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Emergence of multiple localization transitions in a one-dimensional quasiperiodic lattice
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Low-dimensional quasiperiodic systems exhibit localization transitions by turning all quantum states localized
after a critical quasidisorder. While certain systems with modified or constrained quasiperiodic potential undergo
multiple localization transitions in one dimension, we predict an emergence of multiple localization transitions
without directly imposing any constraints on the quasiperiodic potential. By considering a one-dimensional
system described by the Aubry-André model, we show that an additional staggered on-site potential can drive
the system through a series of localization transitions as a function of the staggered potential. Interestingly, we
find that the number of localization transitions strongly depends on the strength of the quasiperiodic potential.
Moreover, we obtain the signatures of these localization transitions in the expansion dynamics and propose an
experimental scheme for their detection in the quantum gas experiment.
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I. INTRODUCTION

Quasiperiodic lattices offer unique opportunities to study
localization transitions compared to random lattices. While
for systems with random disorder, an arbitrarily small disor-
der localizes all the single-particle states in low dimensions
[1,2], the quasiperiodic lattices exhibit localization transi-
tion through a critical quasidisorder [3,4]. Due to the much
easier accessibility of quasiperiodic lattices over random lat-
tices, localization transitions have been observed in various
recent experiments in the context of the Aubry-André(AA)
model [5–7].

One of the simplest but widely explored quasiperiodic
models which exhibits a localization transition is the AA
model [8]. Owing to the self-dual nature, the one-dimensional
(1D) AA model exhibits a sharp localization transition at
a critical quasidisorder turning all extended single-particle
eigenstates localized [8,9]. However, breaking the self-duality
of the AA model leads to a localization transition through
an intermediate phase with coexisting extended and localized
eigenstates separated by a critical energy known as the mobil-
ity edge (ME)—a situation similar to Anderson localization
in three-dimensions [10,11]. Numerous theoretical investiga-
tions have predicted the existence of the intermediate phases
and the ME in 1D quasiperiodic lattices [12–19], leading
to their successful experimental observations in recent years
[6,20–22].

In general, it is understood that after the localization tran-
sition in quasiperiodic systems, the localized states remain
localized as a function of the quasidisorder (hereafter referred
to as only disorder). However, a recent study by some of us
has revealed the phenomenon of the re-entrant localization
transition by imposing certain constraints on the parameters
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of the AA model [23]. It has been shown that a dimerized hop-
ping strength along with staggered on-site disorder drives the
system through two localization transitions. In other words,
after a first localization transition, some of the localized states
become extended for a range of parameters and eventually
become localized at a different critical disorder strength. On
the other hand, a cascade of localization transitions has been
predicted and observed [22] in a system with an engineered
quasiperiodic potential that continuously maps the AA model
to the Fibonacci model [24,25]. These remarkable findings
further motivate us to explore the possible existence of such
multiple localization transitions in a simple quasiperiodic
model without directly imposing any constraint on the qua-
sidisorder.

In this Letter, we show that in a 1D quasiperiodic lattice
described by the AA model, an additional staggered on-site
potential can drive the system through multiple localization
transitions. We show that for fixed disorder, the system un-
dergoes a series of localization transitions as a function of
the staggered potential. Interestingly, the model allows us to
control the number of localization transitions by appropriately
tuning the disorder strength. We further obtain the signatures
of these multiple localization transitions in the experiments on
expansion dynamics and provide an experimental scheme for
their observation using ultracold atoms in optical lattices.

II. MODEL

The 1D quasiperiodic lattice model considered for our
studies is given by

H = − J
∑

i

(c†
i ci+1 + H.c.) + λ

∑
i

cos(2πβi + φ)ni

+�
∑

i

(−1)ini, (1)
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where c†
i and ni = c†

i ci are the fermionic creation and the
number operator, respectively, at site i. J is the hopping matrix
element between the nearest-neighbor sites and λ corresponds
to the disorder strength. Unless mentioned otherwise, all
the numerical simulations are performed under open bound-
ary conditions (OBCs). The quasiperiodicity is ensured by
choosing irrational numbers β = (

