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Nonlocal thermoelectric resistance in vortical viscous transport
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The pursuit for clearly identifiable signatures of viscous electron flow in the solid state systems has been
a paramount task in the search of the hydrodynamic electron transport behavior. In this work, we investigate
theoretically the nonlocal electric and thermal resistances for the generic non-Galilean-invariant electron liquids
in the multiterminal Hall-bar devices in the hydrodynamic regime. The role of the device inhomogeneity is
carefully addressed in the model of the disorder potential with the long-range correlation radius. We obtain
analytic expressions for the thermoelectric resistances that are applicable in the full crossover regime from charge
neutrality to high electron density. We show that the vortical component of the electron flow manifests in the
thermal transport mode close to the charge neutrality where vorticity is already suppressed by the intrinsic
conductivity in the electric current. This behavior can be tested by the high-resolution thermal imaging probes.
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I. INTRODUCTION

The electron liquids in solids can exhibit hydrodynamic
transport behavior provided sufficient sample purity and
proper regime of temperatures [1]. These special conditions
are required to ensure that the equilibration length of elec-
tron collisions is short compared to the momentum relaxation
length scales associated with the scattering off impurities and
phonons. In this regime macroscopic description applies and
the flow of electrons through a crystal can be described within
the limits of hydrodynamic theory.

For a long time, the key manifestation of electron hydro-
dynamics in the transport properties of solids was attributed
to the prediction made by Gurzhi of negative differential
resistivity, ∂ρ/∂T < 0, namely the decrease of sample resis-
tance with the increase of temperature [2]. It is noteworthy to
mention that this result is counterintuitive at the first glance.
Indeed, lattice degrees of freedom are activated with the in-
crease of temperature; electron scattering probability grows,
which must lead to an increase of resistivity. However, it
can be shown that if electrons attain the hydrodynamic limit
via frequent electron-electron collisions, the resistive flow is
determined by viscosity with momentum relaxation occur-
ring at the sample boundaries. For Fermi liquids, viscosity
decreases with the increase of temperature [3]; therefore
resistivity diminishes as well. This signature behavior was
observed in the high-mobility semiconductor quantum wires
and two-dimensional quantum wells [4,5].

In recent years, the advent of boron nitride encapsulated
graphene renewed interest in the topics of electron hydrody-
namics; see reviews [6–8]. This stimulated research activities
and led to insightful predictions, many of which were al-
ready validated experimentally. For instance, the Dirac fluid in
graphene was expected to display anomalous thermoelectric
responses most pronounced near charge neutrality [9–13].
This was confirmed by the observation of gross violation of

the Wiedemann-Franz law, which manifests by the significant
increase in the Lorenz ratio [14] and the Seebeck coefficient
[15] as a function of carrier concentration in the carefully con-
trolled domain of the phase diagram defined by temperature
and particle density. The collective character of the viscous
flow was predicted to enhance conductance in the electron
transport through microconstrictions as compared to its value
in the ballistic limit [16]. This effect was clearly demonstrated
in graphene devices with engineered quantum point contacts
[17] and electrostatic dams defined by lateral p-n junction
barriers [18]. Another peculiar aspect of the hydrodynamic
transport is defined by its nonlocality that may result in
the formation of current vortices concomitant with the ap-
pearance of the negative nonlocal resistances [19,20]. These
features attracted significant theoretical attention [21–25] and
affirmative experimental tests [26,27]. Furthermore, scanning
tunneling and magnetic imaging probes were successfully
applied to directly visualize electronic flows in restricted
geometries [28–31]. The compelling evidence for the charac-
teristic Poiseuille flow profile were identified in the Hall-bar
devices as manifestations of electronic viscous effects. In con-
trast, the whirlpool character of the electronic flow remained
elusive up until very recently when geometrical decoration of
the device combined with an elaborate superconducting quan-
tum interference device (SQUID)–on-tip imaging technique
confirmed the existence of current vortices [32].

In this work, we dwell further on the issues related to the
emergence of thermoelectric current vortices and the sign-
alternating value of the corresponding nonlocal resistances.
The focal point of our study concerns the role of Galilean
invariance. To set the stage for the topic, we recall the basic
fact that in the Galilean-invariant liquids, the particle current
is given by the momentum density divided by the particle
mass [33]. For electron liquids in crystals, this is possible only
in the case of a single partially occupied band with a strictly
parabolic dispersion, which can be a valid approximation
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only in some cases. Thus generically, in most physical sys-
tems including graphene, the electron liquid does not possess
Galilean invariance. Therefore, particle and entropy currents
are described not only by the hydrodynamic mode associated
with the onset of fluid motion, but also by a relative mode
described by a dissipative matrix of intrinsic thermoelectric
coefficients. We aim to trace the evolution of the vortical
component of viscous electron flow as the system is tuned
toward the charge neutrality point where intrinsic dissipa-
tive processes dominate over the hydrodynamic mode. We
concurrently study the changes in the nonlocal resistances
characteristic to the particular flow pattern.

