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Charged defects and phonon Hall effects in ionic crystals
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It has been known for decades that a magnetic field can deflect phonons as they flow in response to a thermal
gradient, producing a thermal Hall effect. Several recent experiments have revealed ratios of the phonon Hall
conductivity κH to the phonon longitudinal conductivity κL in oxide dielectrics that are larger than 10−3 when
phonon mean-free paths exceed phonon wavelengths. At the same time κH/κL is not strongly temperature
dependent. We argue that these two properties together imply a mechanism related to phonon scattering from
defects that break time-reversal symmetry, and we show that Lorentz forces acting on charged defects can
produce substantial skew-scattering amplitudes and related thermal Hall effects.
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Introduction. In recent years the thermal Hall effect has
frequently been employed as an informative probe of strongly
correlated materials [1–20]. In the process, it has become clear
that relatively large thermal Hall conductivities (κH ) that are
linearly proportional to magnetic field B are common in oxide
dielectrics. The linear dependence of κH on B is expected
since this nonreciprocal transport coefficient requires time-
reversal symmetry breaking. What is surprising is not that
κH/B �= 0, but that it is relatively large. For magnetic fields
∼10 T, the ratio of κH to the longitudinal thermal conductivity
κL is often larger than 10−3 over a wide range of temperatures
[1–4].

Large thermal Hall conductivities are not limited to mag-
netic materials, and even in magnetic materials usually have
an onset that is not related to that of magnetic order [1]. In
La2CuO4 the thermal Hall conductivity is almost isotropic
[3], like the phonon spectrum, whereas the magnon spec-
trum is quasi-two-dimensional. Although there must be a
magnon Hall effect, whose theoretical description is of inter-
est [21–25], it is therefore not typically the dominant source
of the thermal Hall effect. Phonons, the dominant heat carriers
in most dielectrics, must also have a Hall effect [12].

Large thermal Hall effects are normally observed in a tem-
perature range over which the the phonon mean-free path �

exceeds the typical wavelength of thermally active phonons,
λT ∼ h̄c/kBT , where c is the mode velocity. When this con-
dition is satisfied, phonon transport can be described using a
Boltzmann equation, and the phonon conductivity is limited
by phonon scattering. The nonreciprocity could in princi-
ple originate from an intrinsic mechanism that acts between
scattering events, or from a nonreciprocal property of the
extrinsic scatterers. Mechanisms responsible for intrinsic chi-
rality in phonon transport have been extensively investigated
[6–8,12,26,27]. Coupling to a spin environment can, for ex-
ample, provide phonon bands with a finite Hall viscosity, ηH

[19,20], which characterizes the strength of the time-reversal
symmetry breaking inherited from the spin system. Magnetic

fields also influence the lattice dynamics of ionic crystals di-
rectly through the Lorentz forces that act on moving ions [28].
The Lorentz force couples longitudinal in-phase motion of the
cations and anions to out-of-phase transverse motion. At small
k the chiral components of acoustic phonon polarization vec-
tors vanish like (ka)2. It follows that ηH has a Lorentz force
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FIG. 1. Left side: Longitudinal thermal conductivity κxx (top
panel) and the thermal Hall to longitudinal conductivity ratio κxy/κxx

(bottom panel) of a model in which scattering off charge defects is
weakly nonreciprocal in the presence of a magnetic field. Right side:
Schematic illustration of scattering of acoustic waves on charged de-
fects. Parameters have been chosen to fit the data (blue dots) reported
in Ref. [15]. The yellow, blue, and red shading in the bottom panel
identifies the temperature ranges in which boundary, defect, and
umklapp scattering are respectively dominant. Similarly high-quality
fits can be achieved in all systems that we have examined.
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contribution ∼Z∗eB/(ca) = M�cI/a, where ωcI = Z∗eB/Mc
is the ion cyclotron frequency, Z∗ is the effective ion charge,
M is the ion mass, and a is the crystal lattice constant. What-
ever its origin, Hall viscosity combined with nonchiral phonon
scattering always produces a thermal Hall conductivity. Be-
cause the chirality of the active phonons is proportional to k2,
and the typical k ∼ λ−1

