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Kramers’ theorem ensures double degeneracy in the energy spectrum of a time-reversal symmetric fermionic
system with half-integer total spin. Here, we are trying to go beyond the closed system and discuss Kramers’
degeneracy in open systems out of equilibrium. A natural way to extend the Kramers’ degeneracy in open
quantum systems is by the degeneracy of different spins’ spectra together with the vanishing interspin spectrum.
We find the violation of Kramers’ degeneracy in time-reversal symmetric open quantum systems is locked
with whether the system reaches thermal equilibrium. After a general coupling to an environment in a time-
reversal symmetry-preserving way, the Kramers doublet experiences an energy splitting at a short time and
then a recovery process. We verified the violation and revival of Kramers’ degeneracy in a concrete model
of interacting fermions and we find Kramers’ degeneracy is restored after the local thermalization time. By
contrast, for time-reversal symmetry T̃ with T̃ 2 = 1, we find that although there is a violation and revival of
spectral degeneracy for different spins, the inter-spin spectral function is always nonzero. We also prove that the
degeneracy in spectral function protected by unitary symmetry can always be maintained.
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Introduction. Kramers’ degeneracy theorem tells us for
fermionic systems with half-integer total spin where time-
reversal symmetry (TRS) is presented, all energy levels are
doubly degenerate [1,2]. This theorem plays a vital role in the
quantum-spin Hall effect [3,4] as well as in the stability of the
superconducting phase with disorder [5].

Kramers’ theorem is expected for thermal equilibrium sys-
tems since the grand canonical distribution is only related to
the Hamiltonian where the double degeneracy is presented.
This can be proved straightforwardly in equilibrium systems
[6]. Recently, topological states protected by TRS in non-
Hermitian systems and Floquet systems are widely discussed
in varieties of systems [7–11]. However, we must be cautious
because anti-unitary symmetry in effective Hamiltonian is
fragile in open quantum systems. A later discovery made by
McGinley and Cooper says that TRS is not stable in open
quantum systems even with a TRS preserving interaction [12].
Any pure state as a superposition of Kramers’ states can not
maintain its coherence after coupling to the environment. Its
consequences for symmetry-protected topological states are
later studied [13,14]. Even more surprising, by non-Hermitian
linear response theory [15], it is discovered that after coupling
to the environment in a TRS preserving way, the Kramers’
degeneracy is lifted and two helical topological edge states
in topological insulator will mix with each other [16]. Since
previous results are mostly based on perturbations, a thorough
study of Kramers’ degeneracy in open quantum systems at full
time-scale is needed.
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In this work, we go beyond the perturbation theory
and study the whole dynamical process, focusing on the
Kramers’ degeneracy for a time-reversal invariant (TRI)
interacting fermion system with a TRS preserving interac-
tion between the system and the bath. We find that the
Kramers’ degeneracy is locked with thermal equilibrium.
We find a violation of Kramers’ degeneracy after a sud-
den coupling to an environment, and the violation enlarges
with time while it shrinks afterward as is shown in Fig. 1.
The Kramers’ degeneracy revives as the system gradually
reaches new thermal equilibrium. Due to the connection
between Kramers’ degeneracy and local thermalization, we
also find the Kramers’ degeneracy in the spectrum can
experience a violation and revival process in isolated sys-
tems that satisfy the eigenstate thermalization hypothesis
(ETH).

In the following, we first establish a general relation
between Kramers’ degeneracy and single-particle spectral
functions. Then with the help of solvable interacting models,
we can calculate the quench dynamics of the spectral func-
tion and the distribution function with a sudden coupling to
a bath. By checking the time scale of distribution function
reaching thermal equilibrium and Kramers’ degeneracy signal
in spectral functions, we can draw our conclusion. We also
discussed how spectral functions evolute for system-to-bath
interaction baring TRS T̃ with T̃ 2 = 1 and unitary symmetry
S as a comparison. We stress that our conclusion applies to
general interacting fermion systems and is not restricted by the
Markovian approximation. By this study, we find Kramers’
degeneracy only emerges in thermal equilibrium systems,
which implies TRS is only a good symmetry in equilibrium
systems and the breaking extent of Kramers’ degeneracy can
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FIG. 1. Schematics of (a) spin-1/2 fermionic models (yellow)
coupled to an external bath (gray). The TRS interchanges spin ↑ and
↓, with additional phases. (b) The spectral function during a quantum
quench, with a breaking and restoring of Kramers’ degeneracy with
characteristic time scale tth. Here we take the real-part ofA+−.

be set as a measure of the extent of the system being away
from equilibrium.