The rest of this Letter is organized as follows. In Sec. II,
we briefly introduce the main ingredients of the hydrodynamic
formalism. In Sec. III, we study transport in a long Hall-bar
device. We consider geometry with transverse injection of
the current in two measurement setups including electrical
and thermal biasing scenarios. For each case we derive the
corresponding nonlocal resistance in the multiterminal mea-
surement configuration. In Sec. IV, we provide a summary of
the main results and concluding remarks.

II. HYDRODYNAMIC FORMALISM

The hydrodynamic equations are concerned with the con-
servation of the electron density n, entropy density s, and
momentum flux of the electron liquid. The first two conser-
vation laws in linear response are expressed by the continuity
equation

∂{n, s}
∂t

+ ∇ · j{n,s} = 0. (1)

The particle current density jn and entropy current density
js can be written as the sum of two contributions: (i) cur-
rent densities carried by the hydrodynamic velocity v(r), and
(ii) current densities carried by the transport relative to the
electron liquid as driven by the gradients of the electrostatic
potential φ and temperature T . Therefore, we express the
constitutive relations for jn and js as follows:

jn = nv − σ

e2
e∇φ − γ

T
∇T, (2a)

js = sv − γ

T
e∇φ − κ

T
∇T, (2b)

with κ, σ, γ being the thermal conductivity, the intrinsic con-
ductivity, and the thermoelectric coefficient of the electron
liquid, respectively. In the constitutive relations, we do not
assume Galilean invariance, wherein σ = 0, γ = 0. In the
regime of low doping n � s, the thermoelectric coefficient
may be estimated to scale as γ /T ∼ n/s. In the same limit,
the intrinsic conductivity σ is nearly a constant modulo loga-
rithmic renormalizations in the weak-coupling theory [34,35].

The conservation of momentum density is expressed in
terms of the electronic Navier-Stokes (N-S) equation. The
latter, in the steady state and the linear response to the applied
forces, is written as

η∇2v − αv = ne∇φ + s∇T, (3)

where η is the shear viscosity. For systems tuned sufficiently
close to charge neutrality, it scales as η ∝ T 2 [36]. The terms

FIG. 1. The geometric setup: The electric (thermal) current I (IQ)
is injected at x = 0, y = 0 and drained at the opposite end x = 0, y =
w. The nonlocal electrical (thermal) resistance is measured at a
distance x away from the injection site.

on the right-hand side are the driving forces of the hydrody-
namic flow. The first term on the left-hand side is the viscous
stress, while the second term captures the friction force due
to disorder. One of the main sources of disorder originates
from charge impurities in the substrate on which the graphene
flake is deposited [37,38]. These impurities induce spatial
fluctuations in the chemical potential and lead to local regions
of positive and negative charge density, commonly referred
to as charge puddles. Averaging the flow of the electron fluid
over the spatial inhomogeneities leads to an appearance of the
effective friction force F f = −αv, with the friction coefficient
α given by [12]

α = 〈(sδn − nδs)2〉
2
(

n2κ
T − 2nsγ

T + s2σ
e2

) , (4)

where δn(r) and δs(r) denote local fluctuations of the particle
and entropy density, respectively, and brackets 〈· · · 〉 define
spatial averages. In this macroscopic description, namely
upon spatial averaging over the distances larger than the cor-
relation radius of the disorder potential, the number density
and the entropy density in Eq. (3) can be taken to be spatially
uniform. It should be noted though, that averaging also leads
to effective renormalizations of both these densities, as well as
intrinsic kinetic coefficients. In the treatment that follows, we
assumed that all these renormalizations were absorbed into
correspondingly redefined quantities. For the bulk samples
and Hall-bar devices, this analysis was carried out in the
recent work of Refs. [12,13]. For instance, the renormalized
intrinsic conductivity, σ + e2χ , acquires positive correction
with χ = 1

2η

〈U 2〉
(2πe2 )2 , where U is random potential. This signi-

fies the conductivity enhancement by the correlated effects of
electron and disorder scattering.

