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Dynamical signatures of thermal spin-charge deconfinement in the doped Ising model
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The mechanism underlying charge transport in strongly correlated quantum systems, such as doped an-
tiferromagnetic Mott insulators, remains poorly understood. Here, we study the expansion dynamics of an
initially localized hole inside a two-dimensional (2D) Ising antiferromagnet at variable temperature. Using a
combination of classical Monte Carlo and truncated-basis methods, we reveal two dynamically distinct regimes:
a spin-charge confined region below a critical temperature T ∗, characterized by slow spreading, and a spin-charge
deconfined region above T ∗, characterized by an unbounded diffusive expansion. The deconfinement temperature
T ∗ ≈ 0.65Jz we find is around the Néel temperature TN = 0.567Jz of the Ising background in 2D, but we expect
T ∗ < TN in higher dimensions. In both regimes we find that the mobile hole does not thermalize with the
Ising spin background on the considered time scales, indicating weak effective coupling of spin and charge
degrees of freedom. Our results can be qualitatively understood by an effective parton model and can be tested
experimentally in state-of-the-art quantum gas microscopes.
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Introduction. In the field of high-Tc superconductivity
emerging from correlated insulating parent states [1], under-
standing the properties of individual charge carriers in doped
two-dimensional (2D) antiferromagnets has been a central
goal. While a magnetic, or spin, polaron forms at low doping,
experiments observe a crossover from a polaronic metal at
low doping to a Fermi liquid at high doping [2]. Although
the ground-state properties of magnetic polarons at low dop-
ing are essentially agreed upon [3–11], their fate at elevated
temperatures or nonzero doping, as well as their far-from-
equilibrium dynamics, remains poorly understood.

Recently, ultracold-atom experiments have ventured into
this regime [12]. In equilibrium, the dressing cloud of a
magnetic polaron has been observed for the first time [13],
and the dynamical spreading of an initially localized hole in
2D has revealed a significant slowdown associated with the
presence of spin correlations [14]. Theoretical work on the
dynamical properties of doped holes has revealed signatures
of parton [15] and string formation [15–19] at low temper-
atures and predicted diffusive or subdiffusive spreading at
infinite temperatures depending on the interactions between
the spins [15,20,21].

Here, we study the nonequilibrium dynamics of an initially
localized single dopant in a thermal 2D Ising background; see
Fig. 1(a). While previous studies addressed this problem in
the limits of infinite temperature with [15] or without [20,21]
Ising interactions Jz, and at zero temperature with Ising cou-
plings [22], we systematically tune the temperature T across
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the Ising critical point at TN = 0.567Jz. Combining numeri-
cal Monte Carlo and truncated-basis methods, we reveal two
regimes with qualitatively distinct hole dynamics; see Fig. 1.
By comparing our results with an effective parton model, we
argue that the low-temperature behavior corresponds to spin-
charge confinement, whereas spin and charge are deconfined
at high temperatures; see Fig. 1(d).

Furthermore, we study the thermalization dynamics of the
mobile hole. We find that after a few tunneling times the hole
quickly realizes a steady state which differs significantly from
the thermal state, especially in the deconfined regime at high
temperatures. This finding is interesting since the t-Jz model
is neither believed to be integrable nor localizing [23,24].

Model. Some of the most relevant aspects of hole dynamics
in antiferromagnetic (AFM) environments can be captured by
the t-Jz Hamiltonian [22,25] in d = 2 dimensions,

Ĥ = −t
∑

〈i, j〉,σ
P̂ (ĉ†

i,σ ĉ j,σ + H.c.)P̂ + Jz

∑
〈i, j〉

Ŝz
i Ŝz

j, (1)

where the first term Ĥt is the nearest-neighbor (NN) hopping
with amplitude t , ĉ j,σ annihilates a fermion of spin σ at
site j, and P̂ is a projector to the subspace without double
occupancies. The second term ĤJz denotes NN AFM Ising
interactions of the spins Ŝz

j = ∑
σ (−1)σ ĉ†

j,σ ĉ j,σ with strength
Jz > 0.