√
5 − 1)/2—known as the

inverse golden ratio and β = Fn−1/Fn with Fn being the nth
Fibonacci number for open and periodic boundary conditions
(PBCs), respectively. The ratios of Fibonacci numbers are
used to protect the quasiperiodicity in the PBC [3,15,26,27]
which tend to the inverse golden ratio for large system sizes. φ
is the phase offset between the primary and secondary lattices
and � is the on-site staggered potential. We set J = 1 as the
unit of energies and considered system sizes according to the
Fibonacci series. Note that when � = 0, Eq. (1) represents
the standard AA model which exhibits a sharp localization
transition at λAA = 2. For our analysis, we consider large sys-
tem sizes such that the effect of φ is negligible. Therefore, for
most of the cases, we set φ = 0 unless otherwise mentioned.
It is important to note that the lattice corresponding to Eq. (1)
has already been used as a tool to observe the localization
transitions [6,7,28]. However, the localization transition of the
model corresponding to Eq. (1) itself has not been explored
in detail except for some specific parameter domain where a
re-entrant localization of individual states has been predicted
[29]. In the following, we explore the physics of this simple
yet not well-explored model and predict the phenomenon of
multiple localization transitions.

III. MULTIPLE LOCALIZATION TRANSITIONS

In this section, we study the localization transition of the
model given in Eq. (1) and the central result is given as the
phase diagram in the �-λ plane as depicted in Fig. 1(a).
The blue region below (above) the red region is the extended
(localized) phase and the red region corresponds to the inter-
mediate phase where both extended and localized states exist.
It can be seen that the system undergoes localization transi-
tions (from all states extended to all states localized) through
the intermediate region as a function of λ for all values of �

except at � = 0 (the AA limit). This is expected as the self-
duality of Eq. (1) is broken due to the onset of �. However,
for some particular values of �, two localization transitions or
the re-entrant localization transitions [23] occur as a function
of λ. This type of signature is similar to the situation discussed
in Ref. [23]. However, the interesting feature here is that for
a range of λ (1 < λ � 2), the system undergoes a series of
localization transitions as a function of �. In the following,
we discuss the phase diagram of Fig. 1(a) in detail.

The signatures of the localization transition can be dis-
cerned from the participation ratios (PRs) [3,4,14,23] which
are considered to be the standard diagnostics to study the
localization transitions. We compute the inverse participa-
tion ratio (IPR) and the normalized participation ratio (NPR)
for the mth eigenstate defined as IPRm = ∑L

i=1 |ψ i
m|4 and

NPRm = (L
∑L

i=1 |ψ i
m|4)−1, respectively, where i is the site

index [3,12,13]. The values of IPRm = 0 ( �= 0) and NPRm �=
0 (= 0) in the large L limit characterize the extended (lo-

FIG. 1. (a) The phase diagram in the �-λ plane obtained us-
ing the values of η for a system of size L = 17711. (b) IPR
of all the eigenstates as a function of energies and λ for � =
1.8 and a system size of L = 17711. (c) Extrapolated values of
〈IPR〉 (dashed red), 〈NPR〉 (dashed blue) with system sizes L =
2584, 4181, 6765, 10946, 17711, 〈S〉/ ln(L) (solid green) for L =
17711 and 〈r〉 (dot-dashed black) for L = 2584 are plotted as a func-
tion of � for λ = 1.5, showing the multiple localization transitions.
The 〈r〉 is computed using PBC with β = 1597/2584 and an average
over 5000 phase offsets φ are considered. The intermediate phases
are indicated by the grey shaded regions. (d) IPR of all the eigenstates
as a function of state index and λ for � = 1.8 and L = 17711. The
white dashed line in (a) indicates the AA critical point at λ = 2.

calized) states. The re-entrant localization behavior can be
understood by directly plotting the IPR as a function of all the
eigenenergies and eigenstates of Eq. (1) for different values of
λ as depicted in Figs. 1(b) and 1(d), respectively, for an exem-
plary value of � = 1.8. While the regions with dark blue (red)
color for all states indicate the extended (localized) phases
at weak (strong) values of λ, two intermediate phases in the
range 0.4 � λ � 0.8 and 1.4 � λ � 1.6 indicate the presence
of both extended (NPR �= 0) and localized (IPR �= 0) states.
Based on the behavior of the PRs of the states, we compute
the phase diagram shown in Fig. 1(a) by plotting the quantity
η = log10[〈IPR〉 × 〈NPR〉] [14,23] in the � − λ plane. Here
〈 · 〉 stands for the average over the entire spectrum. For the
extended or localized phase since either 〈IPR〉 or 〈NPR〉 has
1/L dependence on the system size, η < − log10 L, i.e., η <