III. THERMOELECTRIC RESISTANCES

In the present Letter, we in part revisit the hydrodynamic
flow proposed in Ref. [19], i.e., the flow in a strip of finite
width w (−∞ < x < ∞, 0 < y < w) with source and drain
contacts placed at the opposite edges of the strip (x = 0, y =
0,w); see Fig. 1. We further extend previous considerations
[19–22] to include thermal effects and highlight the difference
in the emergence of the vortical effects.
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A. Electrically biased setup

In this section, we consider the flow pattern driven by the
transverse current injected and drained through the contacts.
Since the system is purely electrically biased, there is no
temperature gradient ∇T . The viscous flow is described by
the N-S equation and the continuity equation

∇2v − 1

l2
G

v = ne

η
∇φ, (5)

∇ · j = 0, j = ejn = nev − σ∇φ, (6)

where lG = √
η/α is the generalized Gurzhi length. We recall

that the conventional definition of the Gurzhi length is given
by the geometrical mean between the momentum-conserving
electron mean free path and the momentum-relaxing one on
the pointlike quenched disorder. Therefore, its temperature
dependence is governed by the former length scale. In the
present case, the frictional processes are captured by the co-
efficient α(n, T ) that exhibits a rather complex density and
temperature dependence as should be clear from Eq. (4).
Therefore, the Gurzhi crossover from the flow in the restricted
geometry to that in the bulk, which is described by the relative
importance of the Laplacian and local friction term in Eq. (3),
is more intricate in the present model.

Introducing the stream function ψ via v = z × ∇ψ =
(−∂yψ, ∂xψ ), it is evident from the N-S equation (5) that the
stream function satisfies(

∇4 − 1

l2
G

∇2

)
ψ = 0. (7)

To solve for ψ , boundary conditions (BCs) must be specified.
One of the BCs is the no-slip boundary condition vt = 0,
where the subscript t stands for the tangential component. In
terms of the stream function, this is equivalent to ∂nψ = 0,
where the subscript n stands for the normal component. The
second BC is imposed on the normal component of the veloc-
ity by the injected and drained current I (r) flowing in and out
through the contacts. With the constitutive relation in Eq. (6),
this reads

I (r) = nevn − σ∂nφ = ne

[(
1 + l2

n

l2
G

)
vn − l2

n ∇2vn

]
, (8)

where ln = √
ησ/ne, and we have used the N-S equation (3)

to relate the potential gradient ∂nφ to the flow velocity vn.
Similarly to Ref. [19], we express ψ in a mixed coordinate-

momentum representation,

ψ (x, y) =
∫

dk

2π
eikxψk (y), (9)

and find that the function ψk (y) satisfies the equation

(
∂2

y − k2
)(

∂2
y − q2

)
ψk (y) = 0, q =

√
k2 + l−2

G , (10)

coupled with the no-slip BC

∂yψk (y)|y=0,w = 0, (11)

and the BC of current injection

I

ikne
= (1 + �)ψk (y)|y=0,w − l2

n

(
∂2

y − k2
)
ψk (y)|y=0,w. (12)

The dimensionless parameter � is defined as � = l2
n /l2

G and
we assume pointlike contacts I (x) = Iδ(x). The solution of
Eq. (10) is straightforwardly written by a sum of four expo-
nents,

ψk (y) = I

ikne
(a+eky + a−e−ky + b+eqy + b−e−qy). (13)

Combining such a solution with Eqs. (11) and (12), and solv-
ing for the expansion coefficients a± and b±, we get

a+ = (eqw − 1)q

(1 + �)q(eqw − 1)(ekw + 1) − k(eqw + 1)(ekw − 1)
,

(14a)

a− = ekw(eqw − 1)q

(1 + �)q(eqw − 1)(ekw + 1) − k(eqw + 1)(ekw − 1)
,

(14b)

b+ = − (ekw − 1)k

(1 + �)q(eqw − 1)(ekw + 1) − k(eqw + 1)(ekw − 1)
,

(14c)

b− = − eqw(ekw − 1)k

(1 + �)q(eqw − 1)(ekw + 1) − k(eqw + 1)(ekw − 1)
.

