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Onset of charge incompressibility and Mott gaps in the honeycomb-lattice SU(4) Hubbard model:
Lessons for twisted bilayer graphene systems
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We use finite-temperature strong coupling expansions to calculate thermodynamic properties of the
honeycomb-lattice SU(4) Hubbard model. We present numerical results for various properties including chemi-
cal potential, compressibility, entropy and specific heat as a function of temperature and density at several U/t
values. We study the onset of charge incompressibility and Mott gaps as the temperature is lowered at integer
densities. In the incompressible Mott regime, the expansions are recast into a high-temperature expansion for a
generalized spin model with SU(4) symmetry, which is then used to study the convergence of strong coupling
expansions in t/U . We discuss lessons that can be drawn from high-temperature properties of a simple Hubbard
model regarding twisted bilayer graphene and other magic-angle flat-band systems.
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Introduction. Recent years have seen increasing interest
in the fermionic Hubbard model with more than two spin
species [1–8]. In cold-atom platforms, atoms can have internal
degrees of freedom such as those associated with hyperfine
states. Contact interactions between atoms provide excellent
realizations of local Hubbard interaction U with SU(N) sym-
metry. Even in the solid-state context, SU(4) symmetry can
arise for multiorbital systems although full SU(4) symmetry
generically requires fine tuning of parameters [9,10]. A recent
realization of systems with potential SU(4) symmetry are
twisted multilayer systems at magic angles with extremely
narrow or nearly flat bands [11–20]. Flat bands can provide
both strong correlations and enhanced internal symmetry.
While the low-temperature phase behavior of these systems
clearly depends on the complex band structure and details
which break SU(N) symmetry [19], a question of interest in
this work is as follows: What lessons can be drawn by com-
parison with high-temperature thermodynamics of a simple
SU(N) Hubbard model?

Strong coupling expansions around the atomic limit
provide a powerful formalism to calculate temperature-
dependent properties of Hubbard models in the thermody-
namic limit [21–25]. These expansions can be developed
at inverse temperature temperature β and chemical poten-
tial μ in the grand canonical ensemble and for any set
of hopping parameters. Each term in the expansion de-
pends on βt , the fugacity ζ = exp βμ, and the Hubbard U
which enters the expansions both in terms of w = exp −βU
and 1/βU .

One of our main focuses in this paper is the temperature
dependence of the electronic compressibility and entropy.
As the temperature is lowered below U , at most densities
the compressibility becomes large while at integer densities,
the system enters an incompressible Mott regime and the
compressibility goes to zero. At the same time, the entropy
develops sharp cusps as a function of density. The Mott gap

can be obtained from studying the compressibility as a func-
tion of temperature.

In the incompressible Mott regime, the strong coupling
expansions can be recast as a high-temperature expansion
for a spin model with SU(4) symmetry. The spin models
at ρ = 1 and 3 belong to the fundamental representation
of SU(4) symmetry with four states per site. The model
at ρ = 2 has six states per site and can be mapped to
one with SO(6) symmetry [19]. The thermodynamic prop-
erties such as entropy and specific heat can be arranged
in terms of two dimensionless parameters: βt2/U and t/U .
At large U/t the system turns into a Heisenberg model
with J set by t2/U whereas additional t/U dependence
reflects the presence of various multispin and multisite inter-
actions [26–28]. Antiferromagnetic ordering and correlations
are captured by the βt2/U dependence whereas the t/U
terms can be used to study the breakdown of strong coupling
expansions.

The manner in which incompressibility sets in with in-
crease in β at various densities, and the shapes of chemical
potential, inverse compressibility, and entropy as a function
of particle density carry potential lessons for magic-angle
graphene systems. While some features resemble those
observed experimentally [29–33], there are important dif-
ferences, especially with respect to persistence of band
features with temperature, which we will discuss in this
paper.

