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Bloch oscillations in the magnetoconductance of twisted bilayer graphene
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We identify a mapping between two-dimensional (2D) electron transport in a minimally twisted graphene
bilayer and a one-dimensional (1D) quantum walk, where one spatial dimension plays the role of time. In this
mapping, a magnetic field B perpendicular to the bilayer maps onto an electric field. Bloch oscillations due to
the periodic motion in a 1D Bloch band can then be observed in purely DC transport as magnetoconductance
oscillations with periodicity set by the Bloch frequency.
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Introduction. It is one of the early counterintuitive predic-
tions of solid-state physics that an electric field in a crystal
induces an oscillatory electron motion [1–3]: While the mo-
mentum h̄k increases linearly with time, according to h̄k(t ) =
eEt in an electric field E , the corresponding velocity v(t ) ∝
sin k(t ) in a Bloch band (unit lattice constant) has a periodic
time dependence, with frequency ωB = eE/h̄. The amplitude
A ≈ �/eE of the Bloch oscillations is set by the energy band
width �.

Electronic Bloch oscillations have been studied in the
time domain at THz frequencies in semiconductor super-
lattices [4–9] and in graphene bilayers [10]. With few
exceptions [11], and unlike the familiar Aharonov-Bohm os-
cillations [12], Bloch oscillations do not typically play a role
in quantum transport, which is probed in the energy domain
at low frequencies. Here we show that Bloch oscillations may
appear in the magnetoconductance of a two-dimensional (2D)
system, a twisted graphene bilayer, by virtue of a mapping to
a quantum walk in one space and one time dimension.

The magnetic field B perpendicular to the bilayer maps
onto a parallel electric field E ↔ Bv/2, with v being the Fermi
velocity. As a consequence, the conductance measured be-
tween two-point contacts at a distance L oscillates periodically
in B. These Bloch magnetoconductance oscillations appear at
much weaker fields, smaller by a factor L over lattice con-
stant, than the known Aharonov-Bohm oscillations in twisted
bilayer graphene [13–16].

Network model. We start from the established network
model of minimally twisted bilayer graphene [17–23]: two
layers of graphene are misaligned by a rotation angle θ ≈
0.1◦, forming a moiré pattern of triangular domains with
different stacking (AB versus BA) of the carbon atoms on
the A and B sublattices of the two layers. (See Fig. 1.) An
interlayer bias voltage gaps out the interior of the AB and BA
domains, leaving a conducting network formed by AB/BA
domain walls that meet at angles of 60◦ on a metallic node.
The lattice constant a = a0[2 sin(θ/2)]−1 of the moiré pattern
is of the order of 100 nm, two orders of magnitude larger than
the atomic lattice constant a0 of graphene.

The direction of motion along a domain wall is tied to
the valley degree of freedom. (The spin degree of freedom is

decoupled from the motion and plays no role in what follows.)
In a single valley, each domain wall supports two modes,
both of the same chirality (propagating in the same direction
with velocity v). If we neglect intervalley scattering (justified
for a � a0 with smooth disorder, and experimentally veri-
fied [23]), the scattering process at a node thus involves six
incoming and six outgoing mode amplitudes, related by a
scattering matrix S of the form [15,22]:
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3}� = {b1, b2, b3, b′
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√
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The 3 × 3 submatrices S1 and S2 describe intramode and in-
termode scattering, respectively. Forward scattering happens
with probability Pf = Pf 1 + Pf 2, and scattering with a ±120◦
deflection happens with probability Pd = Pd1 + Pd2. Unitarity
of S requires that

Pf 1 + Pf 2 + 2Pd1 + 2Pd2 = 1,

cos(β − α) = 1
2 (Pd2 − Pd1)(Pf 1Pd1)−1/2 ∈ [−1, 1]. (2)

To reduce the number of free parameters, we take equal
intrachannel and interchannel probabilities Pf 1 = Pf 2 = 1