T ∝ T , this mechanism always yields a
κH/κL ratio that declines with decreasing temperature. (Guo
et al. have recently concluded that the intrinsic mechanism
yields κH/κL ∼ T 4 [20] behavior.) Experimentally κH/κL is
weakly temperature dependent except at the lowest tempera-
tures where boundary scattering starts to play a role, pointing
to an extrinsic mechanism. In order to retain its impact at
low temperatures, time-reversal symmetry breaking must be
embedded in the properties of the phonon scatterers, not the
phonon medium.

Our model for phonon Hall effects applies when the
phonon mean-free path � exceeds the thermal wavelength
λT of acoustic phonons with energy h̄ω ∼ kBT , i.e., � � λT .
The mean-free path can be estimated from measured thermal
conductivities and heat capacities using the relationship � ∼
κ/cC, where C is the heat capacity. The thermal wavelength
is of order ∼aTD/T , where TD is the acoustic phonon Debye
temperature, and a is the crystal lattice constant. It has been
understood for decades [29–31] that phonon transport in this
regime, which is commonly attained in good crystals, can
be described using a Boltzmann equation. In the temperature
range of interest, scattering of long-wavelength longitudinal
acoustic (LA) phonons by defects, for example oxygen vacan-
cies, limits thermal transport [31]. The removal or the addition
of an atom from a lattice site disrupts the local bonding,
yielding strain fields that produce a crudely spherical defect
with elastic properties that differ from those of the surround-
ing medium, as depicted in Fig. 1. Since oxygen vacancies
and interstitials are dopants, the ions in its neighborhood have
a net charge when the donor bound electronic levels are not
occupied, and will therefore experience a local Lorentz force.
In this Letter we propose that the thermal Hall effect in many
oxide dielectrics is due to nonreciprocal phonon scattering
from charged defects. Specifically, we show that a contribu-
tion to phonon skew scattering that is linear in magnetic field
results from interference between Lorentz force and acoustic
potential scattering processes. As illustrated in Fig. 1, this
physical picture is able to account for many observations.

Phonon Boltzmann equation. We consider the steady-state
phonon distribution function fk,s of a system driven from
equilibrium by a temperature gradient ∇T . (Here k is the
phonon wave vector and s the mode label.) We write fk,s =
f (0)
k,s + gk,s, where f (0)

k,s is the equilibrium Bose-Einstein distri-
bution function and gks is linear in ∇T . At low temperatures
the thermal conductivity is limited by elastic scattering of lon-
gitudinal phonons [30,31]. The Boltzmann equation therefore
reads

ωk
∂ωk

∂k
·
(∇T

T

)(
− ∂ f (0)

k

∂ωk

)
=

∑
q

(Wq→k gq − Wk→q gk ),

(1)
where we have restricted attention to the longitudinal phonon
mode with frequency ωk. Here, Wk→q is the rate of elas-

tic scattering from initial state (k) to final state (q). For
temperatures well below the Debye temperature, the phonon
Hall conductivity is largest, ωk ≈ c|k|, where c is the longitu-
dinal phonon velocity. Nonreciprocal (skew) phonon scatter-
ing (Wq→k �= Wk→q) requires broken time-reversal symmetry
that is, in the case of interest, supplied by an external magnetic
field B = Bn̂B, where n̂B is a unit vector along the direction of
the field. For a cubic crystal with short-range scatterers,

Wk→q = 1

V
τ−1
ω ν−1

ω [1 − �ωn̂B · (k̂ × q̂)]δ(ω − cq), (2)

where V is the system volume, τω is the phonon relaxation
time, νω is the phonon density of states, and �ω 	 1 is a small
parameter, calculated explicitly below, that characterizes the
ratio of nonreciprocal to reciprocal phonon scattering. When
inserted in the Boltzmann equation, Eq. (2) yields the longitu-
dinal (κL) and Hall (κH ) thermal conductivities:

κL = k4
BT 3

2π2h̄3c

∫
dx τω

x4ex

(ex − 1)2
, (3)

κH = k4
BT 3

2π2h̄3c

∫
dx

�ωτω

3

x4ex

(ex − 1)2
, (4)

with h̄ω = kBT x. It follows that κH/κL ∼ �ω at ω ∼ kBT .
The goal of the next section is to estimate the parameter �ω

by investigating the interference between conventional long-
wavelength acoustic and Lorentz scattering processes.

