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Superconductivity near a nematoelastic quantum critical point
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We study the pairing instability of a two-dimensional metallic system induced by Ising-nematic quantum
fluctuations in the presence of an unavoidable relevant coupling of the nematic order parameter to the elastic
modes (acoustic phonons) of the lattice. We find that this nematoelastic coupling λlatt leads to a decrease of
both the superconducting (SC) critical temperature Tc and the gap function �, regardless of the gap symmetry.
Interestingly, we show that λlatt provides a knob that allows us to investigate the emergence of the SC phase
at low temperatures, as an instability from either a non-Fermi liquid or a Fermi liquid normal state. The phase
transitions between the SC and these normal states are characterized by different critical exponents, which may
also vary for each gap symmetry. Finally, we argue that these results might explain the dependence of Tc in the
vicinity of the nematic quantum critical point exhibited by the compound FeSe1−xSx .
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Introduction. A theoretically controlled analysis of two-
dimensional metals near an Ising-nematic quantum critical
point (QCP) remains a big challenge nowadays in the field
of strongly correlated systems. It is now well-established that
the renormalization group approach with large-N expansion
eventually breaks down for this theory at low enough ener-
gies [1–4]. The Ising-nematic phase refers to a long-range
instability with Q = 0 momentum transfer that leads to the
lowering of the point-group rotational symmetry, while pre-
serving the properties of the underlying system with respect
to translational symmetry [5,6]. Recently, both analytical and
numerical approaches [1–4,7–12] have shown that the emer-
gence of such a phase could potentially explain some of
the physical properties observed in the phase diagram of
high-temperature superconductors, such as, e.g., the cuprates
[13–15], the iron-based superconductors [16–20], and also in
other correlated materials [21,22].

Although the qualitative comparison between the theo-
retical predictions with experimental data in these systems
is reasonably good, a clear picture regarding the impact of
electronic nematicity on the corresponding phase diagrams is
still lacking. This occurs because for most systems this insta-
bility appears along with the emergence of other long-range
orders such as antiferromagnetism and superconductivity,
which complicate the analysis. In this regard, it was recently
found that the iron-based superconductors FeSe1−xSx [18]
and LaFeAsO1−xFx [23] display a quantum phase transition
(QPT) to an electronic nematic state disentangled from other
magnetic or charge-ordered phases, and thus they constitute
the most promising platform to study the effects of electronic
nematicity.

However, a more realistic attempt to investigate such a
quantum critical theory should also include the unavoidable
interaction of the nematic order-parameter with the elastic
modes (acoustic phonons) of the lattice [24–29]. By taking
into account this relevant interaction, previous works have
predicted that the low-temperature thermodynamic [30] and

transport [31–33] properties of the corresponding quantum
critical state have a tendency of becoming Fermi-liquid-like
below an energy scale set by the nematoelastic interaction.
This happens because the shear strain associated with this
interaction constrains the quantum critical region to a few
high-symmetry directions [28]. Remarkably, the authors of
Refs. [20,34] have shown that in the vicinity of the nematic
QCP, the electrical resistivity clearly transitions from a non-
Fermi liquid (NFL) to a Fermi liquid (FL) regime as the
temperature is lowered, in good agreement with the theoretical
results that consider the effects of the nematoelastic coupling
[31–33].

In this letter, we investigate the impact of the nematoe-
lastic coupling, glatt , on a two-dimensional (2D) SC state
that emerges near the onset of an Ising-nematic order. In
order to do that, we apply the strong-coupling Eliashberg
theory to obtain the critical SC temperature Tc and the gap
function �(θ, ωn) around a circular Fermi surface at T = Tc,
by considering both s-wave and d-wave symmetries. In this
connection, we highlight two recent works that address similar
issues regarding this problem, which can be viewed as com-
plementary to our present study (see Refs. [28,35]). The first
one [28] describes, within a weak-coupling BCS theory, how
SC emerges near a nematic QCP for a system in the presence
of such a nematoelastic interaction. The authors find that Tc

only increases if the nematoelastic coupling is strong enough
and the system is dominated by non-nematic interactions [28].
By contrast, the second work [35] focus on the properties of
the SC state driven by strong nematic fluctuations (but without
the nematoelastic coupling) from a Eliashberg-theory per-
spective. As a result, they find that nematic fluctuations always
favor an s-wave SC state, despite it becoming almost degener-
ate with a d-wave one in the weak-coupling regime [35].

