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Non-Abelian half-quantum vortices in 3P2 topological superfluids
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3P2 superfluids realized in neutron stars are the largest topological quantum matters in our universe. We
establish the existence and stability of non-Abelian half-quantum vortices (HQVs) in 3P2 superfluids with
strong magnetic fields. Using a self-consistent microscopic approach, we find that a singly quantized vortex is
energetically destabilized into a pair of two non-Abelian HQVs owing to the strongly spin-orbit-coupled pairing.
We find a topologically protected Majorana fermion on each HQV, thereby providing twofold non-Abelian
anyons characterized by both Majorana fermions and a non-Abelian first homotopy group.
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Introduction. Quantum physics tells us that all particles are
either fermions or bosons under certain assumptions; a wave
function of multiparticle states is symmetric (asymmetric)
under the exchange of two bosons (fermions). However, an
exception, anyons, exists. The exchange of two anyons causes
the wave function to acquire a phase factor [1,2]. Such anyons
explain the physics of fractional quantum Hall states [3,4]
and have been experimentally observed for ν = 1/3 fractional
quantum Hall states [5]. Recently, another option has attracted
a great deal of attention, that is, non-Abelian anyons. The
exchange of two non-Abelian anyons leads to a unitary ma-
trix acting on a set of wave functions as a generalization of
the phase factor for Abelian anyons. Although non-Abelian
anyons have yet to be observed, they have been predicted theo-
retically to exist in ν = 5/2 fractional quantum Hall states [6],
topological superconductors [7,8], and spin liquids [9,10].
Non-Abelian anyons have attracted significant interest owing
to the possibility for a platform of topological quantum com-
putation [11–13] which is robust against noises, in contrast to
the conventional quantum computation methods.

There are two apparently different origins of non-Abelian
anyons, one fermionic and the other bosonic. The fermionic
origin is based on Majorana fermions realized in topological
superconductors [8,14–20]. Majorana fermions are particles
that coincide with their own antiparticles [21]. This is the
main route for topological quantum computation. By contrast,
non-Abelian anyons are also realized in bosonic systems, the
statistics of which are due to non-Abelian vortices supported
by a non-Abelian first homotopy group of order parameter
(OP) manifolds, giving noncommutativity under the exchange
of two vortices [22,23]. Examples can be found in liq-
uid crystals [24,25] and spinor Bose-Einstein condensates
(BECs) [23,26–28]. Two apparently different non-Abelian
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anyons have been discussed separately thus far and their re-
lation has yet to be clarified.

The aim of this Letter is to present vortices simultaneously
accompanied by the two different non-Abelian natures, that is,
fermionic and bosonic origins of non-Abelian anyons. A sys-
tem that realizes such vortices is a neutron superfluid expected
to occur in neutron star cores. This is called the 3P2 superfluid
(spin-triplet p-wave pairings) of neutrons [29–34], which has
been recently shown to be the largest topological quantum
matter in our universe [35] (a class DIII in the classifica-
tion of topological insulators and superconductors [36,37]),
allowing a gapless Majorana fermion on its boundary [35]
and vortex cores [38]. From the Ginzburg-Landau (GL) the-
ory [33,39–44], this matter was found to admit non-Abelian
half-quantum vortices (HQVs) [45,46] in addition to inte-
ger vortices [33,39–42,47,48], coreless vortices [49], domain
walls [50], and boojums on the surface [51]. Such topological
defects may play a crucial role in the dynamics and evolution
of neutron stars.

