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Anomalous hybridization of spectral winding topology in quantized steady-state responses
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The quantized response is one distinguishing feature of a topological system. In non-Hermitian systems, the
spectral winding topology yields a quantized steady-state response. By considering two weakly coupled non-
Hermitian chains, we discover that the spectral winding topology of one chain can be probed by a steady-
state response defined solely on the other chain, even when other important properties, e.g., energetics and
entanglement entropy, indicate that eigensolutions are effectively not hybridized between the two chains. This
intriguing phenomenon, as carefully investigated in a large parameter space with a varying system size, not only
offers a different angle to understand interchain signal propagation in a non-Hermitian setting but also reveals
unexpected physics of spectral winding topology vs quantized response.

DOI: 10.1103/PhysRevB.105.L241402

I. INTRODUCTION

Rooted in complex eigenenergies, the spectral winding
topology of non-Hermitian systems constitutes a new as-
pect of topological physics with no Hermitian counterpart
[1–5]. Spectral winding is critical to predict the seminal
non-Hermitian skin effect (NHSE), as characterized by the
localization of all eigenmodes at the boundary of the system
[1–17]. Nontrivial spectral winding has also been experi-
mentally observed in various platforms, including an optical
ring resonator with electro-optic modulators [18], an acoustic
crystal [19], and a hybrid light-matter system [20]. Besides
localized boundary states, a quantized response is a char-
acteristic feature of topological systems, e.g., the quantized
conductance in the celebrated quantum Hall effect. Recently,
a quantized steady-state response, namely, the response to
a driving field of a nonequilibrium system when it reaches
steady conditions, is established to further manifest the spec-
tral winding topology in non-Hermitian chains, where a
quantity defined from the response to a driving field is found
to be quantized and matched exactly with the spectral winding
number [21].

Spectral winding is usually investigated under periodic
boundary conditions (PBCs), because it is simply prohibited
under open boundary conditions (OBCs) [4,5]. Near or at
the limit of OBCs, other properties of non-Hermitian sys-
tems may change drastically upon tuning of an extremely
weak boundary coupling [22–25] or a coupling between
two chains with dissimilar skin localizations [26–28]. Such
hypersensitivity to weak perturbations are of continued in-
terest, especially in connection with sensor designs [22–31].
Under intermediate boundary conditions between PBCs and
OBCs, some aspects of the complex spectrum and eigenmode
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localization characteristics were also studied [11,12,24,25].
This work investigates another problem, namely, how spectral
winding features, as manifested in the quantized steady-state
response, react to weak interchain coupling when a system is
not under PBCs or OBCs.

Specifically, in examining quantized steady-state responses
in connection with the spectral winding topology of two
weakly coupled non-Hermitian chains, we discover a so-
called anomalous hybridization regime. In this regime, on the
one hand, the eigensolutions are effectively not hybridized
between the two chains in many aspects; e.g., with vanishing
entanglement between the two chains, quantized steady-state
responses can be observed on either chain without compli-
cations due to the other. On the other hand, the spectral
winding topology associated with one chain can be captured
through a response defined solely on the other chain, in-
dicating a nontrivial hybridization. Such a counterintuitive
phenomenon is explained by considering the propagation
channels between the two chains under resonance conditions.
We then carefully investigate the transitions of the system be-
tween dehybridization, anomalous hybridization, and strong
hybridization regimes, through different quantized steady-
state responses as well as an entanglement entropy analysis.
Significantly, the regime of anomalous hybridization, which
is of most interest here, occurs in a relatively large parameter
space, with the allowed interchain coupling much stronger
than that which yields critical behaviors for systems initially
under OBCs [26]. Our extensive computational results show
that this regime further widens when increasing the system’s
size, indicating that the physics of anomalous hybridization
uncovered here is even more typical in the thermodynamic
limit.