While the t-Jz model constitutes a strong simplification, it
captures several aspects relevant to experiments on strongly
correlated electrons in cuprates, e.g., the formation of string
patterns [22,23,26]. Although the Ising background ĤJz it-
self is classical, the noncommuting hopping term Ĥt allows
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FIG. 1. We study the spreading of an initially localized hole in
a thermal Ising background at temperatures T (a). The root-mean-
square (rms) distance from the origin, shown for M = 10, reveals
slow (fast) spreading at low (high) temperatures (b). We study the
long-time value of the inverse rms distance to extrapolate its value
in the thermodynamic limit when our finite-size cutoff M → ∞ (c);
for high T the data almost collapse. Plotting the result for different
temperatures (d) reveals a dynamically confined (deconfined) regime
at low (high) temperatures. We show plots for t/Jz = 3.

one to couple most spin states to each other already by a
single mobile dopant; even in a perfect Néel background at
zero temperature, Trugman loops lead to coherent hole mo-
tion [22,24,27]. This renders Ĥ a truly quantum Hamiltonian.

In the following, we study quantum quenches starting from
an undoped thermal Ising state described by the density matrix
ρ̂0 = e−βĤJz /Z0, where β = 1/T is the inverse of tempera-
ture T and we set kB = 1. At time τ = 0 a single hole is
created in the origin at j = 0, and the initial state is ρ̂(0) =∑

σ ĉ0,σ ρ̂0 ĉ†
0,σ .

Numerical technique. To calculate the time-evolved density
matrix ρ̂(τ ) with a single hole, we leverage the classi-
cal nature of the Ising background ĤJz . Specifically, we
sample thermal initial spin states, dope them with one
hole, and calculate their time evolution by a truncated-basis
method [16,17,28].

For a given eigenstate |�n〉 of the 2D Ising Hamiltonian,
we obtain an initial one-hole state |ψn

1 〉 = ĉ0,σ0 |�n〉 by re-
moving the fermion at the origin with spin σ0. Repeated
applications of the terms in Ĥt then generate new states which
we add to the truncated basis {|ψn

ν 〉}ν=1···dM used for numerical
time evolution. In this process, orthonormality is guaranteed
by projecting each new state onto all previous states. Since
Ĥt is applied in each step, the total number of iterations
M corresponds to the largest number of hops the hole can
perform in the truncated basis without retracing its path; the
dimension dM of the truncated basis grows exponentially with
M and depends on the initial configuration n.

To study the thermal properties of the expansion dynamics,
the thermal average over the ensemble of background spin
states {|�n〉}n=1···N —i.e., the ensemble of the Ising model
at a given temperature T —must be performed. We achieve
this using a standard Metropolis Monte Carlo algorithm to
obtain a large number (N = 100) of representative samples

for desired temperatures T . For each of these samples |�n〉,
the corresponding truncated base {|ψn

ν 〉}ν is generated, and
the Schrödinger equation is solved on the restricted sub-
space starting from the initial state |ψn(τ = 0)〉 = |ψn

1 〉 ≡
ĉ0,σ0 |�n〉.

Estimators for expectation values of observables such as
the root-mean-square (rms) distance of the hole from the ori-
gin rrms can then be obtained by averaging the results obtained
for each sample n,

rrms(τ ) ≈ 1

N

N∑
n=1

(∑
j

j2
〈
ψn(τ )

∣∣n̂h
j

∣∣ψn(τ )
〉)1/2

, (2)

with n̂h
j = ∏

σ (1 − ĉ†
j,σ ĉ j,σ ) being the hole density on site j

which we evaluate in the truncated basis.
Numerical results. In Fig. 1(b) we show typical numer-

ically obtained time traces of the hole’s rms distance, for
t/Jz = 3 and M = 10. We observe slow spreading of the hole
at low temperatures well below the Ising transition at TN and
faster spreading at high temperatures above TN. At longer
times corresponding to a few tunneling events (typically, we
go up to times τmax = 15/t), both curves saturate. However,
this is partly due to the finite dimension of the restricted basis
we employ.

We analyze the dependence of the long-time limit
r−1

rms(τmax) on the number of iterations M, corresponding to the
maximum number of allowed tunneling events, in Fig. 1(c).
For high temperatures, we observe scaling consistent with
r−1

rms(τmax) 	 M−1/2, i.e., the rms distance grows quickly and
indefinitely. A scaling 	 M−1/2 with the square root of the
number of allowed steps is expected from a classical random
walk; this is true even at zero temperature for Jz = 0 (see
Ref. [21]).