Model and methods. The SU(4) Hubbard model is defined
by a Hamiltonian H = H0 + V , where the unperturbed part
H0 is the onsite term

H0 = U
∑

i

ni(ni − 1)

2
− μ

∑
i

ni, (1)

with μ the chemical potential and ni the total number
operator on site i. The perturbation V is the hopping
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FIG. 1. Chemical potential μ versus inverse temperature β for
ρ = 1 and several values of U . Zeroth-order and fourth-order
calculations are shown along with an analytical asymptotic low-
temperature formula.

term

V = −
∑
i, j

ti j

4∑
α=1

(C†
i,αCj,α + H.c.), (2)

where the sum i, j runs over pairs of sites of a lattice and
the sum over α runs over the four species of fermions. In this
work, we will consider the nearest-neighbor hopping model
on honeycomb lattice.

The unperturbed Hamiltonian has a particle-hole sym-
metry ni → 4 − ni, μ → 3U − μ. The hopping Hamiltonian
changes sign under particle-hole symmetry. Thus, on a bipar-
tite lattice where thermodynamic properties depend only on
the absolute value of the hopping parameter t , the system has
particle-hole symmetry.

Using the formalism of thermodynamic perturbation the-
ory [21–25], the logarithm of the grand partition function, per
site, can be expanded as

1

Ns
ln Z = ln z0 +

∑
G

LGz−s
0 (βt )rXG(ζ , βU ), (3)

where Ns is number of sites in a large lattice, z0 is the single-
site partition function

z0 = 1 + 4ζ + 6ζ 2w + 4ζ 3w3 + ζ 4w6, (4)

with ζ = eβμ, and the sum in Eq. (3) is over graphs denoted G.
The graph G has s sites and r bonds, and has lattice constant
LG. The weight factor XG(ζ , βU ) is the reduced weight of the
graph G for ln Z [21].

The particle density (per site) can be obtained via the
relation

ρ = ζ

Ns

∂

∂ζ
ln Z. (5)

This relation can be inverted to obtain ζ or μ as a function of
ρ and β, which then allows one to obtain various properties at
fixed particle density.

In Fig. 1 we show the chemical potential μ as a function
of temperature at particle density ρ = 1 for different values
of U . The solid lines are the calculation in the atomic limit

FIG. 2. Chemical potential μ versus density ρ for several U
and β values. As the temperature is lowered, the development of
Mott behavior is indicated by rapid changes in chemical potential
at integer densities.

(zeroth order), the dashed line in the fourth order, and the
dashed-dotted lines are the asymptotic low-temperature for-
mula ζ 2 = 1

6w
, discussed more in a later section. We can

see that the fourth-order calculation lies between the zeroth
order and the asymptotic expression. At low temperatures it
becomes difficult to precisely locate the chemical potential
numerically because the Mott plateaus have almost chemical
potential-independent density. Fortunately, the analytical ex-
pression can be used there.

The compressibility K , entropy S, and specific heat C are
obtained from the relations

K =
(

∂ρ

∂μ

)
β

, (6)

S = −β

(
∂

∂β
ln Z

)
ζ

− ρ ln ζ + ln Z, (7)

and

C = T

(
∂S

∂T

)
ρ

. (8)

We have carried out the perturbation theory to eighth order.
Up to fourth order, we evaluate the full traces and our pertur-
bation theory is complete. For much of the temperature range
studied, fourth-order perturbation suffices and properties can
be calculated accurately for arbitrary densities. Starting with
sixth order the number of trace terms becomes too large to
evaluate fully. In sixth order, we restrict trace calculations to
at most three particles per site and in eighth order we restrict
to at most two particles per site. This restricted calculation
is sufficient at lower temperatures (w → 0 limit), where we
particularly need higher orders, as discussed later.

Chemical potential, compressibility, and entropy. Numer-
ical results for chemical potential μ as a function of particle
density ρ for various temperatures and U values are shown
in Fig. 2. We find that the results at all densities are very well
converged down to a temperature of approximately T/t = 1.5.
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FIG. 3. Inverse compressibility versus ρ for U = 8 and 20 and
several β values. Mott behavior is characterized by a sharp increase
in inverse compressibility.

