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Excitonic effects on high-harmonic generation in Mott insulators
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To study excitonic effects on high-harmonic generation (HHG) in Mott insulators, we investigate pumped
nonequilibrium dynamics in the one-dimensional extended Hubbard model. By employing time-dependent
calculations based on the exact diagonalization and infinite time-evolving block decimation methods, we find the
strong enhancement of the HHG intensity around the exciton energy. The subcycle analysis in the sub-Mott-gap
regime shows that the intensity region of the time-resolved spectrum around the exciton energy splits into two
levels and oscillates following the driving electric field. This excitonic dynamics is qualitatively different from
the dynamics of free doublon and holon but favorably contributes to HHG in the Mott insulator.
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I. INTRODUCTION

Recent advances in laser techniques, which can generate
high-intensity and ultrashort optical pulses, have enabled the
observation of a variety of nonlinear optical responses [1].
Among them, high-harmonic generation (HHG) is impor-
tant in terms of application, e.g., to attosecond light sources
[2]. Its physical process also attracts interest because HHG
can reflect underlying electronic properties. While HHG in
atoms and molecules has been well established [3,4], HHG in
bulk solids was reported during the past decade [5–10] and
these experimental achievements stimulate many theoretical
studies [11–18]. Since HHG in bulk materials can capture
dynamical properties of Bloch electrons, the techniques for
detecting the electronic band structures [19–21], Berry cur-
vature [22], and transition dipole moment [23] have been
proposed. While HHG in semiconductors and semimetals, for
which the single-particle band picture is valid, have been in-
vestigated intensively, many-body effects on HHG in strongly
correlated systems attracts attention recently [24–35]. The
previous studies point out that motions of quasiparticles asso-
ciated with correlation effects, e.g., doublon (doubly occupied
site) and holon (empty site) in Mott insulators (MIs), play a
key role in HHG [28,29].

When nonlocal interactions are crucial in a correlated
system, quasiparticles compose a bound state in its optical
excitation process. In the case of the MI, the doublon and
holon make the composite particle, exciton, due to the intersite
Coulomb interaction V (see also Fig. 1) [36–40]. The optical
experiments for the one-dimensional MIs, which exhibit the
strong third-harmonic responses, have suggested the impor-
tance of excitonic effects [41–44]. While we expect that the
exciton in the MI contributes to HHG, its mechanism should
be different from HHG in the simple MI (at V = 0) because
the motions of the doublon and holon are strongly restricted
by the doublon-holon interaction. However, excitonic effects
on HHG in MIs have not so far been studied theoretically.

To address this issue, we consider the exciton in the MI
described by the one-dimensional extended Hubbard model
and investigate pumped nonequilibrium HHG dynamics by
employing the time-dependent calculations based on the exact
diagonalization (ED) and infinite time-evolving block dec-
imation (iTEBD) methods. We demonstrate that the HHG
intensity in the MI is strongly enhanced around the exciton
energy in the sub-Mott-gap regime. In addition, our subcycle
analysis shows that the intensity region of the time-resolved
spectrum around the exciton energy splits into two levels and
oscillates following the driving electric field. While this ex-
citonic dynamics is qualitatively different from the dynamics
of free doublon and holon, the exciton in the MI favorably
contributes to HHG.

II. MODEL AND METHODS

To study excitonic effects, we introduce the one-
dimensional extended Hubbard model described by

Ĥ = − th
∑

j,σ

(ĉ†
j,σ ĉ j+1,σ + H.c.)

+ U
∑

j

n̂ j,↑n̂ j,↓ + V
∑

j

n̂ j n̂ j+1, (1)

where ĉ†
j,σ (ĉ j,σ ) is the creation (annihilation) operator for

a fermion at site j with spin σ (=↑,↓), and n̂ j,σ = ĉ†
j,σ ĉ j,σ

(n̂ j = n̂ j,↑ + n̂ j,↓). th is the hopping amplitude between the
nearest-neighbor sites while U and V are the onsite and
nearest-neighbor repulsive interactions, respectively. We con-
sider the case at half-filling, where the total number of
particles N is equal to the system size L. In this case, the
ground state is the antiferromagnetic MI state (spin density
wave) at U > 2V while the charge density wave is stabilized
at U < 2V in the large-U limit [45–47]. Furthermore, when
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FIG. 1. Imaginary parts of the linear optical response function
calculated by the TEBD method with the infinite-boundary condition
for U/th = 12 with V/th = 0 (blue) and V/th = 4 (orange), where
a broadening factor η/th = 0.2 is used. The time evolutions of the
window states are carried out up to t = 50/th. The vertical blue
and orange arrows indicate the Mott gap for V/th = 0 and V/th = 4,
respectively. Inset: schematic picture of the exciton (doublon-holon
pair) in the MI.