Unlike the Feynman-Onsager quantization of circula-
tion, HQVs, or more generally fractionally quantized vor-
tices [52–54], appear ubiquitously in diverse systems with
multiple components. The topological stability of HQVs (or
fractional quantum vortices) has been predicted in the A
phase [55,56] of superfluid 3He, unconventional superconduc-
tors [57–62], spinor BECs [26–28,63–67], multicomponent
superconductors [68–73], and BECs [74–83] and even high-
energy physics such as quantum chromodynamics [84–88]
and physics beyond the standard model of elementary parti-
cles [89,90]. Abelian HQVs were experimentally confirmed
in the uniaxially disordered superfluid 3He [91,92] and in a
spinor BEC [93]. However, no systems admitting non-Abelian
HQVs, which have both bosonic and fermionic origins of non-
Abelian anyons, are known thus far. The existence of HQVs
in 3P2 superfluids was proposed to explain a longstanding
unsolved problem of neutron stars: the origin of the pulsar
glitch phenomena, that is, sudden speedup events of neutron
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FIG. 1. Schematic of a pair of non-Abelian HQVs in a D4-BN
state at a cross section perpendicular to the two parallel vortex lines,
characterized by (κ, n) = (1/2, +1/4) at x = dv/2 and (1/2,−1/4)
at x = −dv/2. Its spin momentum structure is shown by objects with
colored arrows representing d vectors.

stars [94]. However, the energetic stability of the HQVs has
not been investigated thus far, e.g., it remains as an important
unsolved problem whether a singly quantized vortex can split
into two HQVs or not.

In this study, we microscopically establish the existence
and stability of non-Abelian HQVs, along each of which we
find a topologically protected gapless Majorana fermion. In
the presence of a strong magnetic field relevant for magne-
tars, i.e., neutron stars accompanied by extraordinary large
magnetic fields, the ground state is in a dihedral-four biaxial
nematic (D4-BN) phase [35,47,95]. There a singly quantized
vortex is shown to be split into two non-Abelian HQVs. Each
HQV admits a gapless Majorana fermion, thereby being a
different type of non-Abelian anyon. We also calculate the
interaction energy between HQVs and find an intrinsic mech-
anism of their thermodynamic stability due to the uniaxial
nematic pairing induced around the cores.

Non-Abelian HQVs. Here we focus on non-Abelian HQVs
in the D4-BN phase of a 3P2 superfluid. Let us consider sys-
tems invariant under a U(1) gauge transformation and SO(3)
spin momentum rotation. A 3P2 superfluid is the condensation
of spin-triplet Cooper pairs with a total angular momentum
of J = 2, the OP of which is given by a 3 × 3 traceless sym-
metric tensor Aμν(μ,ν=x,y,z) with spin index μ and momentum
index ν. The continuous symmetries act as A → eiϕgAgtr ,
eiϕ ∈ U(1) and g ∈ SO(3). The homogeneous OP of the D4-
BN state has a diagonal form [40] A = �diag(1,−1, 0),1

which is invariant under a C4 rotation around the z axis in
a point node direction, combined with the π phase rotation.
Its spin momentum structure is schematically shown by d
vectors, dμ(k) = ∑

ν Aμνkν , using arrows in the top left ob-
ject in Fig. 1. A large magnetic field relevant to magnetars

1This OP takes a form similar to that of the planar state of super-
fluid 3He [96,97], but these states admit different topological defects
because of their different OP manifolds.

FIG. 2. Two HQVs with dv � 10.7ξ0. (a), (c), and (e) Spatial
profiles of the amplitude |γM=−2,0,2(R)| and (b), (d), and (f) spatial
profiles of the phase arg[γM=−2,0,2(R)], with (c) and (d) representing
the induced component.

thermodynamically stabilizes the D4-BN state with point
nodes along the direction of the magnetic field [35,43,47,95].

The OP manifold in the D4-BN state, R = [U(1) ×
SO(3)]/D4, leads to rich topological charges of line defects
supported by the first homotopy group π1(R) = Z ×h D∗

4 [98].
This includes non-Abelian HQVs with noncommutative topo-
logical charges, which behave as non-Abelian anyons with a
bosonic origin [46]. An asymptotic form for an isolated vortex
is given by A(θ ) = eiκθ Rn(θ )ARtr

n (θ ), where θ ≡ tan−1(y/x)
is the azimuthal angle and Rn(θ ) ∈ SO(2) is a rotation ma-
trix around the z axis by the angle nθ . The integer vortices
are characterized by κ ∈ Z and n = 0. In the D4-BN state,
the π phase jump arising from κ ∈ Z + 1/2 is compen-
sated by the C4 rotation with n ∈ Z ± 1/4. Thus, HQVs
are topologically allowed and a singly quantized vortex is
predicted to be split into a pair of HQVs, as illustrated in
Fig. 1.

