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Nature of the anomalous 4/13 fractional quantum Hall effect in graphene
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Extensive fractional quantum Hall effect (FQHE) has been observed in graphene-based materials. Some of the
observed fractions are anomalous in that FQHE has not been established at these fractions in conventional GaAs
systems. One such fraction is 4/13, where incompressibility has recently been reported in graphene [Kumar
et al., Nat. Commun. 9, 2776 (2018)]. We propose a partonic wave function at 4/13 and show it to be a
viable candidate to describe the Coulomb ground state. Using the effective edge theory, we make predictions
for experimentally measurable properties of the state.
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The fractional quantum Hall effect (FQHE) appears when
two-dimensional electrons are subjected to a strong perpen-
dicular magnetic field and cooled to very low temperatures
[1]. The magnetic field quenches the kinetic energy of the
electrons leaving only the Coulomb interaction to determine
the fate of the system. FQHE states possess topological order
[2] and thus FQHE systems provide a fertile platform to
investigate strongly correlated topological phases of matter.
Almost all of the experimentally observed FQHE states in the
lowest Landau level (LLL) can be understood using Jain’s
composite fermion (CF) theory [3]. The central postulate
of the CF theory is that strongly interacting electrons turn
into weakly interacting emergent particles called composite
fermions (CFs), where a CF is a bound state of an electron and
an even number, 2p (p is a positive integer), of vortices. Due
to the vortex binding, CFs feel a smaller effective magnetic
field compared to the external magnetic field seen by the
electrons. In the zeroth-order approximation, CFs are taken
to be noninteracting and thus they form their own Landau-like
levels called Lambda levels (�Ls). The electron filling factor
ν is related to the CF filling factor ν∗ as ν = ν∗/(2pν∗ ± 1),
where the + (−) sign denotes that the effective magnetic
field sensed by the CFs is parallel (antiparallel) to the ex-
ternal magnetic field. Completely filling n �Ls of CFs, i.e.,
ν∗ = n, can result in an incompressible state of electrons at
ν = n/(2pn ± 1). The majority of FQHE states observed in
the LLL lie in this n/(2pn ± 1) Jain sequence. However, in the
filling factor range 1/3 < ν < 2/5, there are fractions outside
the Jain sequence such as 4/11, 5/13, 4/13, where FQHE has
been observed [4–8]. In this Letter, we will consider FQHE
at one of these fractions, namely 4/13, a description of which
lies beyond the ambit of the theory of free CFs.

Pan et al. [5] and Samkharadze et al. [6] have estab-
lished incompressibility at 4/11 and 5/13 in high-quality
GaAs/AlGaAs semiconductor heterostructures. Signatures of
FQHE at ν = 4/13 have been observed in some experiments
[4,8] but incompressibility at this filling has not been estab-
lished in GaAs-based materials. Extensive FQHE has also

been observed in graphene-based materials [9–17]. Suspended
graphene samples have stronger electron-electron interaction
than supported graphene samples and conventional semicon-
ductor heterostructures and thus could potentially help realize
delicate FQHE states. With this motivation, Kumar et al. [7]
designed a suspended graphene corbino disk sample and car-
ried out conductance measurements on it. Along with states
in the Jain sequence, they observed FQHE at ν = 4/11 and
4/13 in the LLL. Furthermore, their transport measurements
show activated behavior at 4/13 thereby establishing incom-
pressibility at this anomalous filling. The measured energy
gap of the 4/13 state is only 2% of the 1/3 gap indicating the
fragile nature of the FQHE state at 4/13. The spin polarization
of the 4/13 state has not been measured. We expect that the
partially spin-polarized and spin-singlet 4/13 states arise from
the analogous CF states [18,19]. Thus we shall investigate
only the fully polarized 4/13 state here.