II. MODEL

We consider the probing response on two weakly cou-
pled Hatano-Nelson chains [32] with different asymmetric
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FIG. 1. (a) Sketch of the coupled-chain system. (b) PBC spectra
of the system with t0 = 10−2.5 (blue circles) and t0 = 0 (colored
loops), which are almost on top of each other. The spectral wind-
ing numbers w(Er ) = (w+(Er ),w−(Er )) for Er in different regions
are indicated in the figure. (c) and (d) Quantized steady-state re-
sponse quantities defined on chain A (at t0 = 10−2.5) for the three
chosen points labeled by stars with different colors in (b). The
other parameters are N = 50, tA

1 = tB
−1 = 1, tA

−1 = tB
1 = 0.5, and

V A = −V B = 0.5.

nearest-neighbor hoppings, as shown in Fig. 1(a). The model
system is described by the tight-binding Hamiltonian

Ĥ =
∑

α=A,B

N−1∑
x=1

(
tα
1 ĉ†

x,α ĉx+1,α + tα
−1ĉ†

x+1,α ĉx,α
)

+
N∑

x=1

(
t0ĉ†

x,Aĉx,B + t0ĉ†
x,Bĉx,A +

∑
α=A,B

V α ĉ†
x,α ĉx,α

)

+ e−β
∑

α=A,B

(
tα
1 ĉ†

N,α ĉ1,α + tα
−1ĉ†

1,α ĉN,α

)
, (1)

with c†
x,α the creation operator at the x-lattice site on chain α,

tα
±1 the asymmetric hopping amplitudes, V α the on-site poten-

tial in chain α, and t0 the interchain coupling at each lattice
site. A realization of this model using cavity arrays is dis-
cussed in Sec. VII and the Supplemental Material [33] (which
contains Refs. [34–36]). When t0 = 0, the non-Hermitian
asymmetric hoppings of each chain leads to a directional
amplification of a signal entering the system [37–39], and in
the following discussion we will mainly focus on cases with
the two chains having opposite amplification directions [as
indicated in Fig. 1(a)]. The boundary conditions in this model
can be tuned from PBCs to OBCs by increasing β from 0 to
infinity. Under PBCs, i.e., β = 0, the Bloch Hamiltonian is
given by

h(k) =
(

2tA cos(k − iηA) + V A t0
t0 2tB cos(k − iηB) + V B

)
,

(2)

with k the quasimomentum, ηA/B = ln
√

tA/B
1 /tA/B

−1 the non-

Hermitian inverse localization length, and tA/B =
√

tA/B
1 tA/B

−1 .
For either ηA/B �= 0, the Hamiltonian is non-Hermitian and
point gapped with a topological winding number defined with
respect to a reference energy Er in the complex energy plane,

w(Er ) = w+(Er ) + w−(Er ), (3)

with

w±(Er ) =
∫ π

−π

dk

2π i
∂k ln[E±(k) − Er] (4)

the single-band spectral winding numbers, ± the band index,
and E±(k) the complex eigenenergies of the Hamiltonian.

Figure 1 depicts the PBC spectrum of our system and its
corresponding two-component winding numbers

w(Er ) = (w+(Er ),w−(Er )).

Assuming an ultraweak interchain coupling t0 � tα , it is pos-
sible that the eigensolutions of Eq. (2) are effectively not
hybridized between the two chains. Note that the two bands
are seen to cross each other in the complex plane, yet we have
E+(k) �= E−(k) for every lattice momentum k [40]; thus the
notion of energy bands can still be well defined. As seen in
Fig. 1(b), the two PBC bands with a small t0 are virtually
identical to the spectrum of the two uncoupled chains, respec-
tively. We simply have w(Er ) = (wA(Er ),wB(Er )) at t0 = 0.
As such, the single-band winding number w+(Er ) [w−(Er )] is
expected to reflect only the spectral winding topology of chain
A (B) under a weak interchain coupling. The complex en-
ergy plane is hence divided into four regimes, corresponding
to different combinations of single-band winding numbers,
respectively.

III. ANOMALOUS HYBRIDIZATION REGIME

To physically manifest the spectral winding topology, we
consider steady-state responses in a directional signal ampli-
fication process [21]. The quantized coefficient is established
by taking derivatives of a quantity involving the Green’s func-
tion with respect to the boundary tuning parameter β,

να
←(Er ) = d ln |Gα1,αN |/dβ, να

→(Er ) = d ln |GαN,α1|/dβ,

(5)

with α representing either of the two chains and Gαx,αx′ an
element of the Green’s function

G = 1/(Er − H )

associated with the xth and x′th sites in chain α. Further,
Gαx,αx′ can describe a signal amplification between two sites
on the same chain [21,37–39]. The reference energy can be
expressed as

Er = ω + iγ ,

with ω the frequency of an input signal and γ an extra uniform
gain or loss adding to the system. According to early results of
quantized steady-state responses vs spectral winding topology
on a single chain [21], one expects to have να

←(Er ) = w(Er )
for w(Er ) = 1 or να

→(Er ) = −w(Er ) for w(Er ) = −1. These

L241402-2



ANOMALOUS HYBRIDIZATION OF SPECTRAL WINDING … PHYSICAL REVIEW B 105, L241402 (2022)

coefficients will be nonpositive otherwise, e.g., να
→(Er ) � 0

for w(Er ) = 1, and always zero for large enough β when the
response itself becomes constant 1.