Low-temperature phonon scattering. Since the ions in the
vicinity of a dopant complex have a net charge, the local
Lorentz force does not vanish in the interior of the scattering
center, as sketched in Fig. 1. Below we show that a contribu-
tion to phonon skew scattering that is linear in magnetic field
results from the interference between this Lorentz force and
the acoustic scattering potential. The strength of the effect can
be characterized by the ion-cyclotron frequency ωc, which is
∼105 Hz at B = 10 T, depending on the ion charge and mass.

In order to obtain an explicit form for the scattering am-
plitude we first examine acoustic scattering in the absence of
a magnetic field. It is convenient to rewrite the acoustic wave
equation in this limit as

(∇2 + K2
n

)
un(r) −

(
1 − K2

n

k2
n

)
∇[∇ · un(r)] = 0, (5)

where Kn = ω/cT n and kn = ω/cLn, where n = 1 (2) labels
the region outside (inside) the defect. Here c2

Tn = μn/ρn and
c2

Ln = (λn + 2μn)/ρn are, respectively, the squares of the
transverse and longitudinal phonon velocities, ρn is the mass
density, and λn and μn are Lamé constants. It is known that
ionic compounds, including high-Tc superconductors, display
acoustic wave attenuation [32–36] that survives to T = 0.
Several experimental studies have observed a correlation be-
tween acoustic wave attenuation and the density of oxygen
defects [35–37]. Inelastic relaxation effects in solids can ap-
pear, for example, where the strain fields of the probing
elastic wave differentially alter the energies of the atomic
sites available to mobile species [38]. We account for these
small absorption losses by including a kinetic viscosity coef-
ficient η1(2)ω 	 λ1(2), μ1(2) [39] in the acoustic model of the
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homogeneous and defect region, letting

μ1(2) → μ1(2) − iη1(2)ω,

λ1(2) → λ1(2) − iη1(2)ω. (6)

When a longitudinal wave propagating in the z direction
(k = kẑ [40]) impinges on the surface of the spherical scat-
terer, it can be scattered either as a longitudinal wave or as
a transverse wave. The scattering problem (5) can be con-
veniently solved in spherical coordinates by introducing the
scalar functions πLn and πT n defined by [41–47]

uLn = − 1

k2
n

∇πLn,

uTn = 1

Kn
∇ × ∇ × (rπT n). (7)

The scalar potentials corresponding to incident (i), transmitted
(t ), and scattered (s) waves can be written as [46]

rπ i
L =

∞∑
l=0

il+1(2l + 1)ψl (k1r)Pl (cos θ ), (8)

rπ t
L =

∞∑
l=0

il+1Al (2l + 1)ψl (k2r)Pl (cos θ ), (9)

rπ t
T = 1

K2

∞∑
l=1

il+1Bl (2l + 1)ψl (K2r)Pl (cos θ ), (10)

rπ s
L =

∞∑
l=0

il+1Cl (2l + 1)ζl (k1r)Pl (cos θ ), (11)

rπ s
T = 1

K1

∞∑
l=1

il+1Dl (2l + 1)ζl (K1r)Pl (cos θ ), (12)

with

ψl (x) =
√

xπ/2Jl+1/2(x),

ζl (x) =
√

xπ/2H (1)
l+1/2(x), (13)

where Jl+1/2(x) and H (1)
l (x) are the half-order cylindrical

Bessel and Hankel functions, Pl (cos θ ) is the Legendre func-
tion of degree l , and θ is the scattering angle. The coefficients
Al , Bl ,Cl , and Dl are obtained by imposing the continuity of
the displacement field and the stress tensor at the boundary
radius r = a:

ut
r(θ ) = ui

r(θ ) + us
r(θ ), σ t

rr(rθ ) = σ i
rr(rθ ) + σ s

rr(rθ ), (14)

where the stress tensor components

σrr = λ∇ · u + 2μ∂rur, (15)

