ratio 80:10:10) for each refitting of the EDDP. It is
clear that the 3.75 Å cutoff radius was a reasonable choice,
but that increasing the number of exponents from four to six
significantly improves the fit. However, increasing further to
eight exponents provides relatively little further improvement,
at an increased computational cost. The fit is also seen to only
improve marginally, if at all, for more than five hidden nodes
in the neural networks. Repeating the iterative generation of
a three-body EDDP with six rather than four exponents leads
to improved training, validation, and testing RMSEs of 26,
38, and 67 meV/atom, respectively. The testing RMSE is just
20 meV/atom up to 3 eV above the ground state.
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FIG. 6. The training RMSE per atom for EDDPs refit to the
iteratively generated boron nitride data set. Left: Variation in the fit
with the cutoff radius and number of exponents. Right: Variation in
the fit with the number of hidden nodes in the neural networks, and
number of exponents.

VIII. BORON

Elemental boron exhibits extremely complex crystal struc-
tures, from the purely icosahedral α-boron to high pressure
γ -boron, which consists of icosahedra and dimers which ex-
change charge to form an elemental ionic solid [83,84], and
the exceedingly complex β-boron [85,86], the structure of
which continues to be studied [87] but is thought to consist of
icosahedra and larger defected clusters in a complex arrange-
ment. This structural richness has ensured boron has played an
important role in the development of first-principles crystal
structure prediction [27,53,88]. We explore boron as a case
study in crystal structure prediction using EDDPs.

A. Potential generation

To reproduce the experience of investigating the boron
system without any prior knowledge, the following proce-
dure is followed. A three-body EDDP is constructed using
the iterative scheme detailed above. In the absence of the
knowledge that 12-atom icosahedra are an important feature
of low-energy boron structures, the EDDP is generated from
smaller eight-atom unit cells. The volumes of the unit cells
are chosen randomly and uniformly from 3 to 10 Å3/atom,
no symmetry is applied, and minimum separations of 1 to
3 Å are randomly selected. In the spirit of a naive search,
initially no marker structures are used. One-thousand fully
random structures are generated in the first phase, and then
five cycles of performing random searching using the current
EDDP are performed, generating 100 local minima per cycle.
Each of these minima are shaken ten times, with an amplitude
of 0.02 (AIRSS parameters POSAMP and CELLAMP). The
total energy of each configuration is computed using CASTEP

[18], the PBE exchange correlation functional [82], the same
boron QC5 on-the-fly pseudopotential as used for boron ni-
tride, with a 340 eV plane-wave cutoff and k-point sampling
of 0.05 × 2π Å−1. Each generation of EDDP is constructed
using the same parameters. The cutoff radius, rc, is 3.75 Å,
and four exponents, ranging from 2 to 10, are used. Nonlinear
fits (256 in total) are performed with a neural network with
21 inputs, five hidden nodes in a single layer, and a single
output for the predicted atomic energy, and 116 weights in
total. The subsequent NNLS fit to the validation data selects
just 15 potentials with a nonzero weight. The final EDDP
is based on 6499 structures and energies, split into training,
validation sets in the ratio 5199:650:650, and has training,
validation, and testing RMSE of 52, 52, and 59 meV/atom,
respectively. The data set contains structures with energies up
to 11.5 eV/atom above the minimum. The Spearman rank
correlation coefficient is 0.98 for all sets, suggesting a good
ordering of the predicted energies.

B. Discovery of α-boron

As a first test of the EDDP, a random search is performed
using the same structure building parameters as used during
the iterative fit, but with 12 atoms rather than the original
eight. Despite the fact that the training set cannot contain
α-boron, it is identified as the most stable structure (once some
obviously pathological results, about 1 in 6000, are removed).
How is this possible, given that the training structures can
contain no icosahedra? Examining the most stable eight-atom
structure in the training set (see Fig. 7), it appears that there
are hints of icosahedral fragments in the small cell, which the
EDDP is able to learn, without overfitting, given the relatively
inflexible functional form. It should be noted, unsurprisingly,
that this EDDP does not perfectly reproduce the DFT energy
landscape. For instance, it would be expected to find the α-
boron structure about 1 in 3000 random samples in a 12-atom
unit cell, but using this EDDP it is reduced to about 1 in
10 000 samples. Furthermore, the volume of the relaxed alpha
boron structure differs substantially from the DFT result by
about 9%.