We investigate the response on chain A alone for our sys-
tem. Indeed, we obtain a plateau at νA

← = 1 and nonpositive
νA

→ when Er falls in the region with w(Er ) = (1, 0) [e.g., the
blue star in Fig. 1(b)], as shown by the blue lines in Figs. 1(c)
and 1(d). This result is identical to the case when eigensolu-
tions are not hybridized. Next, for Er with w(Er ) = (0,−1)
[e.g., the purple star in Fig. 1(b)], we see nonpositive νA

← in
Fig. 1(c), and a plateau at νA

→ = 1 in Fig. 1(d) appears only
after the boundary tuning parameter β exceeds a certain value
βc1. This tells us that the response νA

→ defined on chain A
can only reflect the spectral winding related to chain B when
β > βc1, since negative winding is contributed from chain B.
It should not be taken as a violation of the correspondence be-
tween winding topology and quantized steady-state response
when β < βc1, because here the response function is defined
on chain A only (instead of involving both chains). We thus do
not expect it to predict the total winding number or w−(Er )
(from chain B) immediately away from the PBCs, when the
eigensolutions are effectively not hybridized between the two
chains yet. In other words, w−(Er ) inherits the spectral wind-
ing topology of chain B only and is not captured by the
response νA

→ defined on chain A for Er with w(Er ) = (0,−1)
unless the eigensolutions are hybridized when β > βc1. This
seems to suggest that the eigensolutions in our system un-
dergo a sharp transition from not hybridized to hybridized at
β = βc1, and we will justify this conjecture from entangle-
ment analysis between the two chains later.

Now let us consider Er falling in the central region with
w(Er ) = (1,−1) [e.g., the red star in Fig. 1(b)]. First, as
seen in Fig. 1(c), νA

← shows a plateau at νA
← = 1 when

β < βc1, in agreement with the single-band winding number
w+(Er ) = 1. For β > βc1, νA

← drops to nonpositive values
due to hybridization of the eigensolutions, also in agreement
with a total winding number w(Er ) = 0 for the entire system.
Surprisingly, unlike for Er with w(Er ) = (0,−1), we find
that the response νA

→ now gives rise to a plateau at νA
→ = 1

for β < βc1, as shown by the red line in Fig. 1(d). This is
unexpected since a positive νA

→ reflects a negative winding
number, which originates only from chain B in our system.
This reveals that the response νA

→ defined on chain A can
reflect the spectral winding topology of chain B for Er with
w(Er ) = (1,−1), though the eigensolutions are effectively
not hybridized between the two chains when β < βc1 in our
model. Our results uncover another subtle aspect of coupled
non-Hermitian chains: It is highly nontrivial to tell how the
eigensolutions cooperate in the steady-state response even
when the interchain coupling is weak. Specifically, with sev-
eral aspects in our system resembling those of dehybridized
eigensolutions, a response defined on one chain can reveal the
winding topology of the other for a certain frequency of the
input signal, clearly indicating a hybridization behavior. To
highlight this dual feature of dehybridization or hybridization

1For |να| > 1, the single element shall be replaced by the deter-
minant of its off-diagonal block when calculating the responses in
Eq. (5) [21]
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FIG. 2. (a) OBC spectra with t0 = 0 (colored) and t0 = 10−2.5

(black). Red and green correspond to the spectra of two uncoupled
chains, respectively, overlapping in the central part of the spectrum.
(b) Plot of Gloop = GAx,Bx′ GBx′,Ax for reference energy Er chosen as
eigenenergies of the system with a small imaginary energy detuning
in calculating the Green’s function. The parameters are N = 50,
x = 20, and x′ = 30. (c) Plot of Gloop for several different eigenen-
ergies labeled in (a) with the same symbols and colors. The legend
shows the orders of the eigenenergies sorted in their real parts. The
parameters are the same as in Fig. 1.

in different measures, we refer to it as anomalous hybridiza-
tion hereafter. Similar behaviors are also seen in interchain
response functions, associated with Gα1,ᾱN and GαN,ᾱ1, where
α �= ᾱ, as shown in the Supplemental Material [33].