On the other hand, for low temperatures compared with
Jz, we find r−1

rms(τmax) → const > 0 as M−1/2 → 0, indicating
slow spreading of the hole, bounded by a finite length scale
rmax

rms at time τmax. We notice that for much longer times, on
the order of τT � 100/t [22], Trugman loop effects are ex-
pected to lead to very slow but unbounded growth of rrms [24];
however, these physics play no role on the time scales up to
τmax considered here. Moreover, Trugman loops describe a
correlated motion of spin and charge and hence cannot lead
to spin-charge deconfinement on its own.

Finally, we repeat the procedure described above for more
values of the temperature T , in particular, around the Néel
transition temperature TN = 0.567Jz. The resulting extrapo-
lated r−1

rms(T ; τmax, M−1/2 → 0), by a quadratic fit, are plotted
over temperature in Fig. 1(d). At a critical temperature around
T ∗ ≈ 0.65Jz close to but distinctly above TN, we find an abrupt
change of behavior, with unbounded (bounded) growth of rrms

above (below) T ∗. This is a main result of this Research Letter
and, as discussed below, we interpret it as a dynamical signa-
ture of a confinement (T < T ∗) to deconfinement (T > T ∗)
transition of the spin and charge sectors.

We performed a similar analysis as in Fig. 1 for a different
value of t/Jz = 1. The extrapolated long-time inverse rms dis-
tances are compared with the previous case in Fig. 2. We find
similar qualitative behavior, and remarkably, the transition
temperature T ∗ does not change for different t/Jz. Overall the
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FIG. 2. We show long-time rms distances of a single hole
extrapolated to M−1/2 → 0 as a function of temperature,
rrms(T ; τmax, M−1/2 → 0), for two ratios of t/Jz = 1 (upper
solid curve) and t/Jz = 3 (lower solid curve). We compare our
results with predictions by an effective spinon-chargon model
(dashed curves) capturing the qualitative behavior. We indicate
TN and our estimate for T ∗ = 0.65Jz by vertical lines. ED, exact
diagonalization; Trunc., truncated.

charge dynamics is only weakly affected by the spin back-
ground for T > T ∗, while it depends strongly on the value of
Jz/t when T < T ∗. These observations indicate a strikingly
different interplay of spin and charge in the two regimes.

At the given accuracy of our finite-size extrapolation
M−1/2 → 0, stating error bars on T ∗ is challenging. We find
our numerics to be most consistent with T ∗ = 0.65(5)Jz.

Effective parton model. To obtain physical insight into our
numerical results, we compare them with predictions by an
effective parton model [29,30] of the t-Jz model [22]. First we
note that the initial creation of the hole changes both the spin
and charge quantum numbers, associated with the two global
U(1) symmetries of the t-Jz model, by 1; the initial state thus
corresponds to a local spinon-chargon pair.

In the subsequent dynamics, the chargon can move by
distorting the surrounding spins. Since the Ising interaction
is classical and generates no dynamics of its own, the spinon
remains localized at the origin. Hence the resulting spin
configuration is determined entirely by the chargon’s path;
different paths may be assumed to be distinguishable up to
self-retracing components, since they will lead to different
spin configurations in the majority of the cases. That is, the
chargon motion effectively creates a memory of the hole’s
path through the spin background, in the form of a (sometimes
called geometric) string 	 of displaced spins connecting the
spinon to the chargon. At low temperatures, most strings lead
to an increase in the net classical Ising energy ĤJz , which acts
as a potential energy, or string tension, for the chargon.

Formally, in our effective parton model we replace the
original t-Jz Hilbert space by a space spanned by orthogonal
string states |	〉 with the spinon in the origin. States |	〉 in the
effective Hilbert space correspond to unique states |ψ	〉 in the
t-Jz Hilbert space, but the opposite is not true. The effective
Hamiltonian Ĥeff consists of a tunneling term with ampli-
tude t between adjacent strings and a potential energy term
including the Ising interactions; see Ref. [31] for a detailed

definition. At T = 0, the dynamics obtained within this parton
model is closely related to Brinkman and Rice’s retraceable
path approximation [32]; at T > 0 we average over thermal
initial states |�n〉 as before.