Structure and Stability of the HQVs. To microscopically
discuss the stability of non-Abelian HQVs, we utilize quasi-
classical theory [99–101]. Assuming uniformity along the z
direction, we determine the spatial profile of Aμν (R = (x, y))
by self-consistently solving the Eilenberger equation comple-
mented by a gap equation for interacting neutrons through a
zero-range attractive 3P2 force (see Ref. [101] for details). Be-
low we show the numerical results at temperature T = 0.4Tc

and the Zeeman magnetic field VZ = 0.5Tc with the critical
temperature Tc. For this parameter set, the D4-BN state is
the most stable uniform state. A unit length is given by the
coherence length ξ0 = vF/2πTc with the Fermi velocity vF.

In Fig. 2 we show a pair of HQVs with finite intervor-
tex distance dv � 10.7ξ0. It is convenient to expand Aμν as
Aμν = ∑2

M=−2 γM (R)
M,μν , where 
M is a 3 × 3 basis tensor
of the z component of the total angular momentum Jz such
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that Jz
M = M
M and γM (R) is the complex OP projected
onto the sector Jz = M. The D4-BN state is represented by
|γM=2| = |γM=−2| and γM=−1,0,1 = 0. For an isolated HQV,
the aforementioned asymptotic form is recast into Aμν (θ ) =∑

M=−2,2 γMei(κθ−Mϕ)
M,μν with the vorticity κ = 1/2 and
the rotation angle of the triad ϕ = nθ = ±θ/4. We set κ > 0
without a loss of generality, whereas the choice of n = +1/4
(−1/4) corresponds to the clockwise (counterclockwise) tex-
ture of the gap structure. The two HQVs shown in Figs. 1
and 2 are characterized by a pair of (κ, n) = (1/2,−1/4)
at x = −dv/2 and (1/2,+1/4) at x = dv/2, where the mag-
netic mirror symmetry perpendicular to the y direction is
imposed [101]. The amplitudes (phases) of γM (R) are shown
in the left (right) panels of Fig. 2. In each M = ±2 sector, a
single winding structure is realized [Figs. 2(b) and 2(f)], and
in the M = 0 sector, a structure with winding 2 = 3 − 1 is
induced, as indicated in Fig. 2(d). Note that in the bulk region,
γM=0 moves toward zero.

The isolated HQV for n = +1/4 (−1/4) consists of three
components, that is, a singular vortex component for M = −2
(+2), an almost uniform unwinding component for M = +2
(−2), and the induced component for M = 0. It can be re-
garded as a chiral p-wave superconducting vortex with the
spin parallel to the chirality, and the phases of the induced
components have winding −1 for (κ, n) = (1/2, 1/4) and 3
for (1/2,−1/4) [102,103]. In the former (latter) case, the
vorticity is antiparallel (parallel) to the chirality. However,
the amplitude of the induced component |γM=0(R)| breaks
the axial symmetry to a threefold symmetry for n = 1/4 and
fivefold symmetry for n = −1/4 (see Ref. [101]). The axial
symmetry is also broken by the boundary conditions.

The two types of internal structures in the M = 0 com-
ponent induced for HQVs with n = ±1/4 are modulated by
the connection of these two HQVs. We find that this modula-
tion causes an interaction between the two HQVs and binds
them together. To reveal the interaction between HQVs, we
compute the Luttinger-Ward energy functional Jsn from the
self-consistently determined quasiclassical propagator [104].
The interaction energy denoted by �Jsn(dv) is the difference
between the energy of a pair of two HQVs with separation
dv and the energies of two isolated HQVs (see Ref. [101]).
In this definition, the boundary effects due to the long-tailed
flows of the mass and spin currents are properly eliminated. In
Fig. 3 we show the interaction energies of the two HQVs. The
triangles (circles) are calculated by considering (neglecting)
the induced components γM=±1. The difference appears only
for dv = 0, where singly quantized vortices are realized; the
triangle at dv = 0 stands for the double core vortex (d vortex),
whose core is occupied with γM=±1, as in the superfluid 3He-B
phase [105,106]. The d vortex (triangles) has lower energy
than the vortex without γM=±1 (circles) because condensation
energy due to γM=±1 is gained at the origin. Significantly, for
finite dv, the interaction energy decreases as dv increases from
zero and reaches the minimum at a finite intervortex distance
dv, which means that the d vortex is unstable for splitting into
the two HQVs. The gain in the interaction energy is due to the
deformations in γM=0(R), and the two HQVs form a bound
molecule with an optimal separation.

