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We explore topological transitions in the type of propagation of surface electromagnetic modes in massive
anisotropic tilted two-dimensional (2D) Dirac systems. The presence of tilting and mass gives rise to an indirect
band gap that strongly modifies the joint density of states compared to the gapless system. New Van Hove
singularities appear, and the interplay between intra- and interband transitions leads to an anisotropic optical
conductivity with imaginary parts acquiring opposite signs in orthogonal directions, opening the possibility of
having hyperbolic propagation of plasmons. Isofrequency contours and low plasmon losses, as obtained from
the dispersion relation, show that transitions between purely anisotropic quasielliptical and well-defined, highly
directional, hyperbolic modes are attainable only when tilt and mass coexist via frequency and Fermi level
variation. This behavior could be probed in massive tilted 2D Dirac materials like the organic-layered compound
α-(BEDT-TTF)2I3 [BEDT-TTF = (bis-(ethylenedithio)tetrathiafulvalene)] or WTe2, in which hyperbolic plas-
mons were recently observed, through far-infrared absorption, optical nanoscopy, and similar current tools in
graphene plasmonics.
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The recent emergence of natural two-dimensional (2D)
hyperbolic materials [1,2] offers a way to circumvent the
fabrication challenges of hyperbolic metasurfaces [3] and
the constrictions on the dispersion relation that lead to siz-
able structural periodicity [4]. Moreover, these 2D materials
have shown hyperbolic plasmonic behavior in a wide range
of frequencies from midinfrared to UV, accompanied by high
tunability with doping and gating [5]. For example, exper-
iments on thin films of WTe2 demonstrated a hyperbolic
frequency range of 13–18 THz [6] originating from in-
plane intraband anisotropic transitions [7], and first-principles
calculations showed a second window around 241 THz, as-
sociated with resonant anisotropic interband transitions via
band nesting [8]. In contrast, MoTe2, another transition-metal
telluride, is a natural hyperbolic material with low losses
across the visible and ultraviolet regions [9] (725–1450 THz).
Still, the hyperbolicity condition now relies upon the in-
plane and out-of-plane components of the dielectric tensor.
Similar mechanisms are behind the indefinite behavior of
electride materials [10] and Van der Waals crystals [11] that
present hyperbolic windows in the infrared and layered hexag-
onal crystals [12] that are hyperbolic in the visible and UV
range. Other examples of two-dimensional hyperbolic materi-
als include black phosphorous, with two hyperbolic windows
[13,14] in the infrared (80 THz) and visible (677 THz) ranges;
carbon phosphide [15], which is hyperbolic in the infrared;
and 8-Pmmn borophene [16], MoOCl2 [17], and nodal-line
semimetals [18,19]. In all these systems, hyperbolicity results
from the intrinsic anisotropic arrangement of atoms in the
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material and its corresponding anisotropic interplay of intra-
and interband optical responses. Therefore, typical isotropic
Dirac materials like graphene do not display hyperbolic plas-
mons; even with anisotropic Fermi velocity [20] or tilting
[21], the low-loss plasmon dispersion for these materials is
still elliptical. However, in a recent study, we showed that
massive tilted Dirac systems, like the metal-organic (which
consists of alternatively conducting layers of BEDT-TTF (bis-
(ethylenedithio)tetrathiafulvalene) molecules and insulating
layers of tri-iodine anions) [22,23], present a directional op-
tical response due to the combination of tilting and gap [24],
thus opening the possibility of hosting low-loss hyperbolic
plasmons for Dirac materials. Consequently, in this Letter,
we report a scenario of hyperbolic propagation in 2D Dirac
systems involving tilt and mass (in the tens of terahertz) and
show that if one of these elements is absent, plasmon propa-
gation is strictly the purely anisotropic elliptic type, without
any transition to a hyperbolic regime.