σrθ = μ

(
∂ruθ − uθ

r
+ 1

r
∂θur

)
. (16)

If the difference in mass density and Lamé constants between
the two regions is small, i.e., ρ1/ρ2, μ1/μ2, λ1/λ2 ∼ 1, one
can safely neglect wave interconversion, i.e., Dl 	 Cl for each
l . Thus, most of the incident longitudinal acoustic wave ampli-
tude will be scattered as a longitudinal wave. In the Rayleigh
scattering regime [48], the wavelength of acoustic waves is
much larger than the defect size, i.e., ka 	 1. To leading order

in ka the scattered wave is dominated by its l = 0 component

uk′L(r) = êL
eikr

r
fkL→k′L, (17)

where êL = (cos φ sin θ, sin φ sin θ, cos θ ) and k′ = kêL are,
respectively, the polarization and the wave vector of the out-
going LA wave. Here fkL→k′L is the longitudinal scattering
amplitude from k to k′:

fkL→k′L = ImC0 − iReC0

k
, (18)

with (ImC0)2 + (ReC0)2 = −ReC0, as dictated by the extinc-
tion theorem [49]. Retaining only terms linear in the small
parameters η1(2)ω/μ1(2), we find

ImC0  + i
(ka)3

3

3(λ1 − λ2) + 2(μ1 − μ2)

3λ2 + 2(2μ1 + μ2)
, (19)

ReC0  +η1ω(4μ1 + 6μ2 + 9λ2 − 4λ1)

(3λ2 + 4μ1 + 2μ2)2
(ka)3

− 5η2ω(λ1 + 2μ1)

(3λ2 + 4μ1 + 2μ2)2
(ka)3. (20)

Interference between Rayleigh and Lorentz scattering.
Working in the continuum elasticity theory limit valid at low
temperatures, we describe the phonons by a displacement
vector field u(r) that satisfies the following wave equation:

∑
j=x,y,z

[
A0

i j + AR
i j + AL

i j − ω2δi j
]
u j (r) = 0, (21)

where A0
i j is the acoustic differential operator in the absence

of a magnetic field, AR
i j is the difference between the acoustic

differential operator inside and outside the defect region, ac-
counted for in the previous section, and AL is a Lorentz force
term that acts only inside the defect. For a uniform isotropic
medium

A0 =

⎛
⎜⎝

c2
1k2

x + c2
T 1k2 c2

1kxky c2
L1kxkz

c2
1kxky c2

T 1k2 + c2
1k2

y c2
1kykz

c2
1kxkz c2

1kykz c2
1k2

z + c2
T 1k2

⎞
⎟⎠,

(22)

where ki = −i∇i, k2 = k2
x + k2

y + k2
z , and c2

1 = c2
L1 − c2

T 1. For
a given frequency ω, there are three independent solutions
of unperturbed elastic waves with vector displacement fields
ukα (r) = êα cos(k · r), where |k| = ω/cL1 for the longitudi-
nal mode (k × êL1 = 0) and |k| = ω/cT 1 for two degenerate
transverse (k · êα = 0) modes.

The ions that surround a charged defect are subject to a
Lorentz force that is perpendicular to the applied magnetic
field and to the ion velocity. Our goal is to calculate the
corrections to the phonon scattering rate that are linear in
Lorentz force, and hence in magnetic field. This correction
is guaranteed by time-reversal symmetry to be nonreciprocal.
The Lorentz force contribution to the acoustic differential
operator,

AL
i j = iωωc(ĵ × î) · nB, (23)

is nonzero inside the defect sphere. Here ωc = ρcB/ρ2 is the
effective ion cyclotron frequency and ρc is the charge density
of the defect region.
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The scattering rate from an incoming longitudinal wave
with wave vector k to an outgoing unperturbed wave with
wave vector k′ is related to the acoustic scattering T matrix
by