(14d)

The electric potential can be found from the N-S Eq. (5),
which gives ∇iφ = (η∇2vi − αvi )/ne. Upon substituting the
solution Eq. (13) into the N-S Eq. (5), we find the potential

φ(x, y) = − I

2πσ

∫ +∞

−∞

dk

k
eikx

× � q[eky − ek(w−y)]

(1 + �) q(ekw + 1) − k(ekw − 1) coth qw

2

, (15)

and the nonlocal voltage, �V (x) ≡ φ(x, y = 0) − φ(x, y =
w). Consequently, the nonlocal electric resistance, Rnl(x) ≡
�V (x)/I , is

Rnl(x) = 1

πσ

∫ +∞

−∞

dk

k

�qeikx

(1 + �) q coth kw
2 − k coth qw

2

. (16)

We consider limiting cases. For the wide Hall-bar strip,
lG � w, the nonlocal resistance in the region |x| � w at dif-
ferent densities is given by the following expressions.

(1) Low density: ln � lG or n �
√

ασ/e2,

Rnl(x) =
⎧⎨
⎩

2
πσ

ln
(

2w
π |x|

)
, |x| � lG,

2
πσ

l2
n

l2
n +l2

G
ln

(
2w
π |x|

)
, lG � |x| � w.

(17)

(2) High density: ln � lG or n �
√

ασ/e2,

Rnl(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
πσ

ln
(

2w
π |x|

)
, |x| � ln,

− 2η

πn2e2
2
x2 , ln � |x| � lG,

2
πσ

l2
n

l2
n +l2

G
ln

(
2w
π |x|

)
, lG � |x| � w.

(18)

Conversely, for the narrow strip, lG � w, the nonlocal
resistance for different densities is given by the following
expressions:
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(1) Low density: ln � w or n �
√

ησ/w2e2,

Rnl(x) ≈ 2

πσ
ln

(
2w

π |x|
)

, |x| � w. (19)

(2) High density: ln � w or n �
√

ησ/w2e2,

Rnl(x) =
{ 2

πσ
ln

(
2w
π |x|

)
, |x| � ln,

− 2η

πn2e2
2
x2 , ln � |x| � w.

(20)

In the low-density limit, Rnl(x) is everywhere positive in
the region |x| � w and formally identical to that in the Ohmic
regime. At high density, we reproduce the results obtained in
[19] in the spatial region ln � |x| � w, whereas in the region
|x| � ln, Rnl is again formally identical to the Ohmic form.
This can be understood from the fact that the constitutive
relation is j ≈ σE for |x| < ln.

B. Thermally biased setup

In this section, we consider the case in which the pair of
contacts at x = 0, y = 0,w are kept at different temperatures,
so that a transverse entropy current Is is injected and drained.
Since there is no electric current in the bulk, we set jn to zero
in Eq. (2a) and obtain the relation between the potential, the
flow velocity, and temperature gradient:

e∇φ = e2

σ

(
nv − γ

T
∇T

)
. (21)

Substituting this relation into the N-S equation (3) and the
constitutive relation for js (2b), we have

∇2v −
(

1

l2
G

+ 1

l2
n

)
v = ς

η
∇T, (22)

∇ · js = 0, js = ςv − κ

T
∇T, (23)

where ς = s − ne2γ /σT and κ = κ − e2γ 2/σT are the
redefined entropy density and thermal conductivity, respec-
tively. Introducing the stream function ψ in the same mixed
coordinate-momentum representation as in Eq. (9), we get(

∂2
y − k2

)(
∂2

y − q2
)
ψk (y) = 0, q =

√
k2 + l−2

G + l−2
n ,

(24)

coupled with the no-slip BC,

∂yψk (y)|y=0,w = 0, (25)

and the BC for thermal current injection,

Is

ikς
= (1 + �)ψk (y)|y=0,w − l2

s

(
∂2

y − k2)ψk (y)|y=0,w, (26)

where ls =
√

ηκ/T ς2. The modified dimensionless parame-

ter � acquires the form � = l2
s

l2
n

(1 + l2
n

l2
G

). In analogy with the
electrically biased case, we obtain the temperature distribution

T (x, y) = − IQ

2πκ

∫ +∞

−∞

dk

k
eikx

× � q[eky − ek(w−y)]

(1 + �) q(ekw + 1) − k(ekw − 1) coth qw

2

,

(27)

and the nonlocal temperature difference, �T (x) ≡ T (x, y =
0) − T (x, y = w). Consequently, the nonlocal thermal resis-
tance, Rth(x) ≡ �T (x)/IQ, is cast in the form

Rth(x) = 1

πκ

∫ +∞

−∞

dk

k

� qeikx

(1 + �) q coth kw
2 − k coth qw

2

. (28)

For simplicity, we consider analytically the limiting cases
for the nonlocal thermal resistance at zero friction α = 0 at
different densities. We find for