C. Structure solution for γ-boron

A second, more ambitious test, is the solution of the 28-
atom γ -boron structure, from the knowledge of the lattice
parameters alone. A random search, with initial structures
with minimum separations of 1.7 Å and randomly selected
space groups with two to four symmetry operators was per-
formed. The fixed unit cell search resulted in about 1 in
3000 obviously pathological structures. The otherwise low-
est energy structures had the Pnn2 space group, a subgroup
of Pnnm, adopted by the γ -boron structure, see Fig. 7.
On inspection, the structure appears closely related to the
known γ -boron structure, and subsequent structural optimiza-
tion of the Pnn2 structure within DFT recovers it precisely.
This result is impressive—it is difficult to conceive that the
eight-atom structures contain obvious hints of the complex
icosahedral/dimer interactions.
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FIG. 7. Structure (a) is the lowest DFT energy configuration
contained in the potential training data set for Sec. VIII A. A subset
of the eight atoms is highlighted as they resemble configuration
encountered in icosahedral alpha boron. Structure (b) is the result
of structure searches using this iteratively generated potential and is
that of alpha boron. Structure (c) is the result of structure searches in
a unit cell with shape constrained to that of γ -boron. Structure (d) is
the result of structure searches in variable unit cell with no imposed
symmetry. On relaxation in DFT, both the (c) and (d) structures
become that of γ -boron, shown in (e).

D. Free search for γ-boron

Next, the challenging task of a symmetry and lattice free
search for the γ -boron structure is attempted. The EDDP is re-
generated using the α-boron structure, which has already been
located, as a marker, which is shaken 500 times. The shake
amplitude is increased to 0.04, the rc to 4.5 Å, the number of
exponents to eight, and the hidden nodes to ten. To increase
the chance of encountering pathological structures during the
generation procedure and to dig deeper into the EDDP’s en-
ergy landscape, on the Nth step, to generate a single retained
structure, 2N relaxed random structures are generated and the
lowest energy one selected. Using this potential, 362 754
structures containing 28 atoms are randomly generated and
relaxed. A dense metastable structure with space group P21/c

is encountered twice. On inspection, the structure appears to
be only a very slight distortion of the γ -boron structure and,
indeed, on relaxation using CASTEP, it becomes precisely the
Pnnmγ -boron structure.

E. Structural distortion and potential range

To test a hypothesis that the observed distortions are due
to the relatively short range of the potentials, a new EDDP
is generated, this time increasing the cutoff to 5.5 Å. The
Pnn2 and P21/c structures relax directly to the Pnnm structure
using this EDDP. There is clearly a tradeoff between the
number of samples that can be generated, which depends on
the computational cost of the potential used, and the quality of
the generated structure. Given that all important structures in
a study will ultimately be relaxed using DFT, imperfections
in computationally cheaper EDDPs can be tolerated in the
pursuit of a more thorough coverage of the energy landscape.
However, care must be taken as a poorly described energy
landscape may contain more local minima and hence be more
challenging to search.

Overall, these results for boron suggest that EDDPs are a
promising basis for general random structure prediction tasks.

IX. UREA

Constructing a fully reactive potential for the entire C–
H–N–O chemical space is expected to present challenges,
not least in the generation and manipulation of suitably large
training data sets. In the spirit if this work, here we gen-
erate and apply a three-body EDDP for the specific region
of C–H–N–O’s configuration space that contains the urea
(CH4N2O) molecule at around atmospheric and moderate pos-
itive pressures. Phase transitions in urea (carbamide) under
pressure were studied by Bridgeman. Polymorphism in urea
remains under active investigation, both experimentally [89]
and computationally [90–92]. Here we explore the application
of random searching and EDDPs to identify the low-energy
polymorphs of urea.