Our main results are summarized in the phase diagram of
Fig. 1. The increase of λlatt ∼ g2

latt is always detrimental to
superconductivity and, therefore, reduces Tc and the �(θ, ωn).
This behavior is qualitatively similar for both s-wave and
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FIG. 1. Phase diagram of a 2D metallic system at the onset of
Ising-nematicity when the nematic degrees of freedom couple to the
acoustic phonons by means of an effective nematoelastic interaction
λlatt ∼ g2

latt . In the regime where λlatt is negligible compared to the
effective electron interaction γ ∼ g2, the SC state emerges out of
a non-Fermi liquid (NFL). On the other hand, as λlatt approaches a
lattice-induced quantum critical point (QCP∗), whose location de-
pends on γ as a power-law, the normal state from which SC emerges
is a Fermi liquid (FL). The solid line denoted by Tc refers to the
transition to the SC state calculated in the present work [see Eq. (11)].
The dotted-dashed line represents a crossover between the FL and the
NFL regimes, which is given by TFL ∼ λ

3/2
latt EF [30], where EF is the

Fermi energy.

d-wave pairing, although the reduction in Tc and �(θ, ωn)
becomes stronger in the latter case. In the limit where λlatt

is in the vicinity of a lattice-induced quantum critical point
(QCP∗), whose location depends on the effective electron
interaction γ ∼ g2 as a power law, the system undergoes a
SC-FL quantum phase transition. In addition, the effective
coupling λlatt allows us to obtain SC states emerging from dif-
ferent metallic states, represented by the FL and NFL phases.
This leads to interesting new predictions, because the NFL-SC
and the FL-SC phase transitions turn out to be described in
terms of different critical exponents, which may also vary for
each gap symmetry. As a result, we argue that the suppression
of Tc in the vicinity of the nematic QCP for the compound
FeSe1−xSx [20] may be interpreted as a fingerprint of nema-
toelastic quantum criticality.

Model. We model the instability to the nematic state in a 2D
system in terms of the coupling of the nematic order parameter
to the electronic quasiparticles [1,2]. We include the influence
of the lattice on that order parameter through a linear cou-
pling to the local orthorhombic strain ε(r) ≡ εxx(r) − εyy(r)
[25–29], where the strain is defined in terms of the displace-
ment vector u(r) by means of εi j = ∂iu j + ∂ jui [24,36]. The
minimal Hamiltonian describing this system reads

H = Hn-elec + Hn-latt, (1)

Hn-elec =
∑
k,σ

ξkψ
†
σ (k)ψσ (k) +

∑
q

�(q)ϕ(q)ϕ(−q)

+ g
∑
q,k,σ

f (k)ψ†
σ

(
k − q

2

)
ψσ

(
k + q

2

)
ϕ(q), (2)

Hn-latt =
∑
q �=0

[
1

2
u†

qN (q)uq + iglattaq · uqϕ(−q)

]
, (3)

where ψ†
σ (k) (ψσ (k)) is the creation (annihilation) opera-

tor for fermions with spin projection σ ∈ {↑,↓} and band
dispersion ξk, �q is the dispersion of the nematic bosons
described by ϕ(q), g and glatt are, respectively, the nematic and
the nematoelastic interactions, and f (k) ≡ (cos kx − cos ky)
denotes a d-wave form factor for a nematic state with B1g

symmetry. Moreover, the acoustic phonons are described in
terms of the Fourier-transformed displacement vector uq,
aq = (qx,−qy, 0) is a 2D vector, and N (q) stands for the
matrix of the elastic constants Ci j [24,36], which for a 2D
system with tetragonal symmetry is given by

N (q) =
(

C11q2
x + C66q2

y (C12 + C66)qxqy

(C12 + C66)qxqy C66q2
x + C11q2

y

)
. (4)