V > 2th in the MI phase, the excitonic peak emerges in the
optical excitation spectrum [36–40].

To discuss a pumped dynamics for HHG, we intro-
duce a time-dependent external field via the Peierls phase
by replacing thĉ†

j,σ ĉ j+1,σ → the−iqA(t )ĉ†
j,σ ĉ j+1,σ , where A(t )

is the vector potential and q is the charge of a parti-
cle. The electric field E (t ) is equal to −∂t A(t ) [48]. In
this paper, we use A(t ) = E0/ωpe−(t−t0 )2/2σ 2

p sin[ωp(t − t0)]
assuming the amplitude of the electric field E0 with the
frequency ωp and the pulse width σp centered at time t0
[29]. The pump frequency ωp is the fundamental frequency
of higher-harmonics characterized by ω = nωp (n: integer).
To evaluate the HHG spectrum, we calculate the time-
dependent current J (t ), whose operator is given by Ĵ (t ) =
iqth

∑
j,σ (eiqA(t )ĉ†

j+1,σ ĉ j,σ − e−iqA(t )ĉ†
j,σ ĉ j+1,σ ). Unless other-

wise noted, the quantity J (t ) denotes the current per site
〈Ĵ (t )〉 /L. Then, performing the Fourier transformation of
J (t ), we evaluate the HHG spectrum I (ω) = |ωJ (ω)|2. Here,
we assume that the acceleration of charges leads to the emitted
radiation.

In our simulations, the initial state is the ground MI
state (at U > 2V ), and the state |�(t )〉 under the external
field is obtained by solving the time-dependent Schödinger
equation numerically. In the finite system, we employ the
exact diagonalization (ED) method for the ground state
and use the Krylov subspace technique for the time evolu-
tion |�(t + δt )〉 � e−iĤ (t )δt |�(t )〉 with a short time step δt
[49–51]. In the ED calculations, we use the L = 10 site cluster
with the periodic boundary condition. We set the time step
to be δt = Tp/m < 0.001/th (where Tp = 2π/ωp and m is an
integer) and the order of the Krylov subspace for the time
evaluation is M = 15.

We also employ the iTEBD method [52,53] for the
calculations in the infinite-size system. We obtain the ground
state by the imaginary-time evolution, and for the real-time
evolution of the pump dynamics, we use a fourth-order

Trotter decomposition with the time step δt = 0.005/th. We
set the maximum bond dimension χ = 1000, which the ob-
tained results are sufficiently converged. The linear response
function χJJ (ω) = (i/L)

∫ ∞
0 〈ψ0|[ĴI(t ), ĴI (0)]|ψ0〉 eiωt−ηt dt

of the ground state |ψ0〉 [where ĴI(t ) = eiĤt Ĵe−iĤt indicates
the interaction picture] is calculated by the TEBD method
with the infinite-boundary condition [54–56] in the uniform
update scheme [57–59], where we use the window size
Lw = 128. The damping e−ηt [60] is included in the response
function because the numerical simulation is restricted to
finite time, and this leads to a Lorentzian broadening in the
frequency space. In our calculations, we set th (t−1

h ) as a unit
of energy (time) and use q = −1. Since the actual numerical
calculations for the HHG spectrum I (ω) are performed in a
finite-time range [0, tmax], we introduce a Gaussian window
function FGauss(t ) = 1√

2πσw
exp

[− (t−t0 )2

2σ 2
w

]
in the Fourier

transformation of J (t ), i.e., J (ω) = ∫ tmax

0 J (t )FGauss(t )eiωt dt
[29]. We set σw, t0, and tmax(= 2t0) to be enough larger than
the pulse width σp and the parameters used in the Fourier
integral for the HHG spectrum I (ω) do not change our main
results qualitatively.

III. RESULTS

Figure 1 shows the imaginary parts of the linear re-
sponse function χJJ (ω) with η/th = 0.2. The orange arrow
in Fig. 1 represents the Mott (charge) gap �M(L) = Egs(L +
1) + Egs(L − 1) − 2Egs(L) in the thermodynamic limit L →
∞ [40,61], where Egs(N ) is the ground-state energy for the N-
particle system (see Ref. [62] for details). This Mott gap �M

corresponds to the bottom of the doublon-holon continuum.
As shown in Fig. 1, while the optical spectrum for V = 0 has
the weight only above the Mott gap, the spectrum for V/th = 4
exhibits the exciton peak below the Mott gap as in the previous
studies [39,40]. This result indicates that the exciton formed
by V considerably changes the optical properties of the MI.
We note that while the exciton peak is broadened by η, the
frequency of the peak position is almost independent of small
η [40], and we check that η/th = 0.2 is small enough.