A. Potential generation

In the first phase of the iterative construction of the
potential for urea, structures are generated by constructing
10000 randomly shaped unit cells with volumes from 60 to
80 Å3/mol and placing two urea molecules with random
positions and orientations, ensuring that the molecules are no
closer to each other than a randomly selected distance from
1 to 2 Å. The positions of the atoms in the molecules are
then perturbed by up to 0.3 Å. The same settings as for the
first potential of boron, Sec. VIII A, are used for the iterative
phases of relaxation and shaking, as well as the final con-
struction of the potential. The energy of each configuration
is computed using CASTEP [18], the QC5 on-the-fly pseu-
dopotentials (2|1.4|13|15|17|20:21(qc=5) for N, and
2|1.5|12|13|15|20:21(qc=5) for O, and the same defi-
nitions for C and H as for the methane example), and a high
plane-wave cutoff of 540 eV. A coarse k-point grid spacing
of 0.1 × 2π Å−1 was used along with the PBE + TS disper-
sion corrected functional [93]. Of the 256 nonlinear neural
network fits, 38 were selected by NNLS. The final potential
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FIG. 8. Energy versus volume for the 16 045 Z = 4 urea struc-
tures relaxed using the EDDP. The fine blue line is the convex hull
of the point, highlighting the structures that might become stable at
positive and negative pressures

is based on 15 500 structures and energies, split into train-
ing, validation, and testing in the ratio 12400:1550:1550. The
training, validation, and testing RMSE (MAE) is 20.65 (9.99),
27.50 (17.42), and 39.02 (18.76) meV/atom, respectively. The
data set contains structures with energies up to 5.52 eV/atom
above the minimum and a Spearman rank correlation coeffi-
cient of 0.999 for all sets, demonstrating an excellent ordering
of the predicted energies.

B. Structure searches

Having generated the EDDP for urea using just two
molecules per unit cell (Z = 2), it is tested for Z = 4. Unit
cells with volumes ranging from 60 to 80 Å3/mol are filled
with four molecular units of urea. No symmetry is used to
generate the structures, so in principle structures with up to
Z′=4 are accessible. The molecules are placed so they do
not overlap, with a minimum separation of 2 Å. The initial
structures are relaxed to their nearby local minima 16 045
times, generating a diverse set of structures. A scatter plot of
the energy and volume of these structures is shown in Fig. 8.

The lowest energy structure identified had Z = 4 and space
group P212121. It was located four times and is known as
the high pressure form III of urea. The ambient pressure
P4̄21m (Z = 2) form I was located twice, and the high-
pressure P21212 (Z = 2) form IV was located 18 times.
Additional structures with P21/m (Z = 4), Pna21 (Z = 4)
(see Fig. 9), and Pccn (Z = 4) were identified at energies
within 40 meV/mol of form III. To assess the reliability of
the ranking, the structures and energies are recomputed at
both the PBE + TS level (using the same computational pa-
rameters as for the potential generation), and PBE + MBD∗

(the default CASTEP OTFG parameters, a plane-wave cutoff
of 900 eV and k-point sampling density of 0.07 × 2π Å−1)

FIG. 9. The Pna21 (Z = 4) urea structure is energetically com-
petitive in all cases, and a candidate high pressure phase of urea given
its high density.

[94]. As shown in Table I, in all cases form III is found to be
the lowest energy structure, with the maximum difference in
relative enthalpy of 40 meV/mol, or 5 meV/atom. It is clear
that the EDDP is capable of resolving differences in energy
well below the testing RMSE.