IV. PROPAGATION CHANNELS BETWEEN TWO
COUPLED CHAINS

The seemingly self-contradictory phenomenon above may
be qualitatively understood as follows: Though the eigenso-
lutions are effectively not hybridized, propagation channels
between the two chains are always present, allowing the infor-
mation to possibly “propagate” from one chain to the other. To
verify this picture, we first consider the system under OBCs
with β → ∞ and employ the Green’s function to examine the
interchain propagation in the bulk of the system, instead of
the end-to-end response on one chain alone. Note that when
the two chains are uncoupled, the spectra of the two chains
under OBCs are real and partially overlapping due to their
on-site potentials V A,B [see Fig. 2(a)]. Upon turning on the
interchain coupling t0, a signal at one chain with frequency
ω might propagate to the other chain. Such propagation is
favored when both chains have eigenmodes sharing almost the
same eigenenergy close to ω, satisfying the resonance condi-
tion. Therefore, an element from the Green’s function related
to the interchain response will be much larger for the input
frequency ω falling in the central part of the spectrum than
that for the frequency at the tails. This argument is confirmed
by our numerical results for a loop response defined by

Gloop = GAx,Bx′GBx′,Ax,

representing the product of two amplification ratios, one for
a signal traveling from site x in chain A to site x′ in chain
B and the other vice versa, as shown in Fig. 2(b). More

L241402-3



LIANG, MU, GONG, AND LI PHYSICAL REVIEW B 105, L241402 (2022)

importantly, once a signal propagates to the other chain, it
can be directionally amplified there, thus carrying over the
winding topology of that chain before propagating back. In
addition, these interchain propagating channels effectively
form a propagation loop, and the signal traveling along the
loop can be amplified repeatedly. This amplification mech-
anism can be interpreted as instabilities as well, hence the
emergence of complex eigenenergies in the central part of the
OBC spectrum, as shown in Fig. 2(a).

We now discuss why the boundary tuning parameter β

makes a difference in our observations for Gloop, as seen in
Figs. 2(b) and 2(c). First note that Gloop is related to signal
amplification between two distanced lattice sites, which will
vanish under PBCs [38,39]. Intuitively, boundary couplings
tA,B
±1 e−β connecting each chain head to tail also provide intra-

chain propagation channels, which may be enhanced by the
nonreciprocal pumping and overwhelm the interchain ones
under weak interchain coupling, i.e., t0 < tA,B

±1 e−β . Indeed, we
see that Gloop is almost vanishing when the system is under
PBCs (β = 0), as shown in Fig. 2(b). On the other hand, when
the system is tuned away from the PBCs (i.e., increasing β

from zero), Gloop becomes larger only for ω falling in the
central part of the spectrum, where interchain propagations
are favored due to resonances. In Fig. 2(c) we present Gloop

for several different eigenenergies, and it is clearly seen that
Gloop increases rapidly with β for eigenenergies in the central
part of the spectrum. That is, for the parameters we consider,
the propagation channels start to play a role when the sys-
tem is slightly tuned away from the PBCs. The existence of
such propagation channels allows the spectral topology of
one chain, which is essentially a property under PBCs, to be
revealed from the steady-state response defined on the other
chain for a certain energy window, even when the eigensolu-
tions are effectively not hybridized between the two chains.

V. TOPOLOGICAL RESPONSE AND ENTANGLEMENT
ENTROPY

It remains to study in more depth the properties of the
interchain propagation channels in the competition between
interchain coupling t0 and the boundary tuning parameter β.
Figures 3(a) and 3(b) present the steady-state response defined
in Eq. (5) on chain A alone for the reference energy Er = 0,
i.e., the center of the spectrum with w(Er ) = (1,−1). One
sees νA

← = 1 (yellow regime) for a wide range of t0 when
β is below a certain βc1 in Fig. 3(a). This suggests that
the eigensolutions are effectively not hybridized between the
two chains. The other response νA

→, shown in Fig. 3(b), is
also quantized at νA

→ = 1 (yellow regime), reflecting that the
spectral winding of chain B can be probed from chain A in a
subregime of the yellow regime in Fig. 3(a). We refer to the
yellow regime in Fig. 3(b) as anomalous hybridization, which
covers a rather large parameter space. Anomalous hybridiza-
tion signifies that interchain propagation channels are favored,
though eigensolutions are effectively not hybridized between
the two chains. In addition, note that with a larger β, the
system approaches the OBC limit with trivial spectral winding
and hence always gives a trivial steady-state response. With
this insight and previous results [24,41,42], we infer that the
steady-state response considered here can distinguish between