Molecules of HQVs are also discussed in regard to su-
perfluid 3He [55] and unconventional superconductors [58],

FIG. 3. Interaction energy of two HQVs as a function of their
separation dv. The triangles (circles) are calculated by considering
(neglecting) the possibilities of the induced components of M = ±1.
The inset shows the total amplitude of the OP shown in Fig. 2; the
corresponding intervortex distance is indicated by the arrow. The free
energy is scaled as J̄sn = Jsn/νnT 2

c ξ 2
0 �z, where �z is the length of

the system in the z direction and νn is the density of states at the
Fermi energy in the normal state.

but their stabilization mechanisms are different from ours:
In the superfluid 3He-A phase, the spin mass correction was
phenomenologically introduced to stabilize the HQV [55];
however, its realization remains controversial because the
strong-coupling effects destabilize the HQV [107–110]. In
the polar phases, the stability of the HQVs is supported
by an extrinsic mechanism from strong anisotropic impu-
rity effects using the GL theory [111–113]. There is no
intrinsic interaction between the two HQVs in the weak-
coupling limit because two spin sectors are independent. By
contrast, in the present case, a different mechanism of the
interaction originates from the deformation in the induced
component γ0 because of the strongly spin-orbit-coupled
pairing.

Majorana zero modes in non-Abelian HQVs. Finally,
we clarify the existence of topologically protected zero-
energy states in HQVs, which behave as non-Abelian (Ising)
anyons. Using the OP determined self-consistently for a
separation of dv � 10.7ξ0 and spatial uniformity along the
z direction, we solve the Bogoliubov–de Gennes (BdG)
equation ȞBdG,kz (R)�uα,kz (R) = εα,kz �uα,kz (R), where ȞBdG,kz

is a 4 × 4 matrix in the spin and Nambu space, �uα,kz =
[uα,kz,↑, uα,kz,↓, vα,kz,↑, vα,kz,↓] is the αth eigenvector of the
axial momentum kz, and εα,kz is its eigenenergy [101]. We
set the quasiclassical parameter kFξ0 = εF/πTc = 5 with the
Fermi momentum (energy) kF (εF). For the spectroscopy
of the vortex-bound states, we show the fermionic local
density of states for kz = 0 in Fig. 4(a), νkz=0(R; ω) =∑

α,σ |uα,kz=0,σ (R)|2δ(ω − εα,kz=0) along y = 0. In the energy
region below the bulk gap ωg/Tc ∼ 2.0, the spectral weights
are localized around the HQV cores and the edge (not shown).
The energy levels of the vortex bound states are discretized
with level spacing on the order of ω2

g/εF ∼ 0.255Tc.
It is worth noting that each vortex hosts a single zero-

energy state with numerical accuracy only at kz = 0. Here
we demonstrate that the zero modes are protected by two
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FIG. 4. (a) Local density of states νkz=0(R; ω) at kz = 0 and y =
0 for a pair of HQVs located at (x, y) = (±dv/2, 0) with dv � 10.7ξ0.
(b) Real parts of two Majorana wave functions u−,↑ and u+,↓ for y =
0. Also shown are the two-dimensional spatial profiles of (c) u−,↑ and
(d) u+,↓. The colormaps indicate their phase information for the same
color bar as in Fig. 2(b). The saturation indicates their intensities.