X. APPLICATION TO DENSE SILANE

The earliest published application of first-principles ran-
dom searching (referred to as AIRSS [4]) was to the study
of high-pressure polymorphism in silane [3]. Feng et al. [95]
proposed silane as a potential candidate for high-temperature
conventional superconductivity, using structures based on
chemical intuition and local structural optimization using
DFT. In Ref. [3], random searches at around 100 GPa using

TABLE I. Relative energies and volumes (per urea molecule) for
the low-energy structures, evaluated using the EDDP, at the PBE+TS
level used to construct the potential, and PBE + MBD∗.

Space EDDP PBE+TS PBE + MBD∗

group (Z) V/Å3 E/meV V/Å3 E/meV V/Å3 E/meV

P212121 (4) 67.79 0 68.20 0 72.15 0
P21/m (4) 75.10 1 74.06 24 75.31 41
Pna21 (4) 64.59 14 65.37 2 67.20 18
P21212 (2) 72.83 15 70.70 17 72.87 27
P4̄21m (2) 76.13 16 71.35 13 71.86 23
Pccn (4) 72.93 17 70.00 53 70.84 55
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two f.u. of SiH4 and just 40 initial configurations uncovered a
more stable, semiconducting phase of silane with space group
I41/a. The presence of an electronic band gap postponed any
expectation of superconductivity to higher pressures. Shortly
afterward, the I41/a structure was encountered experimen-
tally [96] and subsequent theoretical work, exploring larger
unit cells of up to 6 f.u., identified further candidate structures
at both higher and lower pressures [97,98]. Despite refine-
ments to searching algorithms, and increased computational
resources, structure predictions for binary and ternary com-
pounds are still typically restricted to relatively small unit
cells. Here we revisit silane, exploiting the computational
acceleration afforded by EDDPs to search in larger unit cells
(up to 16 f.u.).

A. Potential generation

A three-body EDDP was generated using the iterative
scheme described in Sec. IV. Random unit cells were con-
structed with volumes ranging from 5 to 15 Å/f.u., containing
just two f.u. The minimum separations between the species
were randomly chosen to be between 1 and 2 Å, and no
symmetry was imposed. The total energy of each configu-
ration is computed using CASTEP [18], the PBE exchange
correlation functional [82], QC5 on-the-fly pseudopotential
(definition strings 3|1.8|4|5|5|30:31:32(qc=5) for Si,
and 1|0.9|7|7|9|10(qc=5) for H), with a 340 eV plane
wave cutoff and k-point grid spacing of 0.05 × 2π Å−1. The
settings for the iterative scheme and parameters for the po-
tential were identical to those used for boron, with one key
difference. The random searches using each generation of the
potential were performed by minimizing the enthalpy at an
elevated pressure of 500 GPa. This ensures that the poten-
tial will be suitable for high-pressure searches, around this
pressure. Nonlinear fits (256 in total) are performed with a
neural network with 114 inputs, five hidden nodes in a single
layer, and a single output for the predicted energy and 581
weights in total. The subsequent NNLS fit to the validation
data set selects just 23 potentials with a nonzero weight. The
final EDDP is based on 6500 structures and energies, split
into training, validation sets in the ratio 5200:650:650, and
has training, validation, and testing RMSE of 9.98, 13.40, and
44.22 meV/atom, respectively. The MAE error for the testing
set is considerably lower, at 10.77 meV/atom, which is an
indication the higher RMSE is the result of a few structures
with significant errors. Indeed, the maximum error for the
testing set is 876.02 meV/atom. The data set contains struc-
tures with energies up to 126.4 eV/atom above the minimum.
The Spearman rank correlation coefficient is 0.999 for all sets,
suggesting an excellent ordering of the predicted energies.