10-8 10-6 10-4 10-210-8 10-6 10-4 10-2
0

10

20

30

-101

(a) (b)

10-8 10-6 10-4 10-2

00.511.5

(c)

-101

FIG. 3. Quantized steady-state responses defined on the A chain
(a) νA

← and (b) νA
→ for a reference energy at Er = 0. The yellow area

in (a) has a steady-state response with νA
← = 1, reflecting only the

single-band winding number w+(0). Eigensolutions are effectively
dehybridized between the two chains, which is further verified by the
vanishing EE in (c). In (b) a subarea (yellow) of the dehybridization
regime gives a steady-state response with νA

→ = 1, suggesting an
anomalous hybridization behavior with resonant interchain propa-
gation channels. (c) Entanglement entropy for the N th eigenmode
sorted in its real energy. The other parameters are tA

1 = tB
−1 = 1,

tA
−1 = tB

1 = 0.5, V A = −V B = 0.5, and the system size N = 50.

dehybridization and anomalous hybridization regimes when

β < βOBC ≈ N ln
√

tA
1 /tA

−1.

To further justify the dehybridization of the eigensolutions
in the anomalous hybridization regime and verify our conjec-
ture on the emergence of βc1, we investigate the interchain
entanglement entropy (EE) and compare the results with the
quantized responses obtained. Specifically, we compute the
biorthogonal EE for an entanglement cut chosen between the
two chains, defined as [26,43,44]

Sn = −
∑

m

ηn,m ln ηn,m + (1 − ηn,m) ln(1 − ηn,m), (6)

where ηn,m is the mth eigenvalue of the correlator matrix Cn

for the nth eigenmode,

(Cn)xy = 〈
L
n |ĉ†

x ĉy|
R
n 〉, (7)

with x, y from only chain A. In Fig. 3(c) we show the EE for
the N th eigenmode (sorted by its real energy), which corre-
sponds to the most pronounced Gloop in Figs. 2(b) and 2(c).
The regime with SN ≈ 0 coincides well with the dehybridiza-
tion regime, whereas the regime with SN ≈ ln 2 corresponds
to the hybridization regime found in Fig. 3(a). Notably, these
two said regimes are seen to have sharp boundaries. That
is, in the anomalous hybridization regime identified as the
yellow area in Fig. 3(b), entanglement between the two chains
is vanishing. This confirms again that the eigensolutions are
effectively not hybridized.

VI. PHASE DIAGRAM

We finally present a phase diagram of our system based
on the steady-state response and entanglement analysis in
Fig. 4(a). The dehybridization regime is represented by the
green area, where the single-chain spectral winding topology
manifests itself as a quantized steady-state response on that
chain alone. The anomalous hybridization regime is marked
by the orange area, where eigensolutions are effectively not
hybridized (vanishing entanglement between the two chain),
while importantly interchain propagation channels allow the
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FIG. 4. (a) Phase diagram of the system read out from the quan-
tized response quantities and EE in Fig. 3. Colors indicate different
phases as labeled in the figure. The phase boundaries (b) βc1 and
(c) βc2 vary with the system size N . The black dashed lines indi-

cate βOBC ≈ N ln
√

tA
1 /tA

−1, where the system approaches the OBC

limit. The data points are read out from the jumps of the quantized
response quantities νA

→. Red dash lines are the numerical fitting of
the data points. The three critical values for a fixed N roughly cross
each other at the same point, as further shown in the Supplemental
Material [33]. The parameters are tA

1 = tB
−1 = 1, tA

−1 = tB
1 = 0.5, and

V A = −V B = 0.5. Numerically we obtain βc1 ≈ ln t0, which is also
independent of the reference energy Er [33].

spectral winding topology of one chain to be detected from the
response defined on the other chain alone. The pink area repre-
sents a strong hybridization regime, where the interchain EE is
saturated, and the steady-state response in this regime reflects
the total spectral winding of the system for a reference energy
when β < βOBC. Finally, the blue area in Fig. 4(a) depicts a
weak hybridization regime, where the EE decreases with t0
as shown in Fig. 3(c). Both response quantities in Figs. 3(a)
and 3(b) take a value of zero in this regime, since it falls in
the OBC limit with β > βOBC, where the spectral winding
vanishes. Notably, the weak hybridization is consistent with
the critical NHSE [26], where the OBC system in a weak
regime of t0 shows intermediate behaviors between hybridized
and dehybridized scenarios of the two chains.