Our intuitive physical picture above has its limitations.
First, effects of loops are ignored; for example, Trugman
loops [24] and their generalizations to Ising configurations
other than the Néel state effectively introduce spinon mo-
tion. Such processes are very slow and can be treated in a
tight-binding approximation [22]. Second, not all physical
states |ψ	〉 are orthogonal for different 	; in particular, if
a plaquette along the path of the chargon has ferromagnet-
ically aligned spins, paths along opposite directions around
this plaquette are indistinguishable [14,20,21], and the cor-
responding quantum states have nonzero overlap. Our full
numerical simulations introduced earlier systematically in-
clude these imperfections by constructing an orthonormalized
restricted basis set. The number of iterations M corresponds
to the maximum string length 
max considered in the parton
theory.

In Fig. 2 we compare our earlier results with predic-
tions by the effective parton model (dashed curves). We find
qualitatively similar behavior; in particular, the transition tem-
perature T ∗ is correctly captured by the effective model. This
allows us to analyze the two qualitatively distinct dynamical
regimes below and above T ∗ within the simpler parton theory
next.

Thermal spin-charge deconfinement. Well below the Néel
temperature, T 
 TN , some spins will be thermally excited,
but magnetic order remains. Here, the hole’s movement is
restrained in a similar way as for T = 0 [23], resulting in
confinement of the spinon and the chargon. Around TN , the
short-range correlations between the spins decrease rapidly,
which may lead to a profound change in the behavior of the
hole since these correlations provide a measure of the energy
increase resulting from the chargon’s movement. Specifically,
the average energy 〈ĤJz 〉
 of a string with length 
, i.e., the
string tension, is determined by local spin correlations [22].
Notably, this does not imply that any change of behavior hap-
pens at exactly TN , which is only a measure of long-distance
correlations that do not directly affect the chargon’s motion.
Instead, the dynamical behavior changes at T ∗ �= TN in gen-
eral (although T ∗ and TN are closely related).

We can estimate T ∗ by considering the interplay of
energy E and entropy S of string states in the effective
parton model and ignoring quantum fluctuations ∝ t . Taylor-
expanding the string energy after averaging over the thermal
spin background and different string configurations with the
same length 
 allows us to write E (
) 	 〈ĤJz 〉
 = E0 +

σ + 
2σ ′/2 + · · · . Assuming a microcanonical ensemble of
strings, where all states of a given length 
 are occupied
equally, the entropy becomes S 	 
 ln(z − 1), where z is the
coordination number of the lattice (z = 4 in the 2D square
lattice we consider). Hence the free energy

F = E − T S 	 E0 + 
(σ − T ln(z − 1)) (3)

is minimized for 
 = 0 (confined partons) when T < T ∗ and
for 
 → ∞ (deconfined partons) when T > T ∗. The thermal
deconfinement transition takes place at

T ∗ = σ/ ln(z − 1). (4)
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This picture is expected to remain true when quantum
fluctuations ∝ t are included. In this case, the individual
eigenstates of the Hamiltonian will be Stark localized by
the linear string potential for any t/Jz. Although this adds
string-length fluctuations, the energy spectrum should remain
qualitatively unchanged, with a similar exponential increase
in the number of states whose energy is dominated by the
potential term E (
). Hence we predict T ∗ independent of t/Jz,
as confirmed by our numerical studies above.

As emphasized above, the string tension σ depends only
on the local spin correlations. Since these depend on temper-
ature, Eq. (4) needs to be solved self-consistently for T ∗ with
σ = σ (T ∗). Using this procedure, we predict T ∗ = 0.65Jz,
remarkably close to the observed value.

Another consequence of Eq. (4) is that T ∗ becomes small
in higher dimensions. In a d-dimensional hypercubic lattice,
z = 2d; since σ = O(TN) is on the order of the Néel tem-
perature, T ∗/TN 	 1/ ln(d ) → 0. Hence we expect that T ∗ is
systematically below TN in high dimensions, further support-
ing our claim that the observed change in dynamical behavior
at T ∗ is not a mere reflection of the Ising transition at TN.

Thermalization dynamics. Finally, we study how the mo-
bile hole reaches a steady state when it spreads and interacts
with the spin background. One would generically expect
the isolated charge to equilibrate to a thermal state at the
same temperature T as the Ising spins. However, we observe
pronounced deviations from this expected behavior. In a finite-
size system, the final temperature should be slightly increased
above T to account for the extra kinetic energy added in the
quench, but since we use a truncated basis it is difficult to
describe this effect quantitatively.