2 Pf

and Pd1 = Pd2 = 1
4 (1 − Pf ). Then β = α + π/2 and we are

left with the two parameters Pf ∈ [0, 1] and α ∈ [0, π/2].
The parameter α governs the appearance of closed loops of
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FIG. 1. Moiré lattice in a twisted graphene bilayer. Triangular
domains of AB and BA stacking are indicated by different colors.
Domain walls conduct a current I = V G between narrow source and
drain contacts (width W , a distance L apart). This is a four-terminal
geometry, including two additional wide grounded contacts at the left
and right.

scattering sequences [15]. At α = 0, the network does not
support closed loops (quasi-1D transport), while for α = π/2
closed loops dominate (2D transport).

The propagation between two nodes along a domain wall
introduces a phase factor eiEa/h̄v , at energy E . The scattering
matrix (1) of the nodes is assumed to be energy indepen-
dent, so the scattering sequences consist of instantaneous
nodal scattering events, spaced by the constant time a/v. A
stroboscopic (Floquet) description of the scattering is then
appropriate [24,25]. In the quasi-1D regime, this corresponds
to a quantum walk.

Quantum walk. Two scattering sequences in the quasi-1D
regime (α = 0) are shown in Fig. 2. The solid and dashed lines
distinguish even- and odd-parity modes in a given valley, both
propagating in the same direction. (The counterpropagating
modes are in the other valley.) We can interpret a scattering
sequence as a quantum walk [26], with time step t0 = a/v.
There are six independent quantum walks, rotated relative to

FIG. 2. Network of domain walls with two realizations of the
quantum walk in a single valley (blue and red arrows). Even- and
odd-parity chiral modes are indicated by solid and dashed lines.
Forward scattering at a node preserves the parity, while a deflec-
tion switches the parity. The quantum walk propagates along the y
axis with step size ay = 1

2

√
3 a, the x axis playing the role of time

(t ↔ 2x/v). The unit cell of the lattice, of area aay and enclosing a
flux �, is indicated in blue.

FIG. 3. Two Bloch bands ε±(ky ) of the quantum walk, computed
from Eq. (5) for Pf = 1/2. The band width � is indicated.

each other by 60◦, three in one valley and three in the other
valley. We focus on one of these.

At each step, the x coordinate is increased by a/2. The y
coordinate changes by ± 1

2 a
√

3 ≡ ±ay, the even-parity mode
moves up, and the odd-parity mode moves down. The wave
amplitudes ψ = (ψ+, ψ−) of the even- and odd-parity states
form a pseudospin degree of freedom, which is rotated at each
node by the 2 × 2 matrix [15,27]

R =
(

eiπ/4
√

Pf
√

1 − Pf√
1 − Pf −e−iπ/4

√
Pf

)
. (3)

The corresponding time evolution of a state (at strobo-
scopic intervals t = 0, 1, 2, . . . × t0) is given by

ψt+t0 = T Rψt ,

T ψ (y) = [ψ+(y − ay), ψ−(y + ay)] = e−iayk̂yσzψ (y). (4)

The operator T displaces the particle up or down depending
on its pseudospin σz. Equation (4) represents a 1D quantum
walk along y in the fictitious time t = 2x/v, with momentum
operator k̂y = −i∂/∂y.

The eigenvalues e−iεt0 of the evolution operator T R in
momentum representation are given by

ε±t0 = ± arccos[
√

Pf sin(ayky − π/4)] + π/2, (5)

plotted in Fig. 3. The single-valley band structure of the quasi-
1D regime [22] is given by three copies rotated by 120◦ of the
dispersion relation

E (n)
± (kx, ky) = h̄ε±(ky) + 2πnh̄/t0 + h̄vkx/2, n ∈ Z. (6)

Bloch oscillations. A perpendicular magnetic field B =
∇ × A (in the z direction) introduces a phase shift −e

∫
A · dl

at each time step (taking the electron charge as +e). For A =
(−By, Ba/4, 0) the time evolution (4) is modified into [28]

ψt+t0 = eiφŷ/ayT Rψt , φ = π�/�0. (7)