Our phase diagram highlights several transitions when in-
creasing β from 0, e.g., with t0 = 10−5 for Er with w(Er ) =
(1,−1), including (i) a transition between the anomalous hy-
bridization regime and strong hybridization at βc1 and (ii) a
transition between the dehybridization regime and anomalous
hybridization at βc2. Another critical value βOBC is known
to be proportional to the system’s size N [24,41,42], which
indicates that the system behaves more like under OBCs
with spectral winding vanishing. Interestingly, βc1 and βc2 are
found to exhibit markedly different scaling with the system’s
size N , as shown in Figs. 4(b) and 4(c). That is, βc1 remains
a constant as N varies, whereas βc2 decreases with increasing
N (see the Supplemental Material [33] for more details). In
summary, it is now evident that as the system’s size increases,
the anomalous hybridization regime (orange regime) bordered
by the lines βc2 and βc1 widens. Hence the anomalous hy-
bridization regime is approachable in a larger parameter space

when the system is taken to the thermodynamic limit. Indeed,
it cannot be stressed enough that non-Hermitian systems can
be extremely sensitive to couplings between boundaries or be-
tween different subsystems. The Supplemental Material [33]
contains more detailed analysis of βc2 and βc1 by considering
different specific values of the reference energy Er .

VII. DIRECTIONAL SIGNAL PROPAGATION
IN DRIVEN-DISSIPATIVE CAVITY ARRAY

The steady-state response has been introduced for the
directional signal amplification process in various one-
dimensional chains [21,38,39,45]. To experimentally realize
our setup, we propose to consider coupling two driven-
dissipative cavity arrays in Ref. [38] with coherent interchain
couplings. The Hamiltonian and the master equation describ-
ing our proposed experimental system read

Ĥ0 =
∑

x

(Jaĉ†
a,xĉa,x+1 + Jbĉ†

b,xĉb,x+1 + J0ĉ†
a,xĉb,x + H.c.)

+
∑

x

(μaĉ†
a,N ĉa,N + μbĉ†

b,N ĉb,N )

+ eβ (ĉ†
a,N ĉa,N + ĉ†

b,N ĉb,N ),

ρ̇ = −i[Ĥ0, ρ] +
∑

x

∑
α=a,b

(�αD[ẑx,α]ρ

+ κD[ĉ†
x,α]ρ + γαD[ĉx,α]ρ), (8)

with D[ẑx,α]ρ = ẑx,αρ ẑ†
x,α − 1

2 {ẑ†
x,α ẑx,α, ρ} and ẑx,α = ĉx,α +

e−iθα âx+1,α . Here Jα and J0 are the amplitudes of intra-
chain and interchain hoppings, respectively, with α = a or b;
�αD[zx,α]ρ describes dissipative couplings between neighbor
sites; κD[ĉ†

x,α]ρ describes a uniform local incoherent pumping
of photons, which could drive the system into the regime
with nontrivial spectral winding; and γαD[ĉx,α]ρ describes
photon decay into a waveguide coupled to each cavity, which
also allows a signal to enter and exit the cavities. In ad-
dition, we introduce uniform local energy detuning μa,b on
the two chains and an extra detuning eβ at the boundary for
both chains [46,47]. The latter can effectively interpolate the
boundary condition of the system from PBC to OBC, which
is essential for the observation of the quantized steady-state
response [45].

For an input field 〈cin
x,α (t )〉 entering the system, we can

derive the equation of motion for the mean cavity amplitudes
〈cx,α〉 [33]. The input and output fields 〈cin

x,α (ω)〉 and 〈cout
x,α (ω)〉

at frequency ω are related by [38,48]

aout = ain − iγ

ω − H
ain = ain − iγ Gain, (9)

with ain/out = (〈cin/out
1,a 〉, . . . , 〈cin/out

N,a 〉, 〈cin/out
1,b 〉, . . . , 〈cin/out

N,b 〉)T .
Note that the Green’s function G in Eq. (9) is defined with
a real frequency ω, acting as the real part of the reference
energy Er in the previous discussion. Its imaginary part can
be mimicked by a uniform local pumping of κ , which shifts
the spectrum along the imaginary axis. Now let us investigate
the steady-state response in the proposed system by consider
a signal entering and leaving the system at different ends.
For example, a signal traveling from (1, a) to (N − 1, a) is