General Theory. We consider a quantum many-body sys-
tem with spin-1/2 fermions ĉ j,σ , where σ = ± labels spin
states, and j is the mode index. Under the time-reversal trans-
formation, the fermionic annihilation operator ĉ j,σ satisfies
T̂ ĉ j,σ T̂−1 = σ ĉ j,−σ and thus T̂ 2 = (−1)Ns . Here Ns is the
fermion number in the system. We prepare the system in ther-
mal equilibrium of initial Hamiltonian Ĥi as ρ̂0 = e−β0Ĥi/Z ,
with Z = tr [e−β0Ĥi ]. We assume Ĥi is the system Hamilto-
nian with TRS satisfying T̂ ĤiT̂−1 = Ĥi. Kramers’ theorem
states that the eigenstate of Ĥi with odd Ns should have a
pairwise degeneracy [17]: Given any eigenstate |ψ1〉, satis-
fying Ĥi|ψ1〉 = E0|ψ1〉, one can show that for |ψ2〉 ≡ T̂ |ψ1〉,
it satisfies Ĥi|ψ2〉 = E0|ψ2〉 and 〈ψ1|ψ2〉 = 0. As a compar-
ison, Ĥi|ψ2〉 = E0|ψ2〉, without 〈ψ1|ψ2〉 = 0, also works in
the even Ns subspace and is not sufficient for proving the
existence of the degeneracy.

However, for general interacting quantum systems, it is
hard to probe a specific eigenstate experimentally. It is Green’s
function of local operators that can be measured by various ex-
perimental protocols [18], which in general give the spectrum
and distribution function information of the quasi-particles.
Here we are trying to discuss the Kramers’ degeneracy in open
quantum systems, where even no eigenstates of the system
are well defined. Therefore we have to introduce Green’s
function form of the Kramers’ degeneracy. First, we introduce
real-time Green functions G≷(t, t ′), which are defined as

iG>
σσ ′ (t, t ′) ≡ tr [ρ̂0ĉ j,σ (t )ĉ†

j,σ ′ (t ′)],

−iG<
σσ ′ (t, t ′) ≡ tr [ρ̂0ĉ†

j,σ ′ (t ′)ĉ j,σ (t )],
(1)

where ĉ j,σ (t ) = eiĤit ĉ j,σ e−iĤit is fermion annihilation operator
in Heisenberg picture. Here tr is over the Hilbert space of
the system. Then it is straightforward to show that there is an

analogy of the Kramers’ theorem G≷++(t, t ′) = G≷−−(t, t ′) and
G≷+−(t, t ′) = G≷−+(t, t ′) = 0 in thermal equilibrium [6]. Here,
G≷+−(t, t ′) = G≷−+(t, t ′) = 0, as an analogy of 〈ψ1|ψ2〉 = 0,
is a signature of having T̂ 2 = (−1)Ns . Using their relation to
the spectral function A = i(G> − G<)/2π , we have A++ =
A−− andA+− = A−+ = 0 in thermal equilibrium.

In this work, we are interested in understanding the
Kramers’ degeneracy in the quench dynamics from the
Green’s function perspective. At t = 0, we change the Hamil-
tonian from Ĥi to Ĥf , which also satisfies T̂ Ĥf T̂−1 = Ĥf . In
particular, we couple the original system to an additional bath
by taking Ĥf = Ĥi + V̂ , where V̂ = ∑

j� Vj�Ô j ξ̂�, satisfying

T̂ Ô jT̂−1 = Ô j and T̂ ξ̂ jT̂−1 = ξ̂ j . Operators Ô j and ξ̂ j are
TRI operators in the system and the environment. Generally,
using the time-reversal transformation, one can show that for
t, t ′ > 0 we have

i(G>
++ − G>

−−) = 〈tr[	ρ̂(t, t ′) eiĤf (t−t ′ )c j,−e−iĤ f (t−t ′ )c†
j,−]〉B,

−2iG>
σ,−σ = 〈tr[	ρ̂(t, t ′) eiĤf (t−t ′ )ci,σ e−iĤ f (t−t ′ )c†

i,−σ ]〉B.