In order to obtain the effective field description of the
nematic interaction between the itinerant fermions, we con-
sider the one-loop correction of the nematic propagator by
the particle-hole polarization bubble, in addition to integrating
out the acoustic phonons from the action corresponding to
the Hamiltonian Hn-latt. As a result, if we set the density of
states to its Fermi level value NF , the bosonic propagator at
the bare QCP distance r0 evaluates to D−1 = N−1

F (r0 + Kq2 +
�elec) + �latt , where �elec and �latt refer, respectively, to the
particle-hole and lattice polarization bubbles. They are given
by

�elec(q,�m) = (NF g)2 cos2(2ϕ)
|�m|
vF q

, (5)

�latt (q,�m) = (γ2 + γ3)g2
latt

γ 2
1 − ϒ2(ϕ)

[
cos2(2ϕ) − γ1 + γ3

γ2 + γ3

]
. (6)

Furthermore, the parameters in the above equation turn out
to be γ1 = C11 + C66, γ2 = C11 − C66, γ3 = C12 + C66, and

ϒ(ϕ) =
√

1
2 (γ 2

2 + γ 2
3 ) + 1

2 (γ 2
2 − γ 2

3 ) cos(4ϕ) [31]. In what
follows, we consider systems in which the lattice is equally
strong to distortion fluctuations in both the B1g and B2g

channels. This implies that (C11 − C12)/2 = C66 and, con-
sequently, leads to γ2 = γ3. Therefore the bosonic nematic
mass becomes angular dependent and given by r(ϕ) = (r0 −
r0,c)/(Kk2

F ) + λlatt cos2(2ϕ), where r0,c ≡ NF g2
latt

C66
and λlatt ≡

r0,c

2Kk2
F

(1 + C12
C11

). Since r(ϕ) goes to zero only along the
diagonals of the Brillouin zone, the phenomenon of ne-
matic quantum criticality becomes directional-selective (see
Ref. [30]).

Self-consistent Eliashberg equations. The emergence of
the SC state in the present model is studied in terms
of the Migdal-Eliashberg theory [37–39]. As expressed in
Eqs. (1)–(3), we consider that the attractive interaction be-
tween the conduction electrons is provided solely by the
collective fluctuations of the nematic field ϕ(q), although
we note that other effects such as the Coulomb repulsion
and the electron-phonon interaction might also become rel-
evant in the limit in which lattice distortions are strong. In
order to derive the Eliashberg equations, we first express
the fermionic operators ψσ (k) and ψ†

σ (k) in terms of the
Nambu spinor �(k) = (ψ↑(k), ψ

†
↓(−k))T . As a result, the

interacting fermionic propagator related to �(k) becomes
G−1(k, ωn) = iωnτ

0 − ξkτ
z − �(k, ωn), where τ0 and τx,y,z

are, respectively, the identity and Pauli matrices in the Nambu
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space, and �(k, ωn) refers to the self-energy of the conduction
electrons. Taking into account the effect of vertex interac-
tions with bosonic propagators renormalized by one-loop
particle-hole and lattice-distortion corrections, the fermionic
self-energy evaluates to

�(k, ωn) = g2T
∑
k′,n′

f 2

(
k + k′

2

)
D(k − k′, ωn − ωn′ )

× τzG(k′, ωn′ )τz. (7)

The above result is formally obtained by summing an
infinite series involving rainbow Feynman diagrams with non-
interacting fermionic propagators.

The parametrization of the fermionic the self-energy
in Eq. (7) according to �(k, ωn) = iωn[1 − Zn(k)]τ0 +
χn(k)τz + �n(k)τx yields three coupled Eliashberg equa-
tions relating the mass renormalization function Zn(k), the
energy shift χn(k), and the anomalous self-energy �n(k) that
encodes the information on the pairing mechanism. To sim-
plify our analysis, we restrict the momentum dependence of
Zn(k), χn(k), and �n(k) to the angle θ of the Fermi momen-
tum kθ = kF (cos θ x̂ + sin θ ŷ) and evaluate the momentum
integrals perpendicular to the Fermi surface by setting the
density of states to NF , according to the Migdal-Eliashberg
approximation. This assumption is reasonable because the
nematic boson is assumed to be a slow mode compared to
a fermion, i.e., the boson dispersion is much smaller than
its fermionic counterpart. We also make the linearization of
these equations with respect to the anomalous self-energy