Below that temperature, the convergence away from integer
densities starts to break down. Hence, the plots are shown
up to β = 0.6. At and near integer densities, the conver-
gence of the expansion is set by t2/U and hence they remain
convergent down to lower temperatures. The striking feature
of the plot is the onset of Mott behavior around T = U/2
characterized by rapid rise in the chemical potential at inte-
ger densities. The larger U system is deeper into the Mott
phase and hence the changes in chemical potential are much
sharper. Mott behavior can be seen even more clearly in
Fig. 3, where we show the inverse compressibility vs den-
sity. The Mott phase is characterized by its incompressibility
and hence the inverse compressibility shoots up and shows
sharp spikes. Note that the spikes are symmetric around the
peak.

In Fig. 4, we show the entropy as a function of density.
The onset of Mott behavior is characterized by the develop-
ment of a sharp cusp in the entropy with a minima at integer
densities. This is because at small deviation from integer
densities and at temperatures much larger than the exchange
constant, the system maps on to the high-temperature limit of
the t-J model [24,34–37]. At these temperatures, the motion
of charge degrees of freedom is incoherent and corresponds to
a dilute gas with an entropy that varies as −δ ln δ, where δ is
the deviation in density from integer filling.

The w → 0 limit. At low temperatures, w = exp −βU
becomes exponentially small and some terms dominate the
expansion. At integer densities, the system is dominated by
a single occupancy value at each site. Away from integer
densities, the system is dominated by only two occupancy
values. The remaining terms become exponentially small. To
see this, and the range of ζ or chemical potential μ in each
case, we consider the unperturbed atomic limit.

FIG. 4. Entropy as a function of density for several values of
β and U = 8 and 20. As the system enters the strongly correlated
regime sharp cusps develop at integer densities.

Particle density in the atomic limit is

ρ0 = 1

z0
(4ζ + 12ζ 2w + 12ζ 3w3 + 4ζ 4w6). (9)

The cases ρ = 0 and 4 are trivial. We focus on remaining
integer densities. Setting ρ = 1 and dropping exponentially
small terms one obtains

ζ 2 = 1

6w
+ O(w). (10)

This relation is exact at low temperatures for ρ = 1 provided
the system remains in the Mott phase, that is, U is not so
small that there is a transition away from the insulating phase.
The single-site partition function is also dominated by a single
term

z0 = 4ζ + O(
√

w) (11)

or
ζ

z0
= 1

4
+ O(

√
w). (12)

For each graph, in the w → 0 limit, XG is also dominated
by only select terms. For a graph with s sites, there is a zs

0
factor in the denominator and the numerator has a maximum
power of ζ s without any double occupancy. Thus, only the ζ s

terms survive in this limit. In other words, graph by graph,
only those terms survive which have exactly one particle at
every site in the unperturbed limit.

Setting ρ = 2 in Eq. (9) we get

ζ 2 = 1

w3
. (13)

This relation, which implies μ = 3U/2, is exact by particle-
hole symmetry. The partition function, up to terms which are
relatively exponentially small, becomes

z0 = 6ζ 2w (14)

or

ζ 2

z0
= 1

6w
. (15)

Once again, contribution from each graph is dominated by
terms that have exactly two particles on every site. Other terms
are relatively exponentially small.

Setting ρ = 3 in Eq. (9) and keeping only the exponentially
largest terms we get ζ 2 = 1

6w5 . The partition function, up to
terms which are relatively exponentially small, becomes z0 =
4ζ 3w3, or

ζ 3

z0
= 1

4w3
. (16)

Once again, contribution from each graph is dominated by
terms that have exactly three particles on every site. Other
terms are relatively exponentially small.