B. Structure searches

Having generated the EDDP suitable for SiH4 at pressures
around 500 GPa, structures searches may be carried out. As a
first test, an extensive search using the same structure gen-
eration parameters as used for the iterative construction of
the EDDP was performed at 500 GPa. Any structure that
encounters close contacts (by default, defined at 0.5 Å) during
optimization is rejected. Of the structures that survive opti-

FIG. 10. A visualisation of the Pa3̄ structure, created using the
VESTA package [99]. This complex structure consists of 12 f.u. of
SiH4, or 60 atoms, in the primitive unit cell, and does not appear to
be a named structure type.

mization, the most stable is the C/2c structure proposed in
Ref. [3] as the very high-pressure form of SiH4. The 4 f.u.
P21/c structure reported in Ref. [98] is not accessible to a
search restricted to 2 f.u.

The promise of using fast data-derived potentials for
structure searching is that much larger systems could be
investigated if those potentials are sufficiently transferable.
The challenge of larger systems is that both each individual
structural optimization is slower, with each step being more
computationally expensive and the structural optimization re-
quiring more of those steps, and that many more structures
must be sampled to ensure the low-energy regions of the
energy landscape are adequately explored. Even if the same
structure generation parameters are used for the potential gen-
eration and the search, exploring larger systems is necessarily
an extrapolation. As such, an iteratively generated potential
cannot be expected to result in the precise structures, and en-
ergy ordering, that a DFT search would. However, as we saw
in the case of boron above, the EDDP does appear to offer ex-
trapolation and generates appropriate low-energy structures.
A pragmatic approach is to simply perform single-point en-
ergy DFT computations at the end of each local optimization
using the EDDP. If the EDDP relaxed structures are reason-
ably close to what they would be within DFT, the ranking ob-
tained will be reliable, with any poor structures being pushed
to the bottom of the ranking. This is the approach taken here.

We next perform searches at 500 GPa with 3 and 4 f.u. of
SiH4, again using the same structure generation parameters,
but this time constructing symmetric initial structures with
two to four symmetry operations in the primitive cell. The
P21/c structure of Ref. [98] is rapidly recovered, along with
the high pressure C2/c phase of Ref. [3].

C. Identification of complex high pressure phase

Having demonstrated that the potential can recover the
theoretically known high-pressure structures of SiH4, its
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TABLE II. Parameters for the Pa3̄ structure of SiH4 at 500 GPa.

Lattice parameters Atomic coordinates
Space group (Å, ◦) (fractional)

Pa3̄ a=b=c=4.998 Si1 0.1168 0.1168 0.1168
α=β=γ=90.00 Si2 0.0000 0.0000 0.5000

H1 0.1664 0.2236 0.3800
H2 0.2246 0.4858 0.3756

computational efficiency can be exploited to explore much
larger unit cells. A search at 500 GPa is performed with up to
16 f.u. and using between 4 and 12 symmetry operators. A low
enthalpy cubic structure with 12 f.u. is identified, see Fig. 10
and Table II.

This structure adopts the high-symmetry Pa3̄ space group
and is characterized by two distinct silicon sites, one octa-
hedrally coordinated by nearest-neighbor silicon atoms and
the other tetrahedrally. To assess its dynamic stability, a
hundred 3 × 3 × 3 supercells of the cubic primitive cell, con-
taining 1620 atoms, were constructed and shaken with a 0.1
amplitude. On relaxation with the EDDP, all the distorted
structures returned to the 60-atom Pa3̄ space group unit cell.
Computing the enthalpy of this structure, along with those
previously reported, reveals that it has a wide range of stability
at the static lattice level, from 285 GPa upward using the
PBE density functional. Using the rSCAN [100] functional,
it is stable above 305 GPa. It is significantly more dense
than the competing phases, and so its relative stability grows
with pressure, see Fig. 11. The enthalpy curves were com-
puted using CASTEP, a more accurate potential for hydrogen
(1|0.6|13|15|17|10(qc=8)) and an increased plane-wave
cutoff of 700 eV. The electronic density of states (eDOS) for

FIG. 11. Relative PBE DFT enthalpy plotted for a selection of
SiH4 polymorphs. The 60-atom Pa3̄ structure is increasingly more
stable than the P21/c structure above 285 GPa, leaving only a small
window of stability for the C2/c structure from 276 to 285 GPa.