�(θ ), because this approximation is sufficient to determine
the Tc and the gap dependence on θ at the SC transition. As
a result, we obtain that the energy shift becomes identically
zero, i.e., χn(θ ) = 0. The remaining linearized Eliashberg
equations evaluate to

Zn(θ ) − 1 = πg2

2NF

T

ωn

∑
ωn′

∫ 2π

0

dθ ′

2π
D(kθ − k′

θ ′ , ωn − ωn′ )

× f 2

(
kθ + k′

θ ′

2

)
sgn(ωn′ ), (8)

Zn(θ )�n(θ ) = πg2

2NF
T

∑
ωn′

∫ 2π

0

dθ ′

2π
D(kθ − k′

θ ′ , ωn − ωn′ )

× f 2

(
kθ + k′

θ ′

2

)
�n′ (θ ′)
|ωn′ | , (9)

where g ≡ NF g and �n(θ ) ≡ �n(θ )/Zn(θ ) corresponds to the
SC gap. Therefore, by inserting Eq. (8) into (9), this reduces
the pairing problem to the solution of a 2D integral equa-
tion for �n(θ ).

We point out here that, instead of approximating the renor-
malization mass function Zn(θ ) by its scaling form at zero
temperature to solve the gap equation (9), we will employ
its exact expression at the transition temperature Tc. However,
this will require the numerical evaluation of the angular inte-
gral in Eq. (8). On the other hand, the Matsubara sum on the
right-hand side of this equation can be put in closed-form. By
evaluating it, we obtain

Zn(θ ) = 1 − 1

ωn

∫
θ ′

{
q(θ, θ ′)

[
ψ0

(
q(θ, θ ′)C(θ, θ ′)

2πγ T cos2(θ + θ ′)
+ 1

)
− ψ0

(
q(θ, θ ′)C(θ, θ ′)

2πγ T cos2(θ + θ ′)
+ n + 1

)]
− πγ T cos2(θ + θ ′)

C(θ, θ ′)

}
,

(10)

where ψ0(x) is the digamma function, q(θ, θ ′) ≡ 2| sin[(θ −
θ ′)/2]|, C(θ, θ ′) ≡ r + q2(θ, θ ′), γ = g2/(Kk2

F ) is the effec-
tive electron coupling, EF = vF kF is the Fermi energy, T =
T/EF (ωn = ωn/EF ) is the reduced temperature (frequency),
and

∫
θ
(· · · ) ≡ ∫ 2π

0
dθ
2π

(· · · ). Note that to obtain the expres-
sion in Eq. (10), we made the substitution f 2[(kθ + k′

θ ′ )/2] =
cos2(θ + θ ′). We should also point out that the distance to the
nematic QCP r = r(ϕ) depends on the scattering angles θ and
θ ′ through ϕ = (θ + θ ′)/2 − π/2. Finally, the last term on the
right-hand side of Eq. (10) diverges as the QCP is approached.
However, this divergent term is required to cancel out another
divergent contribution, which appears in the Matsubara sum
of Eq. (9) when n′ = n.

Numerical results. The critical temperature Tc and the
gap function �n(θ ) are obtained by solving numerically the
integral equation (9) by the Nyström method [40]. In this
case, we transform this equation into the eigenvalue prob-
lem

∑
j,m Kn,m(θi, θ j )�m(θ j ) = ε�n(θi ) and demand that the

highest eigenvalue ε should be equal to zero. All results
presented here are obtained by utilizing a cutoff with N =
30 Matsubara frequencies and then discretizing the interval
[0, 2π [ for the variable θ into 1000 points. For all results
appearing in this work, we also consider that the system is

located at the QCP emerging from lattice effects, i.e., at r0 =
r0,c. Fluctuations of the latter are taken by changing only the
effective coupling λlatt . If we set the microscopic interaction
glatt to a constant, this situation is obtained by fixing the elastic
constant C66 and then varying either C11 or C12.