−4 as L ∼ 104 in our case but when both of them are finite,
i.e., of O(1), we get −4 < η < −1. The phase diagram clearly
exhibits two localization transitions (re-entrant localization)
as a function of λ for several values of �. However, for some
fixed values of λ, the localization transition is robust as a
function of �. For smaller λ, there exists only one localiza-
tion transition at larger �. With an increase in λ, the system
exhibits multiple localization transitions as a function of �.
Interestingly, the number of localization transitions increases
up to λ � 2 = λAA, where four localization transitions can
be seen.
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FIG. 2. Even-odd δe−o (red) and odd-even δo−e (blue) for λ =
0.75 and different values of �. For (a) � = 0.0, (b) � = 0.9, and (c)
� = 3.0, the system lies in the extended, intermediate, and localized
phases, respectively. The results are obtained for a system of size
L = 28 657 and β = 17 711/28 657 under PBCs.

To quantify these localization transitions as a function of
�, we plot the extrapolated values of average PRs as a func-
tion of � in Fig. 1(c) for a cut through the phase diagram
of Fig. 1(a) at λ = 1.5. Initially, when λ = 1.5 and � = 0
(AA limit), the system is in the extended phase indicated
by 〈IPR〉 = 0 and 〈NPR〉 �= 0. With an increase in �, the
system enters into different phases. The behavior of 〈IPR〉
together with 〈NPR〉 clearly indicates transitions to the lo-
calized phases at three different critical values of � such
as �c ∼ 0.7, 1.2, 1.9 and three intermediate phases emerge
(shaded regions). These localization transitions are further
complemented by inspecting the behavior of other parameters
of interest such as the Shannon entropy [30–32] and the gap
ratio [16,17]. The Shannon entropy is defined from the single-
particle states as Sm = −∑

i |ψ i
m|2 ln(|ψ i

m|2), which vanishes
for the localized states due to participation from a single
site only and approaches its maximum value ln(L) for the
extended states where the wave amplitude is finite for all
lattice sites [32]. On the other hand, the average value of
the gap ratio rm = min(δm,δm+1 )

max(δm,δm+1 ) , where δm = Em − Em−1 is the
difference between two adjacent energies calculated using
PBCs, is 0 (0.386) in the extended (localized) phases [16,17].
Here, Em are the eigenenergies arranged in increasing order.
We plot 〈S〉/ ln(L) and 〈r〉 as a function of � in Fig. 1(c). The
Shannon entropy clearly vanishes in the localized phases and
remains finite in both the extended and intermediate phases
as expected. On the other hand, 〈r〉 approaches its maximum
value (as predicted by the Poissonian statistics) in the lo-
calized phases and decreases in the intermediate phases and
becomes vanishingly small in the extended phase. All these
quantities together confirm the multiple localization transi-
tions of Fig. 1(a).

To further understand the behavior of 〈r〉, we compute
the even-odd (odd-even) level spacing which is given by
δe−o = E2m − E2m−1 (δo−e = E2m+1 − E2m) [32,33] that can
clearly distinguish between the extended, intermediate, and
localized phases. In the extended region, due to the presence
of doubly degenerate spectrum of the underlying Hamiltonian
with no on-site staggered potential, δe−o vanishes and hence is
well separated from δo−e as shown in Fig. 2(a). On the other
hand, δe−o and δo−e have no clear distinction between them
for the localized states as the degeneracy is lifted [Fig. 2(c)].
However, in the intermediate region [Fig. 2(b)], we see regions
of finite and vanishing gaps between δe−o and δo−e when
the states are extended and localized, respectively. Therefore,

FIG. 3. The density distribution during the time evolution of an
initial state for different values of � (a)–(h) at a fixed λ = 1.5 and
L = 2584 with an average over 500 different values of phase offset
φ. Only central 201 sites are shown for clarity.