In Fig. 3 we calculate the average kinetic energy 〈Ĥt 〉 of
the hole, defining a local observable, which quickly relaxes
to a steady state in a few tunneling times. Next we compare
the steady-state result with a thermal ensemble at temperature
T . To this end, we sample n = 1 · · · N thermal background
spin configurations |�n〉 as described above, introduce a hole,
and apply a finite-temperature Lanczos method [33] to de-
scribe the hole separately for each n. The thermal average of
N−1 ∑

n〈Ĥt 〉n over all samples n is shown in Fig. 3.
At high temperatures, T � T ∗, the thermal ensemble de-

viates significantly from the steady state for both considered
values of t/Jz. Within the effective parton model we attribute
this behavior to the fact that the free energy is strongly dom-
inated by the entropic contributions from a large number of
long-string states when T > T ∗. Hence, in the postquench
dynamics the chargon can quickly populate these long-string
states, which leads to the observed steady-state behavior. We
expect that much longer times would be required for the local
kinetic energy to equilibrate too. We checked this picture
by calculating string-length distributions and find that they
quickly resemble the thermal ensemble [31].

At low temperatures, T � T ∗, we see in Fig. 3 that 〈Ĥt 〉
becomes thermal for t/Jz = 1, whereas it remains nonthermal
for larger t/Jz = 3 at the considered times. In the latter case
we believe that the significant separation of time scales in
combination with the discrete spectrum of the Ising back-
ground leads to excessive thermalization times. To exchange
energy with the spin environment, the chargon has to perform
loops, which requires overcoming high energy barriers [24].

FIG. 3. The mobile dopant reaches a steady state (black) over
a few tunneling times, as can be seen from its average kinetic en-
ergy 〈Ĥt 〉. We consider (a) t/Jz = 3 and (b) t/Jz = 1 and use the
truncated-basis method described in the text. The gray curves are the
expectation value at earlier times, starting at τ = 0 and increasing in
steps of �τ = 1/t . The steady-state value (black) was obtained by
averaging over times τ = 10/t to 15/t . Comparison of our results
with a thermal ensemble (red) at the same temperature T as the spin
background shows that the steady state is pronouncedly nonthermal
in many cases.

Indeed at low temperatures we find signatures for unoccupied
loop states in the hole dynamics, which would be occupied in
the thermal ensemble [31].

Summary and outlook. We have established two tempera-
ture regimes T ≶ T ∗ with distinct dynamical behavior of an
initially localized hole moving in an Ising antiferromagnet.
The observed dynamical transition at T ∗ can be interpreted
as thermal spinon-chargon deconfinement. Although we find
a true phase transition in an effective parton model, we
cannot distinguish with certainty between a crossover and
a true transition around T ∗ in our fully numerical data of
the microscopic t-Jz model. While we cannot distinguish the
deconfinement temperature T ∗|2D � TN from the Néel tem-
perature TN in our 2D simulations with absolute certainty, we
expect from analytical arguments that T ∗ < TN in higher di-
mensions. Furthermore, we studied thermalization dynamics
of a single hole in the t-Jz model and revealed stable steady
states with nonthermal properties in both the confined and
deconfined regimes.
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Our theoretical analysis can be tested and extended ex-
perimentally using ultracold atoms in optical lattices [12].
To realize the required Ising interactions, Rydberg dressing
appears to be the most promising candidate. In particular, this
allows one to realize AFM couplings for bosons [34,35] or
fermions [36]. For a single dopant the quantum statistics plays
no role, extending the number of existing experimental setups
that can address the quench dynamics studied in this Research
Letter. Hence another possibility is to use spin-dependent
interactions [37–39] to realize a bosonic model with AFM
couplings.

In the future, similar studies of the SU(2) invariant t-J
model at finite temperature will be interesting. Experimen-
tally, it is also conceivable to address hole dynamics at
nonzero hole densities. Another interesting direction would
be to explore thermalization dynamics of a single hole in the
t-Jz model at much longer times than addressed here. This
may be possible using a combination of classical Monte Carlo

sampling of the Ising background, as performed here, with
large-scale time-dependent numerical density matrix renor-
malization group (or tensor-network) simulations on extended
cylinders [15,18].
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