Figure 2 describes the behavior of the SC gap for s-wave
and d-wave symmetries at the transition to the SC state, as a
function of λlatt . As the nematoelastic interaction is switched
on, the SC gap for both symmetries begins to decay along the
whole Fermi surface. This implies a monotonic behavior in
frequency for the SC gap �(s,d )

n (θ ) at any value of momentum
defined by θ . At the critical point λlatt = λlatt,c, where the SC
state undergoes a transition to a FL (QCP∗), the gap �(s,d )

n (θ )
becomes degenerate in frequency.

In Fig. 3, we display the dependence of Tc on the effec-
tive interaction γ for both s-wave and d-wave symmetries,
when λlatt is held fixed. For λlatt = 0, we find in agree-
ment with Ref. [35] that both SC critical temperatures for
these gap symmetries approach zero as a power-law given by
T (s)

c ∼ T (d )
c ∝ γ 2EF in the weak coupling regime. Besides,

T (s)
c is always larger than T (d )

c and this behavior also occurs in
the strong coupling limit, although in this case the difference
between T (s)

c and T (d )
c turns out to be more appreciable [see
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FIG. 2. [(a) and (b)] Behavior of the SC gap (in units of the Fermi energy) with s-wave symmetry along the Fermi surface and for Matsubara
frequencies ωn = (2n + 1)πT obtained by setting γ = 0.40 and then solving the linearized Eliashberg equations at T = Tc for (a) λlatt = 0
and (b) 0.10. Notice that the effect of increasing λlatt is to diminish �̄(s)

n (θ ) along the whole Fermi surface. (c) The SC gap at the hot spot
θ = 0 decreases monotonically with λlatt . At λlatt = λlatt,c, which is given here by λlatt,c ≈ 0.21, the gap �̄(s)

n (θ = 0) becomes degenerate in
both frequency and momentum. (d)–(f) show the behavior of a SC gap with d-wave symmetry which arises for γ = 0.40 and then fixing
(d) λlatt = 0 and (e) 0.18. (f) Behavior of �̄(d )

n (θ ) for θ = 0 as a function of λlatt and ωn. Notice that the s-wave and d-wave SC gap display
similar features as λlatt approaches λlatt,c.

Fig. 3(a)]. As λlatt becomes finite, the system evolves to a SC
state only if the electron interaction γ is larger than a critical
value γc, which according to the results in Figs. 3(b) and 3(c)
increases with λlatt . This bears some resemblance with the
Tc behavior of an effective model for low-density systems,
when one considers the combined effect of electron-phonon
attraction and electron-electron repulsion [41]. Similarly to
what happens with the electrical resistivity of a 2D system de-
scribed by the present model [31,33], the effect of λlatt on the
SC critical temperature becomes irrelevant in the regime γ �
λlatt . In fact, this can be seen in Fig. 3(c), which shows the ten-
dency for the difference T (s)

c − T (d )
c to saturate at a constant,

independent of λlatt , as γ flows to the strong coupling regime.
We also study the behavior of Tc for s-wave and d-wave

pairing by fixing γ and then varying the nematoelastic cou-
pling. As displayed in Fig. 4(a), the SC critical temperature
T (s)

c for s-wave pairing decreases monotonically with λlatt and

then becomes zero for nematoelastic couplings above a certain
critical value λlatt,c. Most importantly, we also find that T (s)

c
depends on (λlatt,c − λlatt ) as a power-law in the vicinity of
λlatt,c, as seen in the inset of Fig. 4(b). We also verified that
this dependence does not change, as γ varies from the weak to
the strong coupling regime. In fact, if we restrict the nematoe-
lastic coupling to the interval 0 � λlatt � λlatt,c [see Fig. 4(b)],
the numerical solution of the Eliashberg equation for �n(θ )
yields:

T (�)
c (γ , λlatt ) = T (�)

c,0 (γ )

[
1 − F�

(
1 − λlatt

λ
(�)
latt,c(γ )

)]
, (11)

where � ∈ {s, d}, T (�)
c,0 (γ ) denotes the SC critical tempera-

ture in the absence of nematoelastic coupling, and F�(x)
refers to a universal scaling function with the asymptotic