We consider a 2D gapped anisotropic Dirac system with
the low-energy Hamiltonian [24–27]

Hξ (k) = ξ (h̄vt ky1 + h̄vxkxσx + ξ h̄vykyσy) + �σz, (1)

where σi are Pauli matrices defined in the pseudospin space,
the carrier velocities vx and vy account for the anisotropy of
the model, and k = kxx̂ + kyŷ is the electron wave vector for
states in the vicinity of the K (K ′) point with valley index ξ =
+ (−); 1 is the 2 × 2 identity matrix. The system includes a
mass � > 0 in each valley and an amount of tilting ξvt along
the ky axis. In the absence of mass, the model describes some
2D graphenelike materials and organic conductors [21,28–
30]. Taking vx = vy = vF reduces Eq. (1) to the graphene
Hamiltonian, while the 8-Pmmn borophene Hamiltonian is
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FIG. 1. Energy bands at a ξ = + valley of a massive tilted Dirac
system and two cuts with planes ky = 0 and kx = 0. Along the kx

axis the bands are separated by 2�, but along the ky axis the system
presents the minimum separation 2�̃ (<2�), which is of indirect na-
ture. This represents an additional source of anisotropy and modifies
the interplay between intra- and interband contributions to the optical
response.

recovered with the values [31] vx = 0.86vF , vy = 0.69vF , and
vt = 0.32vF , with vF = 106 m/s. A realistic example of the
complete model is the organic conductor α-(BEDT-TTF)2I3,
a well-recognized 2D massive Dirac fermion system with a
pair of tilted Dirac cones under hydrostatic pressure close to a
critical pressure [23,32–34]. Recently, a Hamiltonian similar
to (1) was derived from an eight-band model for monolayer
WTe2 near the Dirac points [35], with vx = 0.644 × 106 m/s,
vy = 0.365 × 106 m/s, and vt = 0.463 × 106 m/s. It is in this
material that natural hyperbolic plasmons have been mea-
sured [6]. Moreover, our model will also apply to 8-Pmmn
borophene if a band gap is opened by hydrogenation, as re-
cently predicted [36].

The energy-momentum dispersion reads

εξ,λ(kx, ky) = ξαt ky + λ

√
α2

x k2
x + α2

y k2
y + �2, (2)

where αi = h̄vi (i = x, y, t, F ) and the index λ = ± labels the
conduction (λ = +) and the valence (λ = −) bands in each
valley ξ = ±. A distinctive feature of the model is that the si-
multaneous presence of tilt and mass produces an indirect gap
in each valley around the nominal Dirac point [26] (Fig. 1).
Indeed, the conduction branches εξ,+(k) present a minimum
at k = −ξQŷ, while the valence branches εξ,−(k) display a
maximum at k = +ξQŷ, where αyQ = �(γ /

√
1 − γ 2), with

the tilting parameter γ = vt/vy (0 � γ < 1). Thus, a Fermi
level within the gap reads εF < �̃, where �̃ = �

√
1 − γ 2 <

�. This means that a new scenario is possible with the Fermi
level lying in the “indirect zone” �̃ < εF < �. This has a
striking effect on the spectrum of interband transitions [24].
(1) For the Fermi level within the gap, the joint density of
states (JDOS) displays a graphenelike linear dependence on
the exciting energy h̄ω above the threshold of 2�, but in-
volving the geometric mean velocity

√
vxvy instead of Fermi

velocity vF . (2) On the other hand, for εF > �, the absence of
particle-hole symmetry leads to the appearance of two critical
energies,

h̄ω± = 2
[
εF ± γ

√
ε2

F − �̃2
]
/(1 − γ 2), (3)
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FIG. 2. Optical conductivities σxx (ω) and σyy(ω) (in units of
2e2/h) below the onset of interband transitions. (a) �̃ < εF < �

and (b) εF > �. We take � = 110 meV. The shaded areas indicate
hyperbolic regimes.

instead of the unique absorption edge 2εF , characteristic
of monolayer graphene. Below ω− the JDOS vanishes, and
above ω+ it presents the typical linear behavior. Between
ω− and ω+ the behavior is no longer linear, and globally,
the JDOS displays a behavior which resembles that of the
ungapped 8-Pmmn borophene [21]. (3) In contrast, when the
Fermi level lies in the indirect zone, the JDOS displays a
set of three Van Hove singularities (at 2� and h̄ω±) and a
significant overall size reduction due to a drastic shrinking of
the momentum space available for direct transitions, caused
by the indirect nature of the gap. In the same way, the in-
traband spectral weight is also anisotropic with a nonlinear
dependence on the Fermi energy [24].