To see the excitonic effect on HHG, we compare the HHG
spectra I (ω) with and without the interaction V . Figure 2
shows the HHG spectra evaluated by iTEBD. The red arrow
is the exciton energy observed in the linear response function
in Fig. 1. The pump frequency ωp(= 0.5th) is much smaller
than the band gap as in the experiments for semiconductors
[5]. When V = 0, while the intensities at the lower-order
odd harmonics [i.e., I (ω= (2n + 1)ωp)] once decrease with
ω, the HHG response grows up with approaching the Mott
gap �M (blue arrow in Fig. 2) and I (ω) at ω > �M exhibits
the plateau structure, in which the HHG intensities hardly
decay even when the harmonic order is increased [25,29].
This behavior is qualitatively consistent with the results in
the previous studies [24,29]. When V/th = 4, in addition to
the plateaulike structure above the Mott gap (orange arrow),
the HHG intensity is enhanced around the exciton energy
(red arrow). The enhanced I (ω) in the sub-Mott-gap regime
(ω < �M) implies that the exciton in the MI can be a good
ingredient for HHG. Note that, while all intensity peaks are
expected to be centered at the odd harmonics in a system with
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FIG. 2. HHG spectra evaluated by the iTEBD method for U/th =
12 with V/th = 0 and V/th = 4. The vertical black solid (dotted) lines
indicate even (odd) harmonics of ωp. The blue and orange arrows
indicate the Mott gaps for V/th = 0 and V/th = 4, respectively, while
the red arrow indicates the exciton energy for V/th = 4. ωp/th = 0.5,
E0/th = 1, σp = Tp, and t0 = 5Tp are used in the pump pulse. The
width of the Gaussian window function is σw = 1.8Tp.

inversion symmetry, we find deviations of peaks from the odd
harmonics. As discussed in Ref. [29], this is probably because
the system does not reach a time-periodic steady state for the
reasons that the pulse is not long enough and that dephasing
effects are missing in our simulation.

In Fig. 2, the exciton energy is close to the Mott gap
and the contributions from the exciton are not well distin-
guished. Hence, to see excitonic effects clearly, we address
the large-U regime, in which we can separate the exciton
peak from the Mott gap with a strong V [40]. Because HHG
responses are relatively weak in the large Mott gap system,
we employ the ED method for the accuracy of the numerics.
Figure 3 is the calculated HHG spectrum I (ω) for U/th = 24
and V/th = 8. Here, the exciton energy (red line) is evaluated
by the linear optical response function in the 10-site system
and the Mott gap (orange line) is �M(L = 10). These two
energies are well separated at U/th = 24 and V/th = 8. In
Fig. 3, the lower edge of the intensity region at the odd har-
monics gradually develops with ω below the gaps. The HHG
response is strongly enhanced around the exciton energy at
E0/th � 1.2 and the plateau region emerges above the Mott

FIG. 3. HHG spectrum in the plane of ω and E0 evaluated by
the ED method for U/th = 24 and V/th = 8. ωp/th = 0.5, t0 = 12Tp,
σp = 1.8Tp, and σw = 3.6Tp are used. The vertical red and orange
lines indicate the exciton energy and Mott gap, respectively.

FIG. 4. Subcycle analysis performed by the ED method for
U/th = 24 and V/th = 8. Time-resolved spectrum I (ω, t ) is calcu-
lated at (a) ωp/th = 0.5 and (b) ωp/th = 0.25 with E0/th = 1.75. t0 =
12Tp, σp = 1.8Tp, and σ ′

w = 0.16Tp are used when ωp/th = 0.5 while
t0 = 6Tp, σp = Tp, and σ ′

w = 0.08Tp are used when ωp/th = 0.25. The
horizontal red and orange lines indicate the exciton energy and Mott
gap, respectively.

gap. The intensity region near the exciton energy broadens
with increasing E0. While the exciton energy is well separated
from the Mott gap, we find the significant enhancement of the
HHG response around the exciton energy, indicating that the
exciton in the MI favorably contribute to HHG.