FIG. 3. SC critical temperature T c ≡ Tc/EF as a function of the effective electron interaction represented by γ , and the nematoelastic
coupling λlatt . (a) and (b) show the s-wave and d-wave behavior of Tc for λlatt = 0 and 0.15, respectively. Notice that for λlatt > 0, the SC state
appears only for γ > γc, where the critical interaction γc increases with λlatt . Besides, the s-wave Tc is always larger than its d-wave counterpart
and has a larger γc for the same value of the nematoelastic coupling. (c) In the γ � λlatt limit, the difference between the s-wave and d-wave
SC critical temperature Tc approaches a constant value, which is independent of λlatt .
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FIG. 4. Dependence of the SC critical temperature for s-wave pairing on the effective electron interaction γ , and the nematoelastic coupling
λlatt . (a) For a fixed value of γ , T (s)

c decreases monotonically as λlatt increases, and becomes zero at a critical coupling λ
(s)
latt,c ∼ γ ηs . The yellow

and blue regions refer, respectively, to the emergence of FL and NFL behavior in the absence of SC; they are separated by the crossover (solid)
line, which is given by TFL ∼ λ

3/2
latt EF . (b) The behavior of (T

(s)
c,0 − T

(s)
c )/T

(s)
c,0 as a function of (λlatt,c − λlatt )/λlatt,c is characterized by a universal

function, where T
(s)
c,0 = T

(s)
c (γ ) is the SC critical temperature for s-wave pairing in the absence of nematoelastic coupling. The inset shows the

power-law dependence of T
(s)
c on (λlatt,c − λlatt ) for γ = 0.8. The same feature is also found in the transition region for other values of γ .

dependence

F�(x) =
{

1 − A�xα� , if x → 0+,

B�(1 − x)β� , if x → 1−.
(12)

Figure 4(b) shows the features of F�(x) for s-wave pair-
ing, when one varies its argument from zero to one. In
addition, the behavior of F�(x) for d-wave pairing is quite
similar to the one presented in Fig. 4(b), although the pa-
rameters of that function differ for each gap symmetry.
In fact, according to our numerical solution, they evaluate
to As(d ) ≈ 0.68959 (0.71402), Bs(d ) ≈ 1.24779 (1.46962),
αs(d ) ≈ 1.42043 (1.4689), and βs(d ) ≈ 0.79867 (0.872001).
Although our calculations found that the s-wave and d-wave
Tc are characterized by different exponents α� and β�, we
cannot rule out the possibility that they are degenerate. In
fact, since αs and αd (or βs and βd ) are to some extent not far
numerically from each other, this particular question can only
be completely settled by either working with numerical solu-
tions containing even larger values for the Matsubara cutoff
or by finding an exact solution for the Eliashberg equation for
�n(θ ), which are both beyond the scope of the present work.
Finally, we also found numerically that the critical nema-
toelastic coupling has a power-law dependence on γ given
by λ

(�)
latt,c ∼ γ η� , with exponent ηs(d ) ≈ 1.78375 (1.32959).

Consequently, the s-wave SC state, when compared to

the d-wave state, is indeed less susceptible to lattice
distortions.

Conclusions and outlook. We have studied the emergence
of spin-singlet SC with either s-wave or d-wave symmetry
in a 2D electronic system near a nematic QCP, in which the
anisotropic nematic fluctuations couple linearly to the elastic
modes of the lattice. We find that the main effect of this
interaction is to reduce Tc and, for large enough nematoelastic
couplings, induce a SC-FL quantum phase transition. This
transition, along with the SC-NFL transition that takes place
for small values of λlatt , are described by power-laws charac-
terized by distinct critical exponents, which may also differ
for s-wave and d-wave pairings. Lattice effects were shown to
play a crucial role on the phase diagram of systems with only a
structural QPT to an orthorhombic state [24–29], as is the case
of the chemically substituted iron-chalcogenide FeSe1−xSx.
Therefore this compound represents to date the best physical
platform to observe the features investigated here. Indeed, it is
observed experimentally in the phase diagram of FeSe0.89S0.11

that Tc suffers a depletion at the onset of nematic order [20].
According to our present results, this might be related to an
increase of the nematoelastic coupling as the nematic QCP
is approached. This conclusion is also supported by several
recent experimental [20,34,42] and theoretical works [31–33]
on the behavior of the electrical resistivity exhibited by this
correlated material.
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