〈r〉 attains zero (maximum) value in the extended (localized)
regions as min(δm, δm+1) vanishes for all m. However, in the
intermediate region, it lies in between the two extreme values.
The important inferences which stem out from our analysis so
far are as follows. From Fig. 1(a), it is clear that, in general, �
favors the localization transition. However, for some values of
� the AA limit of the localization transition is unaffected and
the (re)localization transition occurs exactly at λ = λAA = 2.
On the other hand, as a function of �, there occurs only
one localization transition in the limit of smaller λ. How-
ever, for larger λ, the system undergoes multiple localization
transitions. While further analysis is necessary to understand
the physics behind these intriguing behavior of multiple lo-
calization transitions and the associated intermediate phases,
one possible reason for the multiple localization can be as
follows. Due to the two competing on-site potentials such as
the disorder and staggered potential, a situation might favor
an overlap of two nearest-neighbor states turning a localized
state extended [22]. This kind of re-entrant localization of
the individual states happens in different parameter domains
depending on the energies of the states. Hence, the system as
a whole exhibits multiple localization transitions.

IV. EXPANSION DYNAMICS

In this section, we analyze the multiple localization transi-
tions discussed above in the expansion dynamics. Our analysis
is based on the standard quenching protocols of unitary
time evolution, i.e., |
(t )〉 = e−iHt |
(0)〉, with the time-
independent Hamiltonian H given in Eq. (1) and an initial
state |
(0)〉 at t = 0. For our studies, we consider |
(0)〉 =
| · · c†

0 · ·〉, a state corresponding to a particle located at the
center of the lattice with open boundary conditions.

First, we track the real space density evolution
〈ni(t )〉 computed using the time-evolved state |
(t )〉
as shown in Figs. 3(a)–3(h) for different values of
� = 0.0, 0.45, 0.75, 1.05, 1.5, 1.8, 2.0, 4.0, respectively,
for a cut through the phase diagram at λ = 1.5. While the
extended and localized phases are characterized by the
fast and no spreading of the densities, respectively,
the intermediate phases are characterized by a bimodal
distribution where part of the density remains localized
around the central site and a part expands slowly. The
bimodal nature of the density profile is due to the presence of
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FIG. 4. (a) σ (t ) versus t (b) Pr=40(t ) versus t for � =
0.0, 0.45, 0.75, 1.05, 1.5, 1.8, 2.0, and λ = 1.5. (c) Pr (t =
105(1/J )) as a function of r/L shows the multiple localization tran-
sition (see text). (d) The time-evolved values of σ (red dashed) and
Pr=40 (blue solid) to t = 105(1/J ) are plotted as a function of � for
λ = 1.5. The shaded regions indicate the intermediate phases. For all
cases, a system size of L = 4181 is considered.

both localized and extended states in the intermediate phase.
Although this quantity can be observed in experiments [34] to
obtain clear signatures of the multiple localization transition,
we compute the root mean-square displacement defined
as σ (t ) = [

∑
i(i − i0)2|ψi(t )|2]1/2, where i0 is the initial

position of the particle. This quantity directly corresponds to
the expansion of the wave packet and exhibits distinct features
in its long time evolution for the extended, intermediate, and
localized phases, as recently observed in the quantum gas
experiments [6].

While a faster (slower) expansion characterizes the
extended (intermediate) phases, the localized phases are
characterized by no expansion, as shown in Fig. 4(a).
In the figure, the saturation of σ (t ) to different val-
ues after a long time evolution [3,6] for different
� = 0.0, 0.45, 0.75, 1.05, 1.5, 1.8, 2.0, 4.0, and λ = 1.5
clearly indicates the multiple localization transitions.

We also compute the survival probability defined as
Pr (t ) = ∑r/2

i=−r/2 |ψi(t )|2, which is the probability of finding
the particle within a range of sites between −r/2 to r/2 for
small r [33,35,36]. For the quenching to the extended phase,
due to the fast expansion of the wave packet, Pr (t ) tends to
vanish in the long time evolution. On the other hand, for the
localized phases, Pr (t ) is maximum (Pr (t ) → 1), indicating
no spreading. However, in the intermediate phases, due to
the finite probability of both escaping and remaining within
the small range of r, the value of Pr decreases but remains
finite. To examine this behavior, we plot Pr=40(t ) as a function
of t in Fig. 4(b) for parameters considered in Fig. 4(a) and
obtain a clear feature of multiple localizations. Additionally,
the multiple localization transitions can also be seen by look-
ing at the behavior of Pr as a function of r/L for different
values of � after the long time evolution [Fig. 4(c)]. As in the
extended phase (� = 0), the probability of finding the particle
at all sites is equal to 1/L, the Pr varies as r/L, depicting an
almost straight line. For the localized phases, Pr → 1 within a
short range of r/L as expected. However, for the intermediate