Since the 4/13 state is observed in the LLL, we expect the
state to be well described by the CF theory in which CFs are
interacting. The ν = 4/13 state of electrons is mapped onto
the ν∗ = 4/3 state of CFs carrying four vortices in a negative
effective magnetic field. The ν∗ = 4/3 state of CFs is obtained
by filling the lowest �L (L�L) and forming a 1/3 state of
CFs in the second �L (S�L). An interesting question is what
state do the CFs form at 1/3 filling in the S�L. Numerical
calculations suggest that CFs do not form a 1/3 Laughlin state
in the S�L [20,21]. This can be understood by noting that the
interaction between CFs in their S�L in the presence of the
filled L�L is dominated by repulsion in the relative angular
momentum m = 3 channel [19,22–26], while the 1/3 Laugh-
lin state is stabilized by interactions dominated by repulsion
in the m = 1 channel. Motivated by this observation, Wójs,
Yi, and Quinn (WYQ) proposed that the interaction between
CFs in their S�L can be simulated by the WYQ Hamiltonian
Vm = δm,3 [23,24], where Vm is the Haldane pseudopotential
[27] that denotes the interaction energy in the relative angular
momentum m channel. Exact diagonalization on the spherical
geometry showed that the WYQ Hamiltonian has a uniform
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gapped ground state at ν = 1/3, referred to as the 1/3 WYQ
state that occurs at the Wen-Zee shift [28] S = 7. This is to be
contrasted with the 1/3 Laughlin state which occurs at S = 3.
The shift characterizes the coupling of a quantum Hall state
to background curvature [28]. Two states that have different
shifts carry different topological orders and thus the WYQ
and Laughlin states are topologically distinct. Mukherjee and
Mandal [29] have shown that the exact LLL Coulomb ground
state at 4/13 is well represented by the 4/3 state of CFs built
from the 1/3 WYQ state in the S�L. An exact analytical
closed-form expression of the 1/3 WYQ wave function is not
known at present but progress has been made in constructing
good candidate wave functions to describe the WYQ state
[30].

Numerical calculations in the past few years have called
into question the proposition that the WYQ interaction leads
to FQHE at 1/3. Regnault et al. [31] studied the WYQ Hamil-
tonian at ν = 1/3 on the torus geometry and found that the
ground state likely has spontaneously broken spatial symme-
try, thereby suggesting that the WYQ interaction does not
result in an FQHE ground state which is uniform. Further-
more, Misguich and Jolicoeur [32] observed that the charged
and neutral excitation gaps of the 1/3 WYQ state calculated
in the spherical geometry extrapolate to a nonpositive value in
the thermodynamic limit indicating that the 1/3 WYQ state is
gapless. Moreover, by studying the pair correlation function
on the cylindrical geometry, they found that the 1/3 WYQ
state forms a compressible bubble phase. These observations
suggest that the WYQ Hamiltonian may not entirely capture
the interaction between CFs in their S�L. To obtain an in-
compressible ground state at the WYQ shift one needs to
supplement the WYQ Hamiltonian with other two-body pseu-
dopotentials and/or include three or higher body interactions
between the CFs [33].

The above considerations show that a complete under-
standing of the mechanism of FQHE at 4/13 in terms of CFs
is lacking. In this work, without taking recourse to the CF
theory, we directly propose a wave function for the 4/13 state
of electrons based on the parton theory [34]. Our ansatz gives
a plausible description of the LLL Coulomb ground state at
4/13 obtained in numerics. Based on the low-energy effective
edge theory of the parton edge we make predictions that could
be tested in experiments. We note that a parton wave function
for the 4/11 FQHE was recently constructed in Ref. [35].

Parton ansatz for 4/13. Jain proposed the parton theory
[34] as a generalization of his CF theory to construct wave
functions for incompressible state at all rational fillings. In the
parton theory one divides an electron into s different species,
denoted by γ = 1, 2, . . ., s, of fictitious fermionic particles
called partons. To obtain an incompressible state, each of the
partons is placed in an integer quantum Hall effect (IQHE)
state at filling factor nγ resulting in the state denoted as
“n1, n2, n3, . . .” and described by the wave function

�n1,n2,n3,...
ν = PLLL

s∏
γ=1

�nγ
({zk}). (1)