FIG. 12. The PBE DFT electronic density of states for the Pa3̄
and C2/c structures computed at 300 GPa. The density of states
around the Fermi level (vertical dashed line) is considerably lower
for the Pa3̄ structure.

the Pa3̄ and C2/c structures are reported in Fig. 12. They were
computed [101] with the same settings as for the enthalpy
curves but with a finer k-point grid spacing of 0.01 × 2π Å−1.
The eDOS at the Fermi level for the Pa3̄ structure is consid-
erably lower than for the C2/c structure at 300 GPa, which
can be attributed to its greater stability. Furthermore, without
performing extremely costly density functional perturbation
theory computations of Tc it is expected that this reduced
eDOS would lower the prospects for high-temperature super-
conductivity in silane at these pressures. Given that silane
has been extensively studied theoretically, the emergence of
such an important and large unit cell structure should inform
our confidence in the status of our knowledge of the dense
hydrides. It is very likely that more extensive searches for
the dense binary hydrides in large unit cells will reveal a
significant revision of our knowledge of these candidate high-
temperature superconductors [11].

XI. DISCUSSION

First-principles methods owe their flexibility and ap-
plicability to databases of high-quality pseudopotentials,
which allow arbitrary chemical systems to be explored. The
CASTEP code [18] is unique in its on-the-fly pseudopoten-
tial methodology, where the pseudopotential is generated as
needed, and consistently with the density functional chosen.
This has opened the door to structure predictions at ex-
treme densities, with small core potentials being generated as
needed, and independently of the provided databases.

Here, the same flexibility is introduced to data-derived
potentials, which are generated specifically for the structure
building parameters and pressures that will be used for each
search. These potentials are ephemeral in the sense that the
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next search performed will likely require a new, bespoke
potential. The ease and robustness of the scheme described
makes this possible.

Random structure search is a challenging application of
data-derived potentials. It is very difficult to construct poten-
tials that are stable across the entire space of possible inputs
or configurations. The initial random structures are extremely
diverse, exploring many different regions of configuration
space. Constructing the EDDPs from these diverse structures,
generated from a given set of structure building parameters, is
essential to ensure robustness.

For any finite training data set, some failures are to be
expected in an extended sampling of configuration space. A
typical pathological behaviour is the encounter of very close
contacts during structural optimization or evolution. This
could cause severe problems in a lengthy molecular dynamics
simulations. However, during a random structure search such
configurations may simply be rejected. A very similar situa-
tion is encountered in first-principles structure searches—for
heavier elements, overlapping pseudopotentials cores can lead
to problems in the calculation of the electronic structure, and
common practice is to reject those configurations.

The pioneering work of Behler and Csanyi, who introduced
neural network and Gaussian process based atomic poten-
tials, respectively, which can be fit to extensive databases of
first-principles data, has led to an explosion of alternative
schemes based on their key insights. It is worth reflecting on
the justification of introducing yet another. In some sense,
it is inevitable—there are countless valid approaches to the
fitting of high-dimensional functions, and while any scheme
will share commonalities with the others in use, the details
may differ, depending on the intended application. While the
electronic structure community has coalesced around a few,
very complex, computer codes, the relative simplicity of data-
derived potentials is likely to favor persistent diversity. In
this case, a scheme has been designed for random structure
search.

The functional form for the EDDP has its origin in an
earlier attempt to develop a few-parameter model three-body
potential that could describe the rich structure of the ele-
ments, going beyond simple close packing. Starting with the
Lennard-Jones potential, this original model potential was
written as follows:
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∑
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By manually adjusting the parameters, A, B, C, n, and m,
and performing random searches for each choice, it was found

to be possible to navigate the space of possible elemental
structures, from close packed to the diamond lattice and even
the icosahedral α-boron structure. Exploring the properties
of the simplified potential described in Eq. (16) would be a
fruitful topic of further investigation.