(2)

Here 	ρ̂(t, t ′) ≡ ρ̂(−t ) − ρ̂(t ′) = eiHf t ρ̂0e−iĤ f t − e−iĤ f t ′
ρ̂0

eiĤf t ′
and 〈...〉B = trB (ρ̂B...) is the quantum expectation on

the bath density matrix, which is assumed to be thermal with
inverse temperature βB. Since the bath contains a much larger
degree of freedom, we assume that it does not evolve when
coupled to the small system. Similar relations hold for G<

σσ ′
and thusAσσ ′ .

In the short time limit, we have 	ρ̂(t, t ′) ≈ i(t +
t ′)[Ĥf , ρ̂0] + t ′2−t2

2 [Ĥf , [Ĥf , ρ̂0]] + O(t3) 	= 0. For 〈ξ̂ j〉B = 0,
the leading-order contribution is from [Ĥ, [Ĥ , ρ̂0]]. Con-
sidering that ρ̂0 = e−β0Ĥi , therefore [Ĥf , ρ̂0] = [V̂ , ρ̂0] =∑

j� Vj�ξ̂�[Ô j, ρ̂0]. Then we can see, the TRS of Ô j does not

ensure [Ô j, ρ̂0] = 0, therefore in general [Ĥ , [Ĥ , ρ̂0]] 	= 0. As
a result, G≷++ 	= G≷−−, G≷σ,−σ 	= 0 and the Kramers’ degener-
acy is broken. This generalizes the previous analysis using
Markovian baths [16]. As a comparison, for unitary sym-
metries interchanging + and −, one finds a similar relation
for i(G>

++ − G>
−−), but with 	ρ̂(t, t ′) = ρ̂(t ′) − ρ̂(t ′) = 0. It

means the degeneracy protected by unitary symmetry is stable
in dynamical evolutions. We also notice that the condition
that 	ρ̂(t, t ′) 	= 0 is very general and has a more natural un-
derstanding than the extended Schur Lemma argument given
previously [12].

On the other hand, for t, t ′ 
 tth, where tth is the ther-
malization time, we expect the total system to thermalize
and ρ̂tot(−t ) ≈ ρ̂tot(t ′) ≈ e−β f (Ĥ f +ĤB )/trB[tr[e−β f (Ĥ f +ĤB )]] un-
der simple probes. Here ĤB is the Hamiltonian of the
bath. Consequently, we find G≷++ = G≷−−, G≷σσ ′ = 0, and the
Kramers’ degeneracy is restored. For a large system-bath cou-
pling, the characteristic time scale tth resembles its counterpart
in isolated quantum systems, where tth ∼ β f for strongly in-
teracting models and tth ∼ 1/
 with quasi-particle decay rate

 for weakly interacting models [19–21].

Before turning to concrete examples, we add a few com-
ments. First, the violation and revival of Kramers’ degeneracy
also exists in isolated quantum systems that satisfy ETH,
where Ĥf is only different from Ĥi by certain parameters [22].
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In this case, (2) still works, without the average over bath den-
sity matrix. In the long-time limit, although the fine-grained
density matrix ρ(t ) may differ from the thermal density matrix
since the unitary evolution preserves the total entropy, we ex-
pect local thermalization ρ̂(−t ) ∼ ρ̂(t ′) ∼ e−β f Ĥ f /tr[e−β f Ĥ f ]
[23,24]. Here, ∼ means the equivalence under measurement
of local operators. As a comparison, the violation can not be
restored if the system is many-body localized [22].

Second, it is helpful to compare the above results with TRS
with T̃ 2 = 1 or unitary symmetry S. We choose the single-
particle transformation to be T̃ = σxK or S = iσy. Here K is
the complex conjugate operator. In both cases, the symmetry
imposes G++ = G−− in thermal equilibrium, while generally
G+− 	= 0. When coupled to the bath, for TRS T̃ , the G++ =
G−− firstly breaks and then gets restored. While for S, the
G++ = G−− is always preserved during the evolution.