(1) the low density: ls � w � ln,

Rth ≈
{ 2

πκ
ln

(
2w
π |x|

)
, |x| � ls,

− 2η

πT ς2
2
x2 , ls � |x| � w;

(29)

(2) the intermediate density: ls � ln � w,

Rth ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
πκ

ln
(

2w
π |x|

)
, |x| � ls,

− 2η

πT ς2
2
x2 , ls � |x| � ln,

2
πκ

l2
s

l2
n

ln
(

2w
π |x|

)
, ln � |x| � w;

(30)

(3) high density: ln � ls � w,

Rth ≈ 2

πκ

ln

(
2w

π |x|
)

, |x| � w. (31)

The nonlocal thermal resistance is everywhere negative
(viscous flow) in the low-density limit and everywhere pos-
itive (Ohmic flow) for high density. In the regime sufficiently
close to neutrality η ∼ (T/v)2 and ς ≈ s ∼ (T/v)2 since
ne2γ /σ sT ∼ (e2/σ )(n/s)2 � 1. Therefore from Eq. (29) we
conclude that |Rth| ∝ 1/T 3 at x � ls. The growth of the re-
sistance, in absolute value, with lowering of the temperature
is limited by the applicability condition of the hydrody-
namic regime. Coincidentally, the temperature dependence of
Rth is the same as in Kapitza thermal boundary resistance,
RK = A/T 3, although the physical mechanism is completely
different [39]. Finally, it is worthwhile to note that the non-
local response of the injected thermal current can also be
detected by electric probes. Indeed, the built-in electric po-
tential, which is given by Eq. (21), leads to a nonlocal voltage
difference

�V (x) = −e2γ

σT

�T (x)

e
. (32)

This can be experimentally probed by the scanning tunneling
potentiometry (STP) technique; e.g., see Ref. [18].

IV. SUMMARY AND CONCLUSIONS

In this work we consider thermoelectric transport in
graphene Hall-bar devices in the hydrodynamic regime. The
most peculiar aspect of electron hydrodynamics in graphene
is that at charge neutrality the hydrodynamic flow corresponds
to a pure heat transport as it carries no charge. The decoupling
of charge and heat fluxes was previously explored primarily in
light of the observed anomalously large Lorenz ratio. In this
study, we provide a comparative analysis for the thermal and
electrical transport in the geometry that enables current vor-
ticity. In particular, we trace density evolution of the vortical
flow and the concomitant nonlocal resistance in both charge
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FIG. 2. A comparative set of plots for the electric and thermal current stream lines at different densities in a Hall-bar device. The stream
plot for the flow profile is superimposed on the colored plots for potential or temperature, adjacent to the nonlocal resistance. In each regime
the corresponding resistance is computed as a function of distance away from the central line of source-drain contacts. The parameters used in
the plots are identical to those in the main text.

and heat transport modes. In addition, we study how this flow
changes across the Gurzhi crossover, namely for narrow and
wide samples as compared to lG.

The main result of our findings is summarized in Fig. 2. We
can see that in the charge mode viscous shear flow generates
vorticity and a backflow on the side of the main current path
in the high-density regime. As a result, the region of nega-
tive nonlocal resistance is clear once the measuring contacts
are placed in the region of the counterflow. The resistance
is proportional to the electron fluid viscosity and inversely
proportional to the square of particle density [see Eqs. (18)
and (20) for wide and narrow strips, respectively]. This result
is in agreement with the previous conclusions presented in
Ref. [19], albeit we provide an extension for the Hall-bar
devices with long-range disorder. When the density is varied
toward the charge neutrality, this vortical picture gradually
disappears. In the regime of vanishing carrier doping, the
transport is dominated by the relative mode with the finite
intrinsic conductivity σ , and the overall current profile re-
sembles that in the Ohmic limit. The two extreme cases are
depicted in panels (a) and (b) of Fig. 2. In contrast, the thermal
transport picture evolves with the opposite trend. Heat current
whirlpools become more pronounced close to the charge neu-
trality where thermal current is dominated by the convective

part of the flow, sv, as depicted in panels (c) and (d) of Fig. 2.
The resulting negative thermal resistance falls off quadrati-
cally with the distance away from the current injection and
also scales inversely proportional to the cube of temperature
Eq. (29). The temperature dependence originates from both
electron viscosity and entropy density.

We highlight that high-resolution thermal imaging and
scanning gate microscopes [40,41] and Johnson-Nyquist non-
local noise thermometry [42,43] may provide exquisite tools
to probe viscous electron vorticity in parameter domains
where these signatures are no longer present in the charge
transport mode.
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