At densities between two integer densities, the fugac-
ity takes values between two commensurate ones and each
site can have only one of two occupations. Thus, restrict-
ing trace calculations to terms with up to two particles per
site suffices to get the exponentially largest terms as long
as particle density is less than or equal to two. Furthermore,
using particle-hole symmetry one can also obtain properties
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FIG. 5. Effective Mott gap defined as − d ln K
dβ

, versus temperature
for ρ = 1 and 2 for several values of U .

at densities larger than two, so that all densities can still be
accurately obtained.

As w → 0, the expansions at integer densities turn into
high-temperature expansions for a generalized spin model.
We can rearrange this expansion in powers of x = βt2/U and
y = (t/U )2. At ρ = 1, ln (Z/4) has expansion

2.25x
(
1 − 4

3 y + 15.81887y2 − 429.6101y3 + · · · )
+ 2.8125x2

(
1 − 16

3 y + 66.49491y2 + · · · )
+ 0.9375x3(1 − 0.8y + · · · ) − 0.00234375x4(1 + · · · ).

(17)

While at ρ = 2, ln (Z/6) has expansion

3x(1 − 1.833333y + 34.18148y2 − 1227.889y3 + · · · )

+ 5x2(1 − 9.516667y + 182.3093y2 + · · · )

+ 20
3 x3(1 − 9.866667y + · · · ) + 26

9 x4(1 + · · · ). (18)

The y → 0 limit corresponds to the Heisenberg model and the
properties only depend on βt2/U . As long as the expansions
in t/U converge, the system remains an incompressible Mott
insulator.

Series in y are too short to determine the location of metal-
insulator transition. But, taking the nth root of the absolute
value of the coefficients of various yn terms suggest a conver-
gence radius in (t/U )2 of approximately 0.1 or U/t ≈ 3 − 4.
Note that the critical U/t need not be the same at different
densities. Also, because the series in y are alternating, we
cannot rule out a much smaller critical U/t on the real axis.
These results are consistent with a previous study [15], which
reported a critical U/t in the range of 2.5 to 3.

Determining the Mott gap. We define the effective Mott gap
from the behavior of compressibility as K ∼ exp −�/T . The
effective Mott gap at inverse temperature β is defined as

� = −d ln K

dβ
. (19)

Figure 5 shows the effective Mott gap as a function of β for
several U values. In finite order of perturbation theory, at
asymptotically low temperatures the Mott gap thus defined
can be shown to go back to U/2, the unperturbed value.
The reason is simply that exp (−βU/2)(βt )n goes to zero as
n → ∞. Hence, keeping n finite, as β → ∞ all perturbative
terms vanish. In nth order, convergence should extend up to
a β value that increases as n. For our calculation, we thus
need to stay at a low but finite temperature. We expect the
Mott gap to plateau close to the true answer before drifting

FIG. 6. Specific heat (C) as a function of temperature for ρ = 1
and 2 for several values of U . The leading-order Heisenberg model
results for specific heat are shown as dotted lines.

back to the unperturbed value as T → 0. It is, however, dif-
ficult to precisely pin down the gap from the short series. It
seems apparent that the gap becomes small by U/t = 4. At
smaller U , U dependence of the gap may take a concave
shape so that a small gap may persist to much smaller U
values.

Specific heat in the insulating phase. In Fig. 6 specific-heat
plots for ρ = 1 and 2 at various U values as a function of
temperature are shown. The temperature axis has been scaled
by t2/U to match with the large-U exchange constant. The
high-temperature peak in specific heat corresponds to the tran-
sition from temperatures of order U to a strongly correlated
regime at T � U . For U � 8, the entropy first plateaus at ln4
and ln 6 for ρ = 1 and 2, respectively, corresponding to the
high-temperature limit of the spin model [24]. Subsequently,
the entropy decreases with lowering of temperature showing
the development of spin correlations. The lower-temperature
rise of the specific heat is related to the development of spin
correlations in the system.

We have also shown in Fig. 6 the high-temperature large-U
limit of the spin models for the specific heat. It is clear that the
spin model captures the numerical variations in the quantities
for U � 8 quite well. But, there are significant corrections for
U/t = 4.