These spectral characteristics reveal that the intraband
and interband contributions to the optical conductivity ten-
sor σi j (ω) can be strongly modified by locating the Fermi
level properly [37]. This offers the opportunity to control the
form of propagation of surface electromagnetic modes. In
particular, as we will see below, the conditions for hyperbolic
plasmons become accessible. As is well known [1,3,38], a
2D material can support the hyperbolic dispersion relation of
plasmons when Im[σxx(ω)]Im[σyy(ω)] < 0. The combination
of time-reversal symmetry and broken inversion symmetry of
the model (1) leads to an anisotropic response [24], σi j (ω) =
δi j[σxx(ω)δix + σyy(ω)δiy]. Figure 2(a) shows the xx and yy
components when the Fermi level lies in the indirect zone
�̃ < εF < �, as calculated from Kubo’s formula [37]. A
well-defined hyperbolic region of frequencies exists where
the losses are negligible, below the onset 2� of interband
transitions and above the Drude peak. A hyperbolic region
also appears for εF > �, as can be seen in Fig. 2(b), with its
width narrowing as �/εF approaches unity.

It is interesting to note that for a system with � � 0 and
γ = 0, the sign change of the imaginary parts of the longitu-
dinal conductivities occurs at exactly the same frequency, and
therefore, Im[σxx(ω)]Im[σyy(ω)] � 0 in the whole frequency
range [Fig. 3(a)]. On the other hand, when only tilting is
present, � = 0 and γ �= 0, the condition for hyperbolicity is
satisfied but only above the onset for interband absorption
[Fig. 3(b)], implying damped hyperbolic modes.

The calculations reveal that only the simultaneous pres-
ence of mass and tilting provides a way to asymmetrically
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FIG. 3. Optical conductivities σxx and σyy (in units of 2e2/h) for
Dirac cones with (a) gap, (b) tilt, and (c) gap and tilt. The shaded
zones indicate the hyperbolic regimes. For (a) and (c) we take � =
110 meV and εF > �. The vertical dashed line denotes the onset
h̄ω− of interband transitions in each case; it is blueshifted when a
gap is introduced in the tilted system.

change the magnitude of the interband response versus the
(positive) intraband contribution to Im[σii] in order to fulfill
the hyperbolicity condition in a spectral region of low loss.
For εF > �, the opening of a gap in the tilted system cause a
blueshift of the absorption edge h̄ω−, increasing the frequency
region between the Drude absorption and Landau damping
[Fig. 3(c)]. This is in contrast to the gapless case, in which
the onset for interband transitions can be arbitrarily small as
εF → 0, as in monolayer graphene or borophene 8-Pmmn
[21]. Similarly, when �̃ < εF < �, a threshold of 2� appears
for single-particle excitations, which also left spectral space
for undamped hyperbolic plasmons.

The dispersion relation of surface waves localized in
the z direction and propagating along the direction of the
wave vector q = qxx̂ + qyŷ = q(cos φx̂ + sin φŷ) on the xy
plane is given by [2,38,39] σ̃xx(q2

x − k2
0 ) + σ̃yy(q2

y − k2
0 ) =

ik0κ[1 + 4π2σ̃xxσ̃yy]/2π , written in terms of the dimension-
less conductivity components σ̃ii = σii/c, where k0 = ω/c.
The out-of-plane component of the plasmon wave vector

is qz = iκ , κ (ω) =
√

q2
x + q2

y − k2
0 , where κ−1 measures the

penetration depth of the evanescent mode into the neigh-
boring media, which we assume to be vacuum for the sake
of simplicity. When the power absorption is small, such
that Re[σii(ω)] ≈ 0, the dispersion relation reduces to a real
equation. For a given frequency, this corresponds to a fourth-
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FIG. 4. Isofrequency contours ω(qx, qy ) = const illustrating the
plasmon propagation when (a) and (b) �̃ < εF < � and (c) and
(d) εF > �. The closed (open) curves correspond to a frequency
lying outside (inside) the hyperbolic regions displayed in Fig. 2.

degree algebraic curve, whose gradient vector field defines
the direction of energy propagation. Figure 4 illustrates the
plasmon modes in q space for the cases shown in Fig. 2
at frequencies lying inside or outside a hyperbolic region.
Given that qx, qy � k0, the dispersion relation becomes well
described by the expression

q2
x

σ̃ ′′
yy(ω)

+ q2
y

σ̃ ′′
xx(ω)

= 2πk0q{[4π2σ̃ ′′
xx(ω)σ̃ ′′

yy(ω)]−1 − 1}, (4)

where σ̃ ′′
ii ≡ Im[σ̃ii(ω)].