Here �n is the Slater determinant wave function of the IQHE
state with n-filled LLs of electrons, zk = xk − iyk is the two-
dimensional coordinate of the kth electron parametrized as a

complex number, and PLLL projects the state into the LLL as
is appropriate for the external magnetic field B → ∞ limit.
Antisymmetry of the electronic wave function in Eq. (1)
demands that s is an odd integer. Partons can also “feel”
an effective magnetic field that is antiparallel to that of the
electrons. We will denote such parton fillings by n̄ = −n and
the corresponding wave function as �n̄ = [�n]∗. The shift
S of the state described by the wave function of Eq. (1) is
S = ∑s

γ=1 nγ .
Identifying the coordinates of the different species of par-

tons zγ

k with the electronic coordinate zk , i.e., setting zγ

k =
zk ∀γ in Eq. (1), glues the unphysical partons back into the
electrons. The density of each parton species is the same as
that of the parent electrons. Furthermore, each parton species
is exposed to the same magnetic field as the underlying elec-
trons. Thus the charge of the γ parton eγ is related to the
charge of the electron −e as eγ = −eν/nγ . The constraint that
the charges of the partons should add up to that of the electron
relates the electronic and partonic fillings as ν−1 = ∑s

γ=1 n−1
γ .

Parton states with a repeated factor of n with |n| � 2 host
excitations that carry non-Abelian exchange statistics [36].

Well-known FQHE states like Laughlin and Jain (CF)
states can be reinterpreted as parton states. The Laughlin state
[37] at filling fraction ν = 1/(2p + 1), described by the wave
function �

Laughlin
1/(2p+1) = �

2p+1
1 , is constructed using (2p + 1)

species of partons and forming a ν = 1 IQH state for all of
them. The Jain states at filling fraction n/(2pn ± 1), described
by the wave function �Jain

n/(2pn±1) = PLLL�±n�
2p
1 , are obtained

from (2p + 1) partons, where 2p partons form ν = 1 IQH
states and one parton forms a ν = ±n IQH state. Using the
parton theory we can construct FQHE states that lie beyond
the purview of noninteracting CFs. Several such parton wave
functions have recently been shown to be viable candidates
to describe incompressible FQH states observed in a wide
variety of settings such as in wide quantum wells, the second
LL of GaAs, and in the LLs of graphene [17,35,38–50].

In this Letter, we propose the parton state denoted as
“4̄213” and described by the wave function

� 4̄213

4/13 = PLLL[�4]∗�2�
3
1 ∼ �Jain

4/7 �Jain
2/5

�1
(2)

to capture the 4/13 ground state. The ∼ sign in the above
equation indicates that the states on either side of the sign
differ in how the LLL projection is implemented. We expect
the topological phase that the wave function describes to be
insensitive to such details [51,52]. Only the wave function
given on the rightmost side of Eq. (2) is readily amenable to
an evaluation for very large system sizes since the constituent
Jain states can be evaluated for hundreds of electrons using
the Jain-Kamilla projection [18,53,54]. On the spherical ge-
ometry, this state occurs at the shift of S = 1. Interestingly,
this value of the shift is identical to that of the 4/13 state built
from the 1/3 WYQ state in the S�L [29]. Moreover, S = 1
is the only known shift where the Coulomb ground state at
ν = 4/13 in the LLL is consistently uniform for all systems
for which numerical results are available [29].

Numerical results. All our numerical calculations are car-
ried out on the Haldane sphere [27]. In this geometry, N
electrons move on the spherical surface in the presence of a
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FIG. 1. Thermodynamic extrapolation of the per-particle
Coulomb energy of the 4̄213 state of Eq. (2) in the lowest Landau
level as a linear function of 1/N , where N is the number of electrons,
evaluated in the spherical geometry. Data is shown for N = 16 to 60
electrons.

radial magnetic flux of strength 2Qhc/e (2Q is an integer)
generated by a monopole placed at the center of the sphere.
The flux-particle relationship for a state on the sphere is writ-
ten as 2Q = ν−1N−S , where the shift S is a quantum number
characterizing the state [28]. The IQH state of n filled LLs
occurs when 2Q = N/n−n and requires N � n2 and for N to
be divisible by n. Therefore, the 4̄213 state can be constructed
on the sphere only when N = 16 + 4α, where α is a non-
negative integer. Throughout this work, we will neglect the
effects of LL mixing, finite width of the quantum well, and
disorder. Under these assumptions, the FQHE physics in the
LLL of graphene is identical to that in the LLL of GaAs [51].