Magic-angle systems. In the twisted bilayer graphene and
similar systems near magic angles the bandwidth and effective
U have both been estimated to be of order 10 meV [29]. That
means the hopping parameter t is of order 10 K and U is of
order 100 K. Thus, our calculations could be relevant above
a temperature of a few K at integer densities and above about
10 K at all densities.

There have been several measurements of chemical po-
tential, compressibility, and entropy as a function of density
in these systems some going to temperatures up to 50 K
or higher [29–33]. Some features of the experiments are
clearly captured by the simple Hubbard model. As tempera-
ture is lowered, there occurs a rapid rise in chemical potential
at characteristic densities and correspondingly the inverse
compressibility shows sharp spikes. However, there are key
differences:

(1) Mott behavior at T > 1.5t is only seen in our study
at integer densities per site not at integer densities per trans-
lational unit cell as seen in experiments. The latter would
include half-integer densities per site, implying twice as many
Mott plateaus.
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(2) The entropy is a minima at integer densities in our
studies with sharp cusps, whereas it is a maxima in experi-
ments.

(3) No sawtoothlike asymmetry is seen in the inverse
compressibility spikes [30], though this maybe related to
the particle-hole symmetry in the nearest-neighbor hopping
model.

Although our model has only nearest-neighbor hopping,
results 1 and 2 above should be valid even with more com-
plex hoppings. At temperatures above t and U not too small,
incompressibility in the Hubbard model only arises when it
can be traced back to the atomic limit, i.e., at integer den-
sity per site. Adding further neighbor Coulomb repulsion can
cause additional Mott plateaus at half-integer densities, but
that would be related to charge density order for which there
is no experimental evidence. In fact, there is a band-based
argument for insulators at half-integer densities. The band
structure of the honeycomb system can be regarded as two
bands, one below the other in energy, joined together at the
Dirac points [30]. Thus, additional incompressibility at half-
integer density per site is related to integer filling of one of the
two bands.

Similarly, hopping of carriers will normally be incoherent
at these high temperatures in the Hubbard model and the
mobile particle entropy will be that of an ideal gas, regardless
of hopping details. This is what causes the entropy function
to be a minima at integer densities and have sharp cusps.
On the other hand, the kinetic entropy is presumably already
quenched even at these temperatures in experiments and the
system has turned into a Fermi liquid.

We believe these differences point to an important property
of magic-angle flat-band systems, namely, that these flat bands
are derived from a much wider band and hence have a much

larger energy scale behind them and thus can persist over
a larger temperature scale. Persistence of low-energy Dirac
features to high temperatures has also been emphasized by
Zondiner et al. [30].

Discussions and conclusions. We have studied finite-
temperature properties of the SU(4) Hubbard model on the
honeycomb lattice using strong coupling expansions. At inte-
ger densities, when U is not too small, the system becomes
an incompressible Mott insulator. This can be seen by ex-
amining the density versus chemical potential, which shows
the development of sharp plateaus. When this happens, the
compressibility becomes exponentially small and the entropy
develops cusps at integer densities. The system can be mapped
to a spin model with only virtual charge fluctuations. These
expansions converge extremely well for U/t > 8 and possibly
down to U/t ≈ 3–4.

Strong coupling expansion is particularly useful in study-
ing the temperature dependence of properties like compress-
ibility and entropy. For a more quantitative comparison with
experiments on magic-angle flat-band materials, it may be
useful to extend these studies to include more realistic band
structures with many hopping parameters. Furthermore, in-
cluding smaller terms that break SU(N) symmetry would
allow one to study various symmetry-breaking transitions
in these systems. However, our study suggests that some
aspects of the physics of magic-angle systems may not be cap-
tured by considering a lattice Hubbard model of just the flat
bands.