L241402-5
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described by the expression

〈
cout

N−1,a

〉 = −iγ G(N−1)a,1a
〈
cin

1,a

〉
, (10)

with G(N−1)a,1a an element of the Green’s function. Note
that the two ends of interest are now given by x = 1 and
x = N − 1, as we have placed an energy detuning eβ at x = N .
We can then map the effective Hamiltonian obtained above
to our model (1), with the modifier e−β on the boundary
couplings replaced by an extra local energy detuning eβ at
site N for both chains. Qualitatively, we can observe that the
quantity defined from the steady-state response jumps from
a pseudoplateau to negative values when β exceeds a criti-
cal value βc1, which verifies the anomalous hybridization in
the coupled chain system. Numerically simulated results and
more details are presented in the Supplemental Material [33].

VIII. CONCLUSION

Topological physics in non-Hermitian systems continues
to surprise us. In investigating the probe of spectral wind-
ing topology through quantized steady-state responses to
changes in boundary coupling, we revealed a counterintuitive

phenomenon in a non-Hermitian coupled chain setting. Even
when the observed energetics and the entanglement entropy
clearly indicate that the eigensolutions are effectively not
hybridized, the spectral winding topology of one chain can
be probed by a response defined on the other chain alone
for a certain frequency of the input signal. Termed anoma-
lous hybridization, this was explained by the dominance of
the resonant interchain propagation channels over the intra-
chain ones. This phenomenon was shown to be robust against
disorder and emerge generally in several more sophisticated
models with next-nearest-neighbor interchain couplings, cou-
pled multiband chains, and/or higher winding numbers, as
further discussed in the Supplemental Material [33].
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Pieczarka, A. G. Truscott, T. C. H. Liew, E. A. Ostrovskaya, and
Q. Xiong, Direct measurement of a non-Hermitian topological
invariant in a hybrid light-matter system, Sci. Adv. 7, eabj8905
(2021).

L241402-6

https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevB.102.085151
https://doi.org/10.1103/PhysRevLett.124.250402
https://doi.org/10.1103/PhysRevLett.125.186802
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1126/science.abf6568
https://doi.org/10.1038/s41467-021-26619-8
https://doi.org/10.1126/sciadv.abj8905


ANOMALOUS HYBRIDIZATION OF SPECTRAL WINDING … PHYSICAL REVIEW B 105, L241402 (2022)

[21] L. Li, S. Mu, C. H. Lee, and J. Gong, Quantized classical
response from spectral winding topology, Nat. Commun. 12,
5294 (2021).

[22] J. C. Budich and E. J. Bergholtz, Non-Hermitian Topological
Sensors, Phys. Rev. Lett. 125, 180403 (2020).

[23] A. McDonald and A. A. Clerk, Exponentially-enhanced
quantum sensing with non-Hermitian lattice dynamics, Nat.
Commun. 11, 5382 (2020).

[24] L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free
localization, Commun. Phys. 4, 42 (2021).

[25] C.-X. Guo, C.-H. Liu, X.-M. Zhao, Y. Liu, and S. Chen, Exact
Solution of Non-Hermitian Systems with Generalized Bound-
ary Conditions: Size-Dependent Boundary Effect and Fragility
of the Skin Effect, Phys. Rev. Lett. 127, 116801 (2021).

[26] L. Li, C. H. Lee, S. Mu, and J. Gong, Critical non-Hermitian
skin effect, Nat. Commun. 11, 5491 (2020).

[27] C.-H. Liu, K. Zhang, Z. Yang, and S. Chen, Helical damping
and dynamical critical skin effect in open quantum systems,
Phys. Rev. Research 2, 043167 (2020).

[28] S. Mu, L. Zhou, L. Li, and J. Gong, Non-Hermitian pseudo
mobility edge in a coupled chain system, Phys. Rev. B 105,
205402 (2022).

[29] J. Wiersig, Enhancing the Sensitivity of Frequency and Energy
Splitting Detection by Using Exceptional Points: Application to
Microcavity Sensors for Single-Particle Detection, Phys. Rev.
Lett. 112, 203901 (2014).

[30] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R.
El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, En-
hanced sensitivity at higher-order exceptional points, Nature
(London) 548, 187 (2017).
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