The operator ŷ is defined by ŷψt (y) = yψt (y). The flux � =
Baay is the flux through a unit cell (two domain wall triangles)
and �0 = h/e is the flux quantum. The same phase shift φ

would be produced by a fictitious electric field E ≡ Bv/2. The
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FIG. 4. Numerical simulations of electron scattering in a twisted
graphene bilayer, in a magnetic field (φ = π�/�0 = 0.03). Elec-
trons at energy E = 0 are injected in a single mode and in a single
node at (x, y) = (0, 0). They then propagate through the network
following the scattering matrix (1). We take Pf1 = Pf2 = 1/4, Pd1 =
Pd2 = 1/8 and compare two values of α. The blue color scale gives
the intensity |ψ |2 of the scattering state. The red curve in panel (a) is
the envelope of the breathing mode predicted by Eq. (10).

corresponding Bloch frequency is

ωB = ayeE/h̄ = φ/t0. (8)

Since the width of the Bloch band (5) is � =
(2h̄/t0) arcsin

√
Pf , the amplitude of the Bloch oscillations is

A ≈ �/eE = (2ay/φ) arcsin
√

Pf . (9)

The 1D quantum walk in an electric field has been ana-
lyzed theoretically [29–32] and realized experimentally in the
context of optics [33,34] and atomic physics [35]. A spatially
localized wave packet evolves in a characteristic “breathing
mode” with envelope [29] ±A sin(ωBt/2). In our case, where
time t �→ 2x/v maps onto space, this implies the envelope

yenvelope(x) = ±(2ay/φ) arcsin
√

Pf sin(φx/a). (10)

A numerical simulation of the network model shown in
Fig. 4 agrees nicely with this breathing mode envelope. For
nonzero α side branches appear at a 120◦ orientation with
the breathing mode, which we explain in terms of magnetic
breakdown.

Magnetic breakdown. In semiclassical approximation, the
motion of an electron in a magnetic field B can be obtained
from the equienergy contours in zero field: Because h̄k̇ =
eṙ × B, the real-space orbit of a wave packet at energy E fol-
lows the contour E (k) = E upon rotation by 90◦ and rescaling
by a factor l2

m = h̄/eB (magnetic length squared).
We calculate the equienergy contours [36] from the scatter-

ing matrix (1); see Fig. 5. At α = 0, three oscillating contours
rotated by 120◦ cross near k = 0. A wave packet moves along
these open orbits with velocity dk/dt = v/l2

m. A nonzero α

opens up a gap �k � α/a at each crossing, thereby allowing
the wave packet to be deflected by ±120◦. Magnetic break-
down refers to the tunneling of the wave packet through the
gap [37,38]. This happens with the Landau-Zener probabil-
ity T = exp[−c(lm�k)2], where c is a coefficient of order
unity [39]. We conclude that the breathing mode remains

FIG. 5. Equienergy contours E (kx, ky ) = 0 at zero magnetic
field, computed [36] for Pf1 = Pf2 = 1/4, Pd1 = Pd2 = 1/8, α = 0.1.
A magnetic field drives a wave packet in the direction of the arrows.
Points of magnetic breakdown (tunneling between two contours) are
encircled. The resulting open orbits are distinguished by different
colors.

predominantly uncoupled from the side branches provided
that (αlm/a)2 � 1 ⇒ α2 � �/�0.

All of this is for the case of equal intrachannel and inter-
channel probabilities. We have investigated numerically what
happens if we relax this assumption. A difference between
Pd1 and Pd2 increases the gap, (a�k)2 ≈ α2 + (Pd1 − Pd2)2.
A difference between Pf 1 and Pf 2 has no effect on the gap; it
weakly affects the coefficient c.

Conductance. The breathing mode visualized in Fig. 4 can
be detected via the conductance, in the geometry of Fig. 1,
with source and drain contacts aligned along a domain wall.
We have tested this by computer simulation.