Acknowledgments. This work is supported in part by the
U.S. National Science Foundation Grant No. DMR-1855111.
One of the authors (J.O.) acknowledges computing support
provided by the Australian National Computation Infrastruc-
ture (NCI) Program.

[1] C. Hofrichter, L. Riegger, F. Scazza, M. Höfer, D. R. Fernandes,
I. Bloch, and S. Fölling, Phys. Rev. X 6, 021030 (2016).

[2] C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 92, 170403
(2004).

[3] S. Taie, E. Ibarra-Garcia-Padilla, N. Nishizawa, Y. Takasu, Y.
Kuno, H.-T. Wei, R. T. Scalettar, K. R. A. Hazzard, and Y.
Takahashi, arXiv:2010.07730.

[4] D. Tusi, L. Franchi, L. F. Livi, K. Baumann, D. B. Orenes, L.
Del Re, R. E. Barfknecht, T. Zhou, M. Inguscio, G. Cappellini,
M. Capone, J. Catani, and L. Fallani, arXiv:2104.13338.

[5] L. Del Re and M. Capone, Phys. Rev. A 98, 063628 (2018).
[6] E. Ibarra-Garcia-Padilla, S. Dasgupta, H.-T. Wei, S. Taie, Y.

Takahashi, R. T. Scalettar, and K. R. A. Hazzard, Phys. Rev.
A 104, 043316 (2021).

[7] H. Yoshida and H. Katsura, Phys. Rev. Lett. 126, 100201
(2021).

[8] Z. Zhou, D. Wang, Z. Y. Meng, Y. Wang, and C. Wu, Phys. Rev.
B 93, 245157 (2016).

[9] K. I. Kugel’ and D. I. Khomskii, Usp. Fiz. Nauk 136, 621 (1982)
[Sov. Phys.–Usp. 25, 231 (1982)].

[10] M. G. Yamada, M. Oshikawa, and G. Jackeli, Phys. Rev. Lett.
121, 097201 (2018).

[11] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[12] Y. H. Zhang, D. N. Sheng, and A. Vishwanath, Phys. Rev. Lett.
127, 247701 (2021).

[13] N. F. Q. Yuan and L. Fu, Phys. Rev. B 98, 045103 (2018).
[14] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki,

and L. Fu, Phys. Rev. X 8, 031087 (2018).
[15] Z. Zhu, D. N. Sheng, and L. Fu, Phys. Rev. Lett. 123, 087602

(2019).
[16] J. Kang and O. Vafek, Phys. Rev. X 8, 031088 (2018).
[17] J. Yang, G. Chen, T. Han, Q. Zhang, Y.-H. Zhang, L. Jiang, B.

Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T. Senthil, Y.
Zhang, F. Wang, and L. Ju, Science 375, 1295 (2022).

[18] Y. H. Zhang and A. Vishwanath, arXiv:2005.12925.
[19] Y. H. Zhang and D. Mao, Phys. Rev. B 101, 035122

(2020).
[20] Y.-H. Zhang and T. Senthil, Phys. Rev. B 99, 205150 (2019).
[21] J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion Methods

for Strongly Interacting Lattice Models (Cambridge University
Press, Cambridge, UK, 2006).

[22] J. A. Henderson, J. Oitmaa, and M. C. B. Ashley, Phys. Rev. B
46, 6328 (1992).

L241410-5

https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevLett.92.170403
http://arxiv.org/abs/arXiv:2010.07730
http://arxiv.org/abs/arXiv:2104.13338
https://doi.org/10.1103/PhysRevA.98.063628
https://doi.org/10.1103/PhysRevA.104.043316
https://doi.org/10.1103/PhysRevLett.126.100201
https://doi.org/10.1103/PhysRevB.93.245157
https://doi.org/10.3367/UFNr.0136.198204c.0621
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1103/PhysRevLett.121.097201
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.127.247701
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevLett.123.087602
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1126/science.abg3036
http://arxiv.org/abs/arXiv:2005.12925
https://doi.org/10.1103/PhysRevB.101.035122
https://doi.org/10.1103/PhysRevB.99.205150
https://doi.org/10.1103/PhysRevB.46.6328


HINGORANI, OITMAA, AND SINGH PHYSICAL REVIEW B 105, L241410 (2022)

[23] D. F. B. ten Haaf and J. M. J. van Leeuwen, Phys. Rev. B 46,
6313 (1992).