The smallest system for which the 4̄213 state can be real-
ized has N = 16 electrons. This system has a dimension of
over 81 billion that is beyond the reach of exact diagonaliza-
tion. Thus we cannot compare the 4̄213 ansatz against exact
results. Nevertheless, in the LLL the method of CF diagonal-
ization (CFD) [20] provides an almost-exact representation
of the Coulomb ground states. Mukherjee and Mandal [29]
carried out extensive CFD calculations at 4/13 and we shall
compare the feasibility of the 4̄213 state against their CFD
results. In the thermodynamic limit, including the contribution
of the positively charged background, the density-corrected
[55] Coulomb energy of the CFD ground state at ν = 4/13
is −0.3926(1) (the number in the parentheses denotes the
error obtained from a linear extrapolation of the energy as a
function of 1/N), while that of the 4̄213 ansatz is −0.3851(1)
(see Fig. 1). Although not as impressive as the agreement
between the Laughlin/Jain wave functions and exact results,
this agreement (within 2%) is on par with that between candi-
date states and exact results of other fragile states in the LLL
[35,49].

As advertised above, the wave function given in Eq. (2)
can be evaluated for large system sizes. As a proof of princi-
ple, in Fig. 2 we show the pair-correlation function g(�r) =
[1/(ρN )]〈∑i 	= j δ

(2)(�r−[�ri−�r j])〉, where ρ is the density, of
the 4̄213 state for N = 60 electrons [due to spherical sym-
metry g(�r) ≡ g(r)]. The pair-correlation function is similar
to that of other incompressible FQH fluids [56,57] in that it
has oscillations at short-to-intermediate distances and goes
to unity at large distances, i.e., g(r) → 1 as r → ∞. The
absence of a “shoulder”-like feature at intermediate distances,

0 5 10 15 20 25 30
0.0

0.5

1.0

FIG. 2. Pair-correlation function g(r) of the 4̄213 state of Eq. (2)
as a function of the arc distance r on the sphere for N = 60 electrons.

which typically exists in non-Abelian states [45,58,59], is in
accordance with the 4̄213 state being Abelian.

Next, we look at the gaps of the 4/13 state. The
lowest-energy neutral excitation is obtained by creating a
particle-hole pair in the �4 factor since the corresponding
parton carries the smallest charge of magnitude e/13. This re-
sults in the wave function �mode-a,L

4/13 ∼ �CFE,L
4/7 �Jain

2/5 /�1, where

�CFE,L
n/(2n±1) is the CF-exciton (CFE) state at ν = n/(2n ± 1) [60]

with orbital angular momentum L = 2, 3, . . ., (N/n−n) +
2n−1 [61]. The dispersion of this mode as a function of the
linear momentum q
 = L/

√
Q is shown in Fig. 3. The mode

has an anomalous minimum in energy at wave number q
 ≈
0.25 consistent with the results of Mukherjee and Mandal
[62], who came to the same conclusion using the Girvin-
MacDonald-Platzman (GMP) density-mode ansatz [63,64].
Very recently, it has been noticed that the parton theory can
also describe certain very-high-energy excitations of FQH
fluids [65]. The parton ansatz of Eq. (2) naturally suggests the
wave function �mode-b,L

4/13 ∼ �Jain
4/7 �CFE,L

2/5 /�1, which describes
a high-energy neutral collective mode at 4/13 that also starts
from L = 2. For completeness, we also show its dispersion in
Fig. 3. The two modes �mode-a,L

4/13 and �mode-b,L
4/13 carry opposite

chiralities [66] since the partons hosting the excitation see
effective magnetic fields in the opposite directions [65]. In
the large wave number limit, i.e., q
 → ∞, the dispersion of
both the modes flattens out since the constituent CF particle
and CF hole of the CFE are far from each other and thus the
interaction between them is negligible. We have not been able
to get a reliable estimate of the thermodynamic limit of the

0.0 1.0 2.0
0.00

0.05

0.10

FIG. 3. Lowest Landau level Coulomb gaps � of the low-(blue)
and high-energy (red) parton-based collective modes at ν = 4/13
(see text). Data points for different system sizes from N = 16 to 48
electrons are plotted with different symbols.
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transport gap at 4/13, the q
 → ∞ gap of �mode-a,L
4/13 , as its

dispersion has not flattened out for the systems accessible to
us.