Wk→k′ = 2π

V 2ω2
|〈k′|T |k〉|2δ(ωk′ − ω), (24)

where T = (AR + AL ) + (AR + AL )G0T is the total acoustic
scattering T matrix and

G0 = [
δi j (ω + iη)2 − A0

i j

]−1
(25)

is the unperturbed acoustic Green’s function. To first order
in AL, T = T R + T R(AR)−1AL(AR)−1T R + · · · [50], where
T R = AR + ARG0T R is the Rayleigh scattering T matrix,
which is related to the scattering amplitude calculated above
by

fkL→k′L = − 1

4π

1

c2
L1

〈k′, L|T R|k, L〉. (26)

Because the B = 0 long-wavelength phonon scattering is
weak, in the long-wavelength Rayleigh limit we can approxi-
mate T R(AR)−1 ≈ I , which yields T ≈ T R + AL, where

〈k′, L|AL|k, L〉 = iωωc(ẑ × êL ) · n̂B

×
∫

d3r e−i(k′−k)·r�(a − r)

︸︷︷︸
ka	1

iVspωωc(ẑ × êL ) · n̂B, (27)

and �(x) is the Heaviside step function and Vsp = 4πa3/3 is
the defect volume.

Phonon Hall effect. Combining Eqs. (27), (24), (26), and
(18), and assuming that the dielectric contains a density ns of
randomly distributed charged defects, we obtain the expres-
sion employed below to estimate the phonon Hall effect:

WkL→k′L = 2πns

V ω2
δ(ωk′L − ω)

×
∣∣∣∣4πc2

L1
iReC0 − ImC0

k
+ iVspωωc(ẑ × êL ) · n̂B

∣∣∣∣
2

.

(28)

Random Lorentz forces would on their own yield a phonon
scattering rate proportional to B2, and a skew scattering rate
proportional to B3. The linear in B effect observed experimen-
tally must therefore arise from interference between Rayleigh
and Lorentz scattering terms. Retaining only the linear terms
and setting ω = cL1k, we obtain an expression for the dimen-
sionless skewness parameter employed in Eq. (4):

�ω  ωcη1
( 4μ1

λ1
+ 6μ2

λ1
+ 9λ2

λ1
− 4

) − 5ωcη2
(
1 + 2μ1

λ1

)
λ1

[(
1 − λ2

λ1

) + 2
3

(
μ1

λ1
− μ2

λ1

)]2 . (29)

The right-hand side of Eq. (29) is energy independent, im-
plying that in the Rayleigh scattering regime, the Hall to
longitudinal conductivity ratio is temperature independent,
with both quantities ∝ T −1.

We estimate the typical values of �ω at magnetic field H =
15 T and temperature T = 15 K by setting ωc to the oxygen

ion cyclotron frequency, with ρc > 0 for oxygen vacancies
[51], and assuming a 1% difference for the Lamé constants
inside and outside the defect region with λ1, μ1 > λ2, μ2,
μ1(2) ∼ 0.8λ1(2) and setting η2ω/λ1 > η1ω/λ1 ∼ 10−2. These
estimates yield

κH

κL
∼ −10−3, (30)

which is consistent with the order of magnitude observed in
experiment [1–3]. Note that the skewness in these estimates is
larger than the ratio of the ion cyclotron frequency at 15 T to
the thermal phonon frequency at T = 15 K because the elastic
constant jump near the defect is assumed to be small in rela-
tive terms; skew scattering is larger in relative terms because
the reciprocal scattering processes are weak. The sign of the
thermal Hall conductivity is negative in many systems—also
in agreement with our result (30). It must be noted, however,
that the sign of Eq. (30), as well as its magnitude, is very
sensitive to the relative strength of elastic and attenuation
constants. Both positive and negative signs are possible in
our interpretation. When elastic scattering from electrically
neutral defects plays a more important role, the κH/κL (30)
ratio should decline. The emergence of an important role for
boundary scattering, which normally dominates in the low-
temperature limit, is signaled experimentally by a maximum
in κL(T ) at a finite temperature Tmax. The explanation for the
phonon Hall effect predicts, in agreement with experiment,
that κH/κL begins to decrease rapidly for T 	 Tmax.