In order to obtain insights into the dynamics of the ex-
citon in HHG, we carry out a subcycle analysis, where we
perform a windowed Fourier transformation [29] J (ω, t ) =∫ t+Tp/2

t−Tp/2 J (t ′)Fwindow(t ′ − t )eiωt ′
dt ′ using a short window func-

tion Fwindow(t ′ − t ) = 1√
2πσ ′

w
exp

[− (t ′−t )2

2σ ′2
w

]
and evaluate a

time-resolved spectrum I (ω, t ) = |ωJ (ω, t )|2. We set σ ′
w

in the window function to be much smaller than Tp used in
the integral range. σ ′

w in Fwindow(t ′ − t ) may be associated
with an experimental probe resolution. Figure 4 shows the
calculated I (ω, t ) at two different frequencies ωp/th = 0.5 and
0.25. Corresponding to I (ω) in Fig. 3, we find the noticeable
response in the sub-Mott-gap regime. In particular, the time-
resolved spectrum I (ω, t ) around the exciton energy (red line)
oscillates associating with the driving electric field E (t ). This
behavior is clear when ωp is small. In Fig. 4(b), the intensity
region in I (ω, t ) splits into two levels when E (t ) �= 0 and they
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oscillate around the exciton energy, where the energy splitting
is maximized at the crest of |E (t )|.

IV. DISCUSSION

The subcycle feature in Fig. 4 emerging around the exciton
energy is qualitatively different from the dynamics of the free
doublon and holon at V = 0. In the case of the MI without V ,
the motion of the excited free doublon gives rise to the oscilla-
tion of the intensity region of I (ω, t ) as reported in Ref. [29].
In this dynamics, the amplitude of the free doublon motion is
maximized at E (t ) = 0, i.e., when |A(t )| is maximum. This is
because the semiclassical picture based on the dispersion rela-
tion of the single-particle spectrum is valid as in conventional
semiconductors even though the quasiparticles are replaced
by the doublon and holon [29]. However, the subcycle feature
around the exciton energy shown in Fig. 4 does not exhibit
the same behavior as the simple semiclassical picture. For
example, in Fig. 4(b), the splitting of the intensity region of
I (ω, t ) is minimized at E (t ) ∼ 0. In the case of the MI with
V , the doublon and holon form the bound state by V and the
relative motion of the doublon and holon is strongly restricted.
Hence, the kinematic trajectory of the excited doublon/holon
may not be an essential cause of the dynamical feature in
Fig. 4. On the other hand, the subcycle feature in Fig. 4 may
also not be caused by the motion of the exciton because the
total momentum of the doublon and holon (i.e., the motion of
the center of the exciton) should be zero and conserved in the
optical excitation in the long-wavelength limit.

The subcycle feature in Fig. 4 is most likely related to
a Stark effect of an exciton. The extended Hubbard model
possesses the odd- and even-parity exciton states in its ex-
cited states [38], where we denote them |ψ (o)

ex 〉 and |ψ (e)
ex 〉,

respectively. While we only observe the odd-parity exciton
in the linear response, we may find the contribution from the
even-parity exciton in higher-order electric responses. When
the exciton energies are well separated from the others, be-
cause of the matrix element 〈ψ (e)

ex |x̂|ψ (o)
ex 〉, a strong electric

field E may give rise to the hybridization of these two exciton
states as |ψ±〉 ∼ c(o)

± |ψ (o)
ex 〉 + c(e)

± |ψ (e)
ex 〉, whose energy levels

are split by E , as in the Stark effect [63]. While the above

discussion is precise in the static limit, this idea may give
an interpretation for the instantaneous feature of Fig. 4(b), in
which the dynamics is relatively slow. When E �= 0, both |ψ+〉
and |ψ−〉 contain the odd-parity component due to c(o)

± �= 0 so
that the transitions between the ground (even-parity) state and
two split states |ψ+〉 and |ψ−〉 are optically allowed. This may
correspond to the emergence of two split peaks at E (t ) �= 0
in Fig. 4(b). On the other hand, when E = 0, one of two
states becomes the purely even-parity state, which is optically
inactive. Actually, in Fig. 4(b), single peak only appears at the
exciton energy when E (t ) = 0. Hence, we may interpret the
energy-level splitting around the exciton energy observed in
Fig. 4 as the Stark effect of the exciton.

V. SUMMARY

We have investigated the excitonic effect on HHG in the
one-dimensional extended Hubbard model. We have found
that the HHG spectrum I (ω) exhibits not only the plateau
structure above the Mott gap, but also the enhancement of the
intensity near the sub-Mott-gap exciton energy. Moreover, our
subcycle analysis shows that the noticeable intensity region
in I (ω, t ) around the exciton energy splits into two levels
following the driving electric field. This exciton dynamics
is qualitatively different from the dynamics of free doublon
and holon since they are bound by interaction V . We suggest
that the splitting of the intensity region can be interpreted by
the Stark effect of the exciton. Our calculations have demon-
strated that the exciton in the MI favorably contributes to
HHG.
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