We mention here that recently the collective modes of the
ν∗ = 1 + 1/3 Laughlin-based 4/13 state [67] (that is unlikely
to be stabilized by Coulomb interaction in the LLL) have been
studied by Wang and Yang [68] using the dynamical structure
factor. They found two peaks in the dynamical structure fac-
tor indicating the presence of two density modes. Here we
provide parton wave functions to describe these modes. The
ground state wave function for this conventional 4/13 state
[18] can be factorized as �4/13 ∼ �4/5 × �

Laughlin
1/2 (�4/5 =

PLLL[�4/3]∗�2
1 is topologically equivalent to the hole conju-

gate of the 1/5 Laughlin state [19]). The low- and high-energy
modes can respectively be described by the wave func-
tions �mode-1,L

4/13 ∼ �CFE,L
4/5 × �

Laughlin
1/2 and �mode-2,L

4/13 ∼ �4/5 ×
�CFE,L

1/2 (alternatively, one could use the GMP ansatz instead
of the CFE). As in the 4̄213 state, this construction suggests
that the two modes of the conventional 4/13 state carry op-
posite chiralities. The clustering/vanishing properties of the
two modes can be determined by these wave functions. When
two electrons, with relative separation r, are brought close
together, |�mode-1,L

4/13 | ∼ r3, while |�mode-2,L
4/13 | ∼ r. These obser-

vations are consistent with the results of Ref. [68].
Effective theory of the 4̄213 edge. We now turn to the

universal properties of the 4̄213 state that can be obtained from
the low-energy effective theory of its edge. The effective edge
theory of the 4̄213 state can be derived following standard
techniques which have been discussed in detail previously
[2,45,69–71], so here we will just present the main results.
The topological properties of the 4̄213 state are encoded in the
K matrix, charge vector t , and the spin vector s, which are
given by

K =

⎛
⎜⎜⎜⎝

−2 −1 −1 0 1
−1 −2 −1 0 1
−1 −1 −2 0 1
0 0 0 2 −1
1 1 1 −1 3

⎞
⎟⎟⎟⎠,

t =

⎛
⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎠, s=

⎛
⎜⎜⎜⎝

3
2
1

−1
−1/2

⎞
⎟⎟⎟⎠. (3)

This results in a filling fraction of ν = tT·K−1·t = 4/13, and
shift S = (2/ν)(tT·K−1·s) = 1, consistent with the values in-
ferred from the microscopic wave function given in Eq. (2).
The degeneracy of the ground state on a torus |det(K )| =
26. An interesting aspect to note is that the 4̄213 state is a
single-component Abelian state at ν = a/b (with a, b coprime
positive integers), which has a ground state degeneracy on the
torus that is greater than the denominator b (see Refs. [44,46]
for other examples of such states). This K matrix has three
negative and two positive eigenvalues, which indicates that
the 4̄213 state has two downstream and three upstream edge
modes resulting in a chiral central charge of c− = −1. An
intuitive way to see the presence of five edge modes is as
follows: at the mean-field level the parton theory results in

a total of nine-edge states—four from the factor �4̄, two from
�2, and one each from each factor of �1. However, these edge
states are not all independent since the density variations of all
the five partons must be identified, which results in precisely
four constraints and thereby leads to exactly five independent
edge states.

Discussion. We now discuss experimentally testable prop-
erties of the 4̄213 state that can reveal its underlying
topological order. The fundamental or smallest charged quasi-
particle is obtained by creating a particle in the �4̄ factor
and carries a charge of −e/13. Quasiparticles with larger
magnitude charges can be produced by creating a particle in
the �2 or �1 factors. All these excitations of the 4̄213 state
possess Abelian braid statistics.