Concrete Model.–We now verify our predictions in inter-
acting fermions using a concrete solvable model. Generally,
the simulation of quench dynamics of chaotic quantum sys-
tems is hampered by the exponential growth of the Hilbert
space dimension. Here, we overcome this difficulty by con-
structing a TRI SYK model [25–29] by coupling different
complex SYK sites [30–34], which is solvable in the large-N
expansion. The initial Hamiltonian Hi reads

Hi =
∑

jτσ τ̃ σ̃

ĉ†
jτσ hτσ

τ̃ σ̃ ĉ jτ̃ σ̃ +
∑

τσ { ja}

Jτσ
j1 j2 j3 j4

4
ĉ†

j1τσ ĉ†
j2τσ ĉ j3τσ ĉ j4τσ .

(3)
Here j/ ja = 1, 2, ...N labels different fermion flavors, σ is
a spin index and τ = ± is an additional pseudo-spin index.
Jτσ

j1 j2 j3 j4
describes intraspecies’ random interaction between

fermions, which satisfies independent Gaussian distribution
with 〈

Jτσ
j1 j2 j3 j4

〉 = 0,
〈∣∣Jτσ

j1 j2 j3 j4

∣∣2〉 = 2J2/N3. (4)

Under the time-reversal transformation, we find Jτσ
j1 j2 j3 j4

→
(Jτ−σ

j1 j2 j3 j4
)∗. As a result, the interaction term is TRI after ensem-

ble average. The single-particle Hamiltonian hτσ
τ̃ σ̃ is diagonal

in the flavor space. Imposing the single-particle TRS with
T = iσyK , we find generally

h = μ I ⊗ I + Kxτx ⊗ I + Kzτz ⊗ I

+ Jxτy ⊗ σx + Jyτy ⊗ σy + Jzτy ⊗ σz, (5)

where μ is the chemical potential, Kx, Kz, Jx,y,z are
real parameters. Nontrivial terms correspond to celebrated
γ matrices wildly used in both condensed matter [17]
and high-energy physics [35]. As a result, the single-
particle eigenstates show pairwise degeneracy at energy μ ±√

K2
x + K2

y + J2
x + J2

y + J2
z , consistent with Kramers’ theo-

rem.
We consider the quench by coupling the system to an exter-

nal bath at t = 0 (here we choose the quench as an example.
Similar results hold if the coupling is turned on slowly [22]),
with system-bath coupling

HSB(t ) = θ (t )
∑

j1 j2b1b2

Vj1 j1b1b2

(∑
τσ τ̃ σ̃

c†
j1τσ h̃τσ

τ̃ σ̃ c j2 τ̃ σ̃

)
ψ

†
b1

ψb2
.

(6)

FIG. 2. The contribution to the self-energy �≷(t, t ′) in the large-
N limit. Here the solid lines represent the Green’s function of
fermions in the system and the dashed lines represent the bath
Green’s function. The dotted lines represent the disorder average.

Here, to be concrete, we choose the bath to be an
additional SYK model with M 
 N fermion modes
(b1, b2 = 1, 2, ..., M) [36–39]. This corresponds to HB =∑

JB
b1b2b3b4

ψ
†
b1

ψ
†
b2

ψb3
ψb4

/4. We further choose the distribu-
tion of JB

b1b2b3b4
takes the similar form as (4), with N replaced

by M. Generalizations to other bath models are straightfor-
ward. The coupling strength satisfies〈

Vj1 j2b1b2

〉 = 0,
〈∣∣Vj1 j2b1b2

∣∣2〉 = V 2/NM2. (7)

This guarantees that HSB does not affect the evolution of the
bath [36–39], consistent with our previous assumption. We
also choose the h̃ to take general form

h̃ = μ̃ I ⊗ I + K̃xτx ⊗ I + K̃zτz ⊗ I

+ J̃xτy ⊗ σx + J̃yτy ⊗ σy + J̃zτy ⊗ σz, (8)

where μ̃, K̃x, K̃y, J̃x,y,z are independent parameters. The form
of h̃ ensures the ensemble of couplings are also invariant under
the TRS T̂ . Here we have extended T̂ to the full system by
defining T̂ ψ̂bT̂−1 = ψ̂b.