discrete symmetries relevant to a three-dimensional vortex
line, the mirror symmetry and the chiral symmetry, and yield a
fermionic origin of the non-Abelian nature. To clarify this, we
employ the semiclassical approximation as ȞBdG,kz (x, y) �→
Ȟ(k, θ ), which varies slowly in real-space coordinates as
a function of the azimuthal angle θ around the vortex
line [110,114,115]. For the topological protection, consider
the mirror reflection Mxy with respect to the xy plane. As
demonstrated in Refs. [116,117], if the gap function is odd
under Mxy, the HQV may support a Majorana zero mode
protected by the mirror symmetry. For the mirror reflection
invariant momentum kM ≡ (kx, ky, kz = 0), the BdG Hamil-
tonian commutes with the mirror reflection operator M̌−

xy as

[Ȟ(kM, θ ),M̌−
xy] = 0, because Axz = Ayz = 0, i.e., γM=±1 =

0 in non-Abelian HQVs [101]. Hence, the Hamiltonian with
kz = 0 is block diagonalized in terms of the eigenvalues of
the mirror operator λ = ±i, as Ȟ(kM, θ ) = ⊕

λ H̃λ(kM, θ ),
where the 2 × 2 submatrix H̃λ is still subject to the particle-
hole symmetry. In terms of the Altland-Zirnbauer symmetry
classes, each subsector at kz = 0 belongs to class D, similar
to spinless chiral superconductors [36]. The topological in-
variant relevant to the class-D BdG Hamiltonian H̃λ on the
base space (kM, θ ) ∈ S2 × S1 is the Z2 number defined as
νλ = (i/π )2

∫
S2×S1 tr(AdA + 2A3/3) (mod 2) with the Berry

connection A obtained from the occupied eigenstates of
H̃λ(kM, θ ) [118–120]. The non-Abelian HQV in the D4-BN
state has a nontrivial value of the Z2 invariant in each mirror
subsector, νλ = +1 (−1) for λ = +i (−i), which ensures the
existence of a single Majorana zero mode at kz = 0 in each
HQV that behaves as a non-Abelian (Ising) anyon [117,120].

In addition to the Z2 number, the chiral symmetry, which is a
combination of the particle-hole symmetry and the magnetic
π rotation, defines a Z topological number and protects the
zero mode [101]. Hence, the zero mode accompanied by
HQVs and its Majorana nature are guaranteed by the mirror
symmetry and chiral symmetry, unless the three-dimensional
vortex lines break these symmetries. In rotating neutron stars,
HQVs are aligned with the rotation axis, thus accompanied by
Majorana zero modes at kz = 0 that are the fermionic origin
of the non-Abelian nature.

In Figs. 4(b)–4(d) we show the wave functions of the
zero modes obtained by separating the edge mode and the
vortex core mode through a linear combination of the two
particle-hole symmetric eigenpartners. We assign the label
ζ = + (−) to the state localized around R1 (R2) instead of
(α, kz = 0). The Majorana condition uζ ,σ (R) = [vζ ,σ (R)]∗ is
satisfied by choosing the global phase properly. The real
parts of u−,↑ and u+,↓ along y = 0 are shown in Fig. 4(b);
for the other combinations of ζ and σ , the wave functions
uζ ,σ are zero. The phases of u−,↑ and u+,↓ have single
and no winding, as indicated by the two-dimensional col-
ormaps in Figs. 4(c) and 4(d), respectively. The two Majorana
fermions in the two non-Abelian HQVs are in opposite
spin sectors and have different structures in their phase
winding.

Summary. We have found twofold non-Abelian anyons sta-
bly existing in a 3P2 nematic superfluid, that is, non-Abelian
HQVs characterized by a non-Abelian first homotopy group
of a bosonic origin and Majorana fermions present inside their
cores. Thus far only non-Abelian anyons with either bosonic
or fermionic non-Abelian origin have been known in other
systems. From the microscopic approach in a 3P2 nematic
superfluid, we have found that the HQVs are stabilized in the
form of molecules through the interaction mediated by the
uniaxial nematic component. This is a different stabilization
mechanism of HQVs due to the gap functions with a strong
spin-orbit coupling. Furthermore, we have found a single
Majorana zero mode in each HQV. Their non-Abelian Ising
nature is elucidated on the basis of topological invariants.

The existence of such HQVs is essential to explain a certain
aspect of neutron stars [94]. Our finding presents the possibil-
ity for advances in the study of non-Abelian anyons, possibly
applicable to alternative directions in topological quantum
computation and neutron star physics.
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