Heat transport measurements at 4/13 could help identify
the underlying partonic order. In the past few years, ther-
mal Hall measurements have been carried out in both GaAs
[72,73] and in graphene [74,75]. Assuming a full equilibra-
tion of the edge channels, the thermal Hall conductance κxy

of the 4̄213 state, at temperatures much lower than the gap,
is κxy = c−[π2k2

B/(3h)T ] = −1[π2k2
B/(3h)T ]. At the lowest

accessible temperatures, where thermal equilibration is poor,
the thermal Hall conductance of the proposed state is there-
fore expected to be larger than [π2k2

B/(3h)T ] [73,76] (current
thermal Hall conductance measurements are not sensitive
to the sign of κxy). Hence experimental observation of the
thermal Hall conductance decreasing to its lowest value of
[π2k2

B/(3h)T ] with increasing temperature (with the tem-
perature still much lower than the gap) would validate the
proposed edge structure of the 4/13 state. The Hall viscosity
ηH of the 4̄213 state is also anticipated to be quantized [77] as
ηH = (4/13)h̄S/(8π
2), where S = 1 for the 4̄213 ansatz.

Another experimentally measurable quantity is the tunnel-
ing exponent of quasiparticles across the FQH edges. The
tunneling exponent corresponding to an FQH state having all
the edge modes of the same chirality is universal, i.e., for
fully chiral states the exponent does not depend on the specific
details of the interaction between the edge modes. In such a
scenario the tunneling exponent is related to the bulk topolog-
ical order, in particular to the quasiparticle statistics [2]. Since
the 4̄213 harbors both upstream- and downstream-propagating
modes its tunneling exponents will not be quantized to a
universal value. For this reason, we have not calculated the
tunneling exponents of the 4̄213 state.

An interpretation of our parton state as the ν∗ = 1 + 1/3
state of CFs carrying four vortices in a negative effective
magnetic field could then, by particle-hole conjugation of
CFs in their S�L [33], also explain the 5/17 FQHE which
corresponds to ν∗ = 1 + 2/3 of CFs carrying four vortices in
a negative effective magnetic field. We have not been able to
connect our 4/13 parton ansatz to a 1/3 state of interacting
CFs in their S�L.

The 4̄213 naturally suggests two families of parton states,
namely 4̄n13 and n̄213, whose properties we briefly mention
next. The 4̄n13 sequence produces states at ν = 4n/(11n + 4)
with shift S = n−1. On the other hand, the n̄213 sequence
produces states at ν = 2n/(7n−2) with shift S = 5−n. Sig-
natures of FQHE have been observed at some members of
the above sequences (aside from some fractions which also
lie in the Jain sequence, for which the Jain states would
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be more suitable candidates in the LLL), such as at ν =
3/10 [4] which could be described by the 6̄213. However,
definitive evidence of incompressibility at these fractions is
lacking.

Acknowledgments. We acknowledge useful discussions
with J. K. Jain. Computational portions of this research work

were conducted using the Nandadevi supercomputer, which
is maintained and supported by the Institute of Mathemati-
cal Science’s High-Performance Computing Center. We thank
the Science and Engineering Research Board (SERB) of the
Department of Science and Technology (DST) for funding
support via Start-up Grant No. SRG/2020/000154.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559 (1982).

[2] X.-G. Wen, Adv. Phys. 44, 405 (1995).
[3] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[4] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.

Baldwin, and K. W. West, Phys. Rev. Lett. 90, 016801 (2003).
[5] W. Pan, K. W. Baldwin, K. W. West, L. N. Pfeiffer, and D. C.

Tsui, Phys. Rev. B 91, 041301(R) (2015).
[6] N. Samkharadze, I. Arnold, L. N. Pfeiffer, K. W. West, and

G. A. Csáthy, Phys. Rev. B 91, 081109(R) (2015).
[7] M. Kumar, A. Laitinen, and P. Hakonen, Nat. Commun. 9, 2776

(2018).
[8] Y. J. Chung, K. A. Villegas Rosales, K. W. Baldwin, P. T.