[24] R. R. P. Singh and J. Oitmaa, Phys. Rev. A 105, 033317 (2022).
[25] R. R. P. Singh and J. Oitmaa, arXiv:2202.01611.
[26] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B

37, 9753 (1988).
[27] J.-Y. P. Delannoy, M. J. P. Gingras, P. C. W. Holdsworth, and

A.-M. S. Tremblay, Phys. Rev. B 72, 115114 (2005).
[28] H.-Y. Yang, A. M. Läuchli, F. Mila, and K. P. Schmidt, Phys.

Rev. Lett. 105, 267204 (2010).
[29] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski,

Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K.
Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. 15, 1174
(2019); A. Kerelsky, L. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C.
Dean, A. Rubio, and A. N. Pasupathy, Nature (London) 572, 95
(2019); Y. Tang, L. Li, Tingxin Li, Y. Xu, S. Liu, K. Barmak, K.
Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan, and K. F.
Mak, ibid. 579, 353 (2020).

[30] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R. Queiroz,
T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen, A. Stern,

E. Berg, P. Jarillo-Herrero, and S. Ilani, Nature (London) 582,
203 (2020).

[31] S. L. Tomarken, Y. Cao, A. Demir, K. Watanabe, T. Taniguchi,
P. Jarillo-Herrero, and R. C. Ashoori, Phys. Rev. Lett. 123,
046601 (2019).

[32] A. Rozen, J. M. Park, U. Zondiner, Y. Cao, D. Rodan-Legrain,
T. Taniguchi, K. Watanabe, Y. Oreg, A. Stern, E. Berg, P. Jarillo-
Herrero, and S. Ilani, Nature (London) 592, 214 (2021).

[33] Y. Saito, F. Yang, J. Ge, X. Liu, K. Watanabe, T. Taniguchi,
J. I. A. Li, E. Berg, and A. F. Young, Nature (London) 592, 220
(2021).

[34] R. R. P. Singh and R. L. Glenister, Phys. Rev. B 46, 11871
(1992); 46, 14313(R) (1992).

[35] M. Rigol, T. Bryant, and R. R. P. Singh, Phys. Rev. Lett. 97,
187202 (2006).

[36] W. O. Putikka, M. U. Luchini, and T. M. Rice, Phys. Rev.
Lett. 68, 538 (1992); W. O. Putikka, M. U. Luchini, and M.
Ogata, ibid. 69, 2288 (1992); W. O. Putikka, M. U. Luchini,
and R. R. P. Singh, ibid. 81, 2966 (1998).

[37] L. P. Pryadko, S. A. Kivelson, and O. Zachar, Phys. Rev. Lett.
92, 067002 (2004).

L241410-6

https://doi.org/10.1103/PhysRevB.46.6313
https://doi.org/10.1103/PhysRevA.105.033317
http://arxiv.org/abs/arXiv:2202.01611
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.72.115114
https://doi.org/10.1103/PhysRevLett.105.267204
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1038/s41586-020-2373-y
https://doi.org/10.1103/PhysRevLett.123.046601
https://doi.org/10.1038/s41586-021-03319-3
https://doi.org/10.1038/s41586-021-03409-2
https://doi.org/10.1103/PhysRevB.46.11871
https://doi.org/10.1103/PhysRevB.46.14313
https://doi.org/10.1103/PhysRevLett.97.187202
https://doi.org/10.1103/PhysRevLett.68.538
https://doi.org/10.1103/PhysRevLett.69.2288
https://doi.org/10.1103/PhysRevLett.81.2966
https://doi.org/10.1103/PhysRevLett.92.067002