In the large-N limit, the Green’s functions G≷ of SYK-like
models satisfy the Schwinger-Dyson equation on the Keldysh
contour, and the quench dynamics can be simulated by solving
corresponding integral equations. Explicitly, we have

(i∂t − h) ◦ G≷ = �R ◦ G≷ + �≷ ◦ GA,

G≷ ◦ (i∂t − h) = GR ◦ �≷ + G≷ ◦ �A.
(9)

Here ◦ includes the convolution in real-time, as well as multi-
plication in σ and τ space. The self-energy is given by melon
diagrams shown in Fig. 2, which leads to

�≷τσ,τ ′σ ′ (t, t ′) = J2δσσ ′δττ ′G≷τσ,τσ (t, t ′)2G≶τσ,τσ (t ′, t )

+ V 2χ≷B (t, t ′)(h̃G≷h̃)τσ,τ ′σ ′ (t, t ′)θ (t )θ (t ′).
(10)

Here χ≷B (t, t ′) = G≷ψ (t, t ′)G≶ψ (t ′, t ) is the bath correlation
function. The retarded/advanced Green’s functions are re-
lated to G≷ by GR(t1, t2) = θ (t12)(G>(t1, t2) − G<(t1, t2)) and
GA(t1, t2) = θ (t21)(G<(t1, t2) − G>(t1, t2)). Similar relations
hold for self-energies. Using these relations, (9) and (10)
become closed. The numerical approach for solving (9) and
(10) with discretized time has been well explained in previous
works [37,40–42].

Numerical Results. We now present numerical results of
the quench dynamics. Results for slow couplings and periodic
couplings are given in Supplemental Material [22]. We choose
βi = β f , V = J , and arbitrarily chosen parameters in h and h̃.
Given the real-time Green’s function G≷(t, t ′), we define the
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(a)

(b) (c) (d) (e)

FIG. 3. Numerical results for the TRI SYK model coupled to bath. We choose βiJ = βfJ = 6, V = J , and we set β = 2π as the unit of
time. We further set (μ, Kx, Kz, Jx, Jy, Jz )/J = (0, 0.1, 0.2, 0.3, 0.15, 0.2) and (μ, K̃x, K̃z, J̃x, J̃y, J̃z )/J = (0, 0.4, 0.4, 0.6, 0.36, 0.2). (a). The
spectral function A++, A−− and ReA+− as a function of evolution time t . There is a breaking and restoring of Kramers’ degeneracy. (b).
The quantum distribution F (ω) at different time t . The system almost thermalizes at t = 30. The black dashed curve corresponds to a plot
of tanh πω. (c). The log-plot of 	1 or 	2 as a function of time t , which characterize the breaking of the Kramers’ degeneracy. The dashed
lines correspond to the results of the linear fittings. As a comparison, we also plot the evolution of spectralA for a model [44] with symmetry
T̃ (T̃ 2 = 1) in (d)and (e).

temporal Green’s function G̃≷(tr, t ) at time t by

G̃≷(tr, t ) ≡
{

G≷(t + tr, t ) tr � 0,

G≷(t, t − tr ) tr > 0.
(11)

This definition preserves the causality of the unitary evolution.
Here G̃≷ and G≷ are in matrix form, and the sub-indices are
omitted. We define the Fourier transform with respect to tr .
The temporal spectral functionA(ω, t ) then reads

A(ω, t ) = i

2π

∫
dtr eiωtr (G̃>(tr, t ) − G̃<(tr, t )). (12)

In numerics, we focus on the first site with τ = + and drop
the corresponding pseudospin indices for conciseness. The re-
sults forA++(ω, t ),A−−(ω, t ), and ReA+−(ω, t ) are shown
in Fig. 3(a). Before the quench, the system is in thermal
equilibrium and the Kramers’ theorem ensures A++(ω, 0) =
A−−(ω, 0) and A+−(ω, 0) = 0. After we couple the system
to the bath (t > 0), the degeneracy is lifted. As an example,
we find a large discrepancy between A++ and A−−, as well
as a non-vanishing A+− at t = 5. When the time t becomes
longer, A++ −A−− and A+− decays, and becomes almost
invisible at t = 30.