phases, Pr → 1 at different values of r/L for a given time
t . The saturation of Pr is dependent upon the localization
length; the larger the localization length, Pr → 1 at larger r/L
value and vice versa. As � increases, the multiple localization
features can be clearly seen as the position of Pr → 1 shifts
between the extended and localized limits.

Finally, to clearly see the signatures of the multiple lo-
calization transitions from the expansion dynamics, we plot
the saturated values of σ [t = 105(1/J )] along with Pr[t =
105(1/J )] as a function � for λ = 1.5 and L = 4181. The
variation of Pr along with σ clearly shows three localization
transitions and three intermediate phases [shaded regions in
Fig. 4(d)] as already shown in Fig. 1(c).

V. EXPERIMENTAL SCHEME

In this section, we provide a realistic setup to observe
the multiple localization transitions predicted above in optical
lattice experiments. It should be noted that the lattice model
considered here has already been used as a tool to study the lo-
calization and topological physics [6,7,28,37] in quantum gas
experiments. For the observation of the localization phenom-
ena, a lattice with on-site staggered potential (superlattice)
was used to create an initial state for the dynamical evolution
and was not part of the final quasiperiodic system. However,
in our case the superlattice potential is itself a parameter of
the Hamiltonian and moreover, our predictions are based on
the dynamics of a single-particle initial state. Therefore, we
propose a different method where the single-particle initial
state can be created and the dynamics can be observed.

Following the prescriptions given in Ref. [6,37], first a
square lattice can be created with superlattice (normal lattice)
along the x (y) directions using the equation

V (x, y) = VP cos2

(
2πx

d

)
+ VL cos2

(πx

d
− ϕ

)

+VP cos2

(
2πy

d

)
,

where VP and VL are the depths of the primary and the long lat-
tices, respectively, d is the lattice constant and ϕ is the phase
difference between them. By choosing VP � VL and ϕ = π/3,
a superlattice relevant for our studies can be created along the
x direction whereas the lattice remains uniform along the y
direction. When loaded with ultracold atoms (spin-polarized
fermions or hardcore bosons), an initial stripe phase can be
formed where atoms occupy the rows of deep lattice sites
along the y direction. Further, the atoms can be selectively
removed from all rows except the central row [34], leading to
a situation where each individual tube contains only one atom
localized at the center. Now, by superimposing a disorder lat-
tice of the form VD cos2( πx

dD
) along the x direction, the desired

initial state can be achieved which can be deep in the localized
phase of the phase diagram shown in Fig. 1(a). Following
an appropriate quenching protocol, the multiple localization
transitions can, in principle, be observed by measuring the
above-mentioned quantities.
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VI. CONCLUSIONS

We have studied the localization transitions in a 1D
quasiperiodic lattice of AA type with on-site staggered po-
tential. By analyzing various physical quantities such as PRs,
Shannon entropy, and gap ratio, we have predicted the sce-
nario of multiple localization transitions in the parameter
space. The important observation is that for fixed disorder
strengths, there exist multiple localization transitions of the
system as a function of the staggered potential strength. In-
terestingly, the number of localization transition as a function
of the staggered potential increases with an increase in dis-
order strengths. Apart from this, the system undergoes two

localization transitions as a function of the disorder strength
for different values of the dimerization—a feature similar to
Ref. [23]. All the localization transitions are found to occur
through intermediate phases hosting both the extended and
localized states. We have further analyzed these findings in
the context of expansion dynamics and proposed a method
for observation of the multiple localization transitions in the
quantum gas experiments.

Note added. Recently, we became aware of an interesting
recent work [38], following which the MEs can be analyt-
ically estimated in some limiting situations of the model
considered in our studies, indicating multiple localization
transitions [39].
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