Madathil, K. W. West, M. Shayegan, and L. N. Pfeiffer, Nat.
Mater. 20, 632 (2021).

[9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[10] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature
(London) 462, 192 (2009).

[11] K. Bolotin, F. Ghahari, M. D. Shulman, H. Stormer, and P. Kim,
Nature (London) 462, 196 (2009).

[12] F. Ghahari, Y. Zhao, P. Cadden-Zimansky, K. Bolotin, and P.
Kim, Phys. Rev. Lett. 106, 046801 (2011).

[13] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H.
Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L.
Shepard, Nat. Phys. 7, 693 (2011).

[14] B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby, Science
337, 1196 (2012).

[15] B. E. Feldman, A. J. Levin, B. Krauss, D. A. Abanin, B. I.
Halperin, J. H. Smet, and A. Yacoby, Phys. Rev. Lett. 111,
076802 (2013).

[16] F. Amet, A. J. Bestwick, J. R. Williams, L. Balicas, K.
Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Nat.
Commun. 6, 5838 (2015).

[17] Y. Kim, A. C. Balram, T. Taniguchi, K. Watanabe, J. K. Jain,
and J. H. Smet, Nat. Phys. 15, 154 (2019).

[18] A. C. Balram, C. Töke, A. Wójs, and J. K. Jain, Phys. Rev. B
91, 045109 (2015).

[19] A. C. Balram, Phys. Rev. B 94, 165303 (2016).
[20] S. S. Mandal and J. K. Jain, Phys. Rev. B 66, 155302 (2002).
[21] S. Mukherjee, S. S. Mandal, Y.-H. Wu, A. Wójs, and J. K. Jain,

Phys. Rev. Lett. 112, 016801 (2014).
[22] P. Sitko, S. N. Yi, K. S. Yi, and J. J. Quinn, Phys. Rev. Lett. 76,

3396 (1996).
[23] A. Wójs and J. J. Quinn, Phys. Rev. B 61, 2846 (2000).
[24] A. Wójs, K.-S. Yi, and J. J. Quinn, Phys. Rev. B 69, 205322

(2004).
[25] S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. Lett. 87,

256803 (2001).

[26] S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. B 66, 085336
(2002).

[27] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[28] X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).
[29] S. Mukherjee and S. S. Mandal, Phys. Rev. B 92, 235302

(2015).
[30] S. Das, S. Das, and S. S. Mandal, Phys. Rev. B 103, 075304

(2021).
[31] N. Regnault, J. Maciejko, S. A. Kivelson, and S. L. Sondhi,

Phys. Rev. B 96, 035150 (2017).
[32] G. Misguich, T. Jolicoeur, and T. Mizusaki, Phys. Rev. B 102,

245107 (2020).
[33] A. C. Balram and J. K. Jain, Phys. Rev. B 96, 245142 (2017).
[34] J. K. Jain, Phys. Rev. B 40, 8079 (1989).
[35] A. C. Balram, Phys. Rev. B 103, 155103 (2021).
[36] X. G. Wen, Phys. Rev. Lett. 66, 802 (1991).
[37] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[38] Y. Wu, T. Shi, and J. K. Jain, Nano Lett. 17, 4643 (2017).
[39] A. C. Balram, M. Barkeshli, and M. S. Rudner, Phys. Rev. B

98, 035127 (2018).
[40] A. C. Balram, S. Mukherjee, K. Park, M. Barkeshli, M. S.

Rudner, and J. K. Jain, Phys. Rev. Lett. 121, 186601 (2018).
[41] A. C. Balram, M. Barkeshli, and M. S. Rudner, Phys. Rev. B

99, 241108(R) (2019).
[42] S. Bandyopadhyay, L. Chen, M. T. Ahari, G. Ortiz, Z. Nussinov,

and A. Seidel, Phys. Rev. B 98, 161118(R) (2018).
[43] W. N. Faugno, A. C. Balram, M. Barkeshli, and J. K. Jain, Phys.