Discussion. The dominant phonon scattering process in
good crystals is generally expected to switch from boundary
scattering, to defect scattering, to umklapp phonon-phonon
scattering as temperatures increase and typical phonon wave-
lengths shorten [29,30]. In comparing our theory with
experimental data, we must account for these additional
scattering processes, which are not expected to be strongly
nonreciprocal. If we assume that the heat capacity has its
asymptotic T 3 form over the temperature range of interest, we
find by applying Mattheisen’s rule [29] to phonon scattering
that

κL = AT 3

Cb + Cd T 4 + CuT 3 exp(−T ∗/T )
, (31)

κH

κL
= �ωCd T 4

Cb + Cd T 4 + CuT 3 exp(−T ∗/T )
. (32)

The constants Cb, Cd , and Cu parametrize the strengths of
boundary, defect, and umklapp phonon-phonon scattering, re-
spectively, and are multiplied by characteristic temperature
dependencies and summed to obtain the total phonon scatter-
ing rate. Here T ∗ is the umklapp scattering cutoff temperature
[29]. At higher temperatures the phonon Hall conductivity
in good crystals is insensitive to disorder or boundaries, and
it can in principle be accurately described using ab initio
methods that capture all relevant microscopic details [52–55].
Where this information is available, it can be used to improve
the interpretation.

We have explicitly noted in Eq. (32) that the ther-
mal phonon mean-free path � = cτω ∝ T −4 [30,31] when
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limited by defect scattering alone because phonon scatter-
ing from bulk defects declines when phonon wavelengths
exceed defect sizes. We fit Eq. (31) to the experimen-
tal κL data of Ref. [15]. This fit then fixes κH/κL, up
to a single dimensionless skewness scaling parameter �ω,
whose value is close to the maximum value of this
ratio.

Figure 1 shows that excellent agreement can be achieved
between our model and the experimental data. Our results
reveal that defect scattering on charge defects can lead to a
substantial κxy/κxx even farther away from the temperature
regime dominated by Rayleigh scattering, i.e., in the red-
shaded region in Fig. 1.

Large thermal Hall conductivity signals have been ob-
served in high-temperature superconductors over a wide range
of doping between insulating and overdoped states [1–3].
Since phonon chirality is observed to change continuously,
decreasing gradually with increases in doping, it is natural
to assume that the same mechanism applies in insulating and
pseudogap states. If the phonon Hall effect is indeed due to
scattering from charged defects, these would have to retain a
local effective charge in the pseudogap state. That is to say
that local screening by mobile electronic quasiparticles would
have to be imperfect at the thermal phonon timescale, on the
length scale of the defect. In cuprates phonon chirality drops
upon exiting the pseudogap state, which is consistent with

strengthening screening. Note that the Lorentz force on an
ion in a doped ionic crystal vanishes only if ionic charges are
perfectly screened locally, a condition that is approached only
in good metals.

In summary, we have constructed a model of thermal
transport by chiral phonons. The phonon conductivity is
limited by scattering from charged defects. In our model
long-wavelength acoustic phonons experience both elastic and
Lorentz force, due to the unscreened charge of the bound
dopants. We have shown that the puzzling giant thermal Hall
signal observed recently in many dielectric oxides can be
explained by the interference between elastic and Lorentz
acoustic potentials. The estimated magnitude and sign of the
effect is consistent with the low-temperature experimental
observations [1–3]. Kinetic viscosity in the crystal is required
to get a thermal Hall effect that is linear in field. Future
studies should address more systematically the parameters
describing the elastic properties of oxygen vacancies as well
as their effective charge in insulating and pseudogap phases.
We hope that our work will stimulate further experimental
investigations of the role of charged defects in phonon-driven
thermal transport.
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