Our previous analysis shows the revival of Kramers’ de-
generacy happens when the system arrives at equilibrium with
the bath. In a quantum many-body system, the local thermal-
ization can be diagnosed by quantum distribution function
F (ω, t ) at time t . It can then be defined as

F (ω, t )A(ω, t ) = i

2π

∫
dtr eiωtr (G̃>(tr, t ) + G̃<(tr, t )).

(13)
In thermal equilibrium, we have F (ω) = 1 − 2nF (ω) =
tanh(βω/2), with Fermi-Dirac distribution function nF (ω).

We plot F (ω, t ) for different t in Fig. 3(b). Shortly after the
quench, F (ω, t ) significantly deviates from the tanh(βω/2)
and the system is far from equilibrium. At longer time t =
15, F (ω, t ) approaches the tanh(βω/2), although there is
still visible oscillations in low frequency. The system almost
reaches the thermal equilibrium, with F (ω) ≈ tanh(βω/2) at
t = 30. This matches the time scale of restoringA++(ω, 0) =
A−−(ω, 0) andA+−(ω, 0) = 0.

We further introduce 	1 and 	2 to quantify the strength of
the Kramers’ degeneracy breaking as

	1(t ) ≡
∫

dtr |G̃>
++(tr, t ) − G̃>

−−(tr, t )|,

	2(t ) ≡
∫

dtr |G̃>
+−(tr, t )|. (14)

The numerical results are shown Fig. 3(c). We find both 	1

and 	2 decay exponentially in the long time. As a comparison,
we plot the equilibrium Green’s function |G̃>

++(t,∞)|, the
decay rate of which corresponds to the local thermalization
time [43]. We find their decay rates match, with additional
oscillations due to the peaks in the quasi-particle spectralA.

As a comparison, we also plot results for models with
symmetry T̃ (T̃ 2 = 1) [44] in Fig. 3(d) and 3(e). We find
although the diagonal components of the spectral function
show similar behaviors as systems with the symmetry T̂ , we
haveA+− 	= 0 at any time. This is consistent with the absence
of the Kramers’ degeneracy for systems with T̃ 2 = 1.

Summary and Outlook. To summarize, we find for TRS
T satisfying T 2 = −1, Kramers’ degeneracy in open quan-
tum interacting fermionic systems is equivalent toA++(ω) =
A−−(ω) together withA+−(ω) = 0. After a sudden coupling
to an environment in a time-reversal symmetric way, the
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Kramers’ degeneracy experienced a breaking and restoring
process. We further show it works for more general coupling
schemes. We find the revival of Kramers’ degeneracy hap-
pens after the local thermalization time tth. Similar results
can be obtained for TRS T with T 2 = 1. But distinctively,
A+−(ω) = 0 is not satisfied at all the time. It also means
A++(ω) = A−−(ω) alone can not be seen as the condition
for Kramers’ degeneracy. It is also verified that for systems
where local thermalization is hard to establish, the violation
of Kramers’ degeneracy will not recover.

Further, as we have seen, after coupling to a bath, although
Kramers’ degeneracy can be recovered, there is always a
large portion of time Kramers’ degeneracy is violated. For
this reason, if we start from a pure state in Kramers’ space
in the initial Hamiltonian, decoherence will happen and be
maintained. The decoherence in the final state can be partially
implied by the line shape change in the final state spectrum
compared with the initial state spectrum. In this sense, we
find different respects in TRS of open systems. If a physi-

cal result is more sensitive to phase coherence, such as the
quantization of the conductance in topological insulators, we
argue that these results can not be protected by the revival
of Kramers’ degeneracy [16]. On the other hand, like in
superconductors, the pairing is more relevant to the energy
degeneracy of the Kramers’ pair. Therefore the superconduct-
ing phenomenon may be more stable against the environment.
Furthermore, as we see that equilibrium or not is very impor-
tant for time-reversal symmetric systems, but many transport
theories are based on linear response theory, which attributes
transport properties as a manifestation of equilibrium corre-
lations. We leave a careful study in these directions to future
works.
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