Rev. Lett. 123, 016802 (2019).
[44] A. C. Balram, J. K. Jain, and M. Barkeshli, Phys. Rev. Research

2, 013349 (2020).
[45] A. C. Balram, SciPost Phys. 10, 083 (2021).
[46] A. C. Balram and A. Wójs, Phys. Rev. Research 2, 032035(R)

(2020).
[47] W. N. Faugno, J. K. Jain, and A. C. Balram, Phys. Rev. Research

2, 033223 (2020).
[48] W. N. Faugno, T. Zhao, A. C. Balram, T. Jolicoeur, and J. K.

Jain, Phys. Rev. B 103, 085303 (2021).
[49] A. C. Balram and A. Wójs, Phys. Rev. Research 3, 033087

(2021).
[50] A. C. Balram, Phys. Rev. B 105, L121406 (2022).
[51] A. C. Balram, C. Töke, A. Wójs, and J. K. Jain, Phys. Rev. B

92, 075410 (2015).
[52] A. C. Balram and J. K. Jain, Phys. Rev. B 93, 235152 (2016).
[53] J. K. Jain and R. K. Kamilla, Int. J. Mod. Phys. B 11, 2621

(1997).
[54] S. C. Davenport and S. H. Simon, Phys. Rev. B 85, 245303

(2012).
[55] R. Morf, N. d’Ambrumenil, and B. I. Halperin, Phys. Rev. B 34,

3037 (1986).

L241403-5

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.90.016801
https://doi.org/10.1103/PhysRevB.91.041301
https://doi.org/10.1103/PhysRevB.91.081109
https://doi.org/10.1038/s41467-018-05094-8
https://doi.org/10.1038/s41563-021-00942-3
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1038/nature08522
https://doi.org/10.1038/nature08582
https://doi.org/10.1103/PhysRevLett.106.046801
https://doi.org/10.1038/nphys2007
https://doi.org/10.1126/science.1224784
https://doi.org/10.1103/PhysRevLett.111.076802
https://doi.org/10.1038/ncomms6838
https://doi.org/10.1038/s41567-018-0355-x
https://doi.org/10.1103/PhysRevB.91.045109
https://doi.org/10.1103/PhysRevB.94.165303
https://doi.org/10.1103/PhysRevB.66.155302
https://doi.org/10.1103/PhysRevLett.112.016801
https://doi.org/10.1103/PhysRevLett.76.3396
https://doi.org/10.1103/PhysRevB.61.2846
https://doi.org/10.1103/PhysRevB.69.205322
https://doi.org/10.1103/PhysRevLett.87.256803
https://doi.org/10.1103/PhysRevB.66.085336
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevB.92.235302
https://doi.org/10.1103/PhysRevB.103.075304
https://doi.org/10.1103/PhysRevB.96.035150
https://doi.org/10.1103/PhysRevB.102.245107
https://doi.org/10.1103/PhysRevB.96.245142
https://doi.org/10.1103/PhysRevB.40.8079
https://doi.org/10.1103/PhysRevB.103.155103
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1021/acs.nanolett.7b01080
https://doi.org/10.1103/PhysRevB.98.035127
https://doi.org/10.1103/PhysRevLett.121.186601
https://doi.org/10.1103/PhysRevB.99.241108
https://doi.org/10.1103/PhysRevB.98.161118
https://doi.org/10.1103/PhysRevLett.123.016802
https://doi.org/10.1103/PhysRevResearch.2.013349
https://doi.org/10.21468/SciPostPhys.10.4.083
https://doi.org/10.1103/PhysRevResearch.2.032035
https://doi.org/10.1103/PhysRevResearch.2.033223
https://doi.org/10.1103/PhysRevB.103.085303
https://doi.org/10.1103/PhysRevResearch.3.033087
https://doi.org/10.1103/PhysRevB.105.L121406
https://doi.org/10.1103/PhysRevB.92.075410
https://doi.org/10.1103/PhysRevB.93.235152
https://doi.org/10.1142/S0217979297001301
https://doi.org/10.1103/PhysRevB.85.245303
https://doi.org/10.1103/PhysRevB.34.3037


RAKESH K. DORA AND AJIT C. BALRAM PHYSICAL REVIEW B 105, L241403 (2022)
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