XII. CONCLUSION

Fitting of potentials to data generated across the whole
accessible energy landscape ensures that the benign proper-
ties of the first-principles energy landscape are retained and
random search can be successfully performed. The compu-
tational simplicity of the form of the potential ensures that
these searches are much accelerated compared to a purely
first-principles approach. Close attention has been paid to de-
velop a bespoke scheme that complements the computational
workflow of structure search.

It has been shown that the EDDP potentials can be fit to
first-principles data derived from much smaller unit cells than
are typically chosen for training. These potentials can be used
to discover novel structural features in much larger unit cells.
For example, a potential trained using unit cells containing
just eight boron atoms was used to generate approximations
to the 12-atom icosahedral alpha-boron structure and the 28-
atom γ -boron. This extrapolation to larger unit cell sizes is
essential if these potentials are to be successfully used to
accelerate structure prediction.

EDDPs have been used to revisit the high-pressure phase
diagram of silane, uncovering a large (60-atom) unit cell struc-
ture that is considerably more stable at high pressures than
those currently known. This structure had been overlooked,
despite extensive investigation using both random search and
evolutionary approaches. This is strong evidence that EDDPs
are a powerful tool for the thorough exploration of structure
space. At the same time, it suggests that many of the systems
that have been explored using first-principles structure predic-
tion should be revisited.
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N. W. Ashcroft, Phys. Rev. Lett. 96, 017006 (2006).

[96] M. Eremets, I. Trojan, S. Medvedev, J. Tse, and Y. Yao,
Science 319, 1506 (2008).

[97] M. Martinez-Canales, A. R. Oganov, Y. Ma, Y. Yan, A. O.
Lyakhov, and A. Bergara, Phys. Rev. Lett. 102, 087005 (2009).

[98] H. Zhang, X. Jin, Y. Lv, Q. Zhuang, Y. Liu, Q. Lv, K. Bao, D.
Li, B. Liu, and T. Cui, Sci. Rep. 5, 8845 (2015).

[99] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
[100] A. P. Bartók and J. R. Yates, J. Chem. Phys. 150, 161101

(2019).
[101] A. J. Morris, R. J. Nicholls, C. J. Pickard, and J. R. Yates,

Comput. Phys. Commun. 185, 1477 (2014).

014102-15

http://arxiv.org/abs/arXiv:1609.04747
https://doi.org/10.1090/qam/10666
https://doi.org/10.1103/PhysRevLett.104.060201
http://arxiv.org/abs/arXiv:1406.2572
https://doi.org/10.1109/34.58871
https://doi.org/10.1063/5.0016004
https://doi.org/10.1038/s41524-019-0236-6
https://doi.org/10.1038/s41524-020-0323-8
https://doi.org/10.1063/1.4947024
https://doi.org/10.1093/imanum/8.1.141
https://www.mtg.msm.cam.ac.uk/Codes/AIRSS
https://www.mtg.msm.cam.ac.uk/Codes/EDDP
https://doi.org/10.1103/PhysRevLett.125.166001
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1038/nature07736
https://doi.org/10.1103/PhysRevLett.102.185501
https://doi.org/10.1107/S0365110X60000613
https://doi.org/10.1016/0022-4596(70)90022-8
https://doi.org/10.1103/PhysRevB.77.064113
https://doi.org/10.1038/s41524-017-0035-x
https://doi.org/10.1021/acs.jpcc.6b11059
https://doi.org/10.1016/j.ces.2014.08.032
https://doi.org/10.1073/pnas.1811056115
https://doi.org/10.1039/C7CP07060H
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1063/1.4865104
https://doi.org/10.1103/PhysRevLett.96.017006
https://doi.org/10.1126/science.1153282
https://doi.org/10.1103/PhysRevLett.102.087005
https://doi.org/10.1038/srep08845
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1063/1.5094646
https://doi.org/10.1016/j.cpc.2014.02.013