The transmission matrix tnm from mode m in the source
contact to mode n in the drain contact is calculated in the net-
work model [22]. There are 8N outgoing (incoming) modes in
the source (drain) contact, distributed over N = W/a

√
3 unit

cells (see Fig. 6). Four of the eight modes per unit cell are in
one valley and four are in the other valley.

FIG. 6. Outgoing modes at the left (source contact) and incoming
modes at the right (drain contact). Red and blue arrows distinguish
pairs of modes in the two valleys. For contacts of width W = N ×
a
√

3, the transmission matrix t from source to drain has dimension
8N × 8N . The diagram shows the case N = 1. The full network in
the simulation has length L along the x axis and width much larger
than the contact width W along the y axis.
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(a)

(c)

(d)

(b)

FIG. 7. Calculation of the magnetic field dependence of the con-
ductance in the geometry of Fig. 1. Source and drain contacts are
separated by L and have a width of N unit cells (W = N × a

√
3). The

parameters of the network model are the same as in Fig. 4. Different
values of α are compared, for wide contacts [(a), (b)] and narrow
contacts [(c), (d)]. The Bloch oscillation period �� from Eq. (12)
is indicated. Full transmission of the breathing mode corresponds to
G/G0 = 2N .

The two-terminal conductance follows from

G = G0

8N∑
n,m=1

|tnm|2, (11)

with G0 = 2e2/h, the conductance quantum (the factor of 2
accounts for the spin). In the quasi-1D regime, only two of
the eight modes per unit cell contribute to the conductance,
corresponding to the breathing mode. Note that the current is
highly valley polarized: the red modes in Fig. 6 give a neg-
ligible contribution to G, because they are backscattered into
the source at the nodes. A rotation of the contact alignment by
60◦ switches the transmission from one valley to the other.

The conductance is a maximum whenever a node of the
breathing mode coincides with the drain contact, so if the
separation L of source and drain is an integer multiple of
πa/φ = a�0/�. As a function of magnetic field, the conduc-
tance then oscillates with period [40]

�� = �0a/L ⇒ �B = (h/e)(ayL)−1. (12)

This is what we observe in the computer simulation [41];
see Fig. 7. To resolve the Bloch oscillations, the width
W of source and drain contacts should be smaller than
the amplitude A ∝ 1/B of the breathing mode, which ex-
plains why the oscillations die out with increasing magnetic
field. The oscillations become more robust to nonzero α

if both the width and the separation of the contacts are
reduced, because then the larger magnetic field scale pro-
motes the magnetic breakdown that enables the breathing
mode.

Discussion. In closing, we have shown that the breathing
mode that is the hallmark of Bloch oscillations in a periodic
potential can be observed in the magnetoconductance of min-
imally twisted bilayer graphene. The spatial resolution that is
needed to resolve the oscillatory electron motion requires nar-
row source and drain contacts, which is presumably why these
low-field oscillations have not yet been observed. Figures 7(c)
and 7(d) correspond to a contact width W = a

√
3 ≈ 0.25 μm

at a twist angle θ ≈ 0.1◦.
For a contact separation of L = 50 a ≈ 7 μm, the pe-

riodicity of the magnetoconductance oscillations is �B ≈
2.4 mT. This is two orders of magnitude below the fields
at which quantum Hall interferometry (Aharonov-Bohm and
Shubnikov–De Haas oscillations) becomes operative [13–16].
There is room to reduce the contact separation, which will
help to mitigate disorder effects—L should be shorter than the
mean free path.

The key requirement for the appearance of the breathing
mode is the quasi-1D regime, in which open orbits govern
the magnetoconductance, enabled by magnetic breakdown.
Support for this regime can be found in microscopic calcula-
tions of the band structure [20] that show equienergy contours
qualitatively similar to those in Fig. 5. The observation of
the low-field magnetoconductance oscillations predicted here
would then be a striking demonstration of Bloch oscillations
in the solid state.
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[41] The computer code is available at a repository: doi:10.5281/
zenodo.6324284.
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