We can identify the characteristic properties associated
with hyperbolic propagation [4,38]. Closed quasielliptic
contours are obtained whenever Im[σxx(ω)]Im[σyy(ω)] >

0 (or Det{Im(σi j )} > 0, given that σxy = σyx = 0), elon-
gated along the smallest σii; otherwise, hyperbolic branches
are obtained, with asymptotes having slopes tan θ =
±√−Im σxx(ω)/Im σyy(ω). The group velocity points mainly
along the directions ∓√−Im σyy(ω)/Im σxx(ω), normal to the
asymptotes, and large wave vectors can be supported, indi-
cating a high degree of directionality and localization. This
contrasts with the purely anisotropic case (closed curves) in
which there is propagation in all directions, although less
confinement of the mode. The topology (closed vs open
isofrequency contours) and the direction of the plasmon prop-
agation can be manipulated not only by changing the exciting
frequency but also by varying only the position of the Fermi
energy [Figs. 4(b) and 4(c)].

Note that using 8-Pmmn borophene as a reference, all the
parameters in the model (1) are fixed, with the exception
of the magnitude of the mass �. This is in contrast to the
minimal model considered in Ref. [4], where six parameters
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FIG. 5. (a) and (b) Frequency-momentum relation and (c) and
(d) inverse of losses of the collectives modes for several propagation
angles when �̃ < εF < � and εF > �. Hyperbolic regions (in gray)
correspond to those in Fig. 2.

were varied, using multilayer black phosphorus as the model
candidate for the anisotropic 2D intrinsic material supporting
hyperbolic modes. In our case, the calculated conductivity
response cannot be effectively parametrized as in Ref. [4].
Moreover, we found that even for isotropic velocity, vx = vy,
the tilting and the indirect nature of the gap along the ky

direction provide sufficient anisotropy to the system, while the
introduction of mass leads to important modifications of the
interband contribution as mentioned above. The joint effect
of these two elements is enough to produce an interplay of
the intraband and interband excitations capable of making the
appearance of hyperbolicity of plasmon propagation possible,
without any further material parameters.

Figures 5(a) and 5(b) display the surface plasmon disper-
sion for different angles of propagation φ at the same two
positions of the Fermi level as in Fig. 2. The increasing density
of states of modes as the dispersion curve enters the zone
of hyperbolicity reflects the increasing spatial confinement.
Figures 5(c) and 5(d) show the plasmon losses as the plasmon
propagates within the surface along several directions φ. For
φ = π/2, the dispersion relation has a solution for frequencies
below and up to the lower bound of the hyperbolic zone,
as the existence of closed isofrequency contours illustrates
[Figs. 4(a) and 4(c)]. For smaller φ, the solution enters a
hyperbolic region eventually and will present a frequency
cutoff ωc defined by the condition that the decreasing slope
(as ω increases) of the asymptote (see Fig. 2) finally match
the direction φ, that is, the equation θ (ωc) = φ. For φ = 0,
ωc is given by Im[σxx(ωc)] = 0, which corresponds to the
higher border of the hyperbolic zone. For φ = π/4 the cut-
off is redshifted because the frequency dominion available
to reach the condition θ (ωc) = φ is reduced. As φ → π/2,
the solution cutoff approaches the frontier between elliptical
and hyperbolical propagation, as Im[σyy(ω)] → 0−. On the
other hand, at low frequencies the losses increase due to the
intraband absorption. It is interesting to note that the propaga-

tive losses reach their minimum within the hyperbolic zone
when �̃ < εF < � and within an elliptic zone when εF > �.
Thus, the system can support well-defined, highly directional
hyperbolic plasmons. In particular, at a given frequency, the
position of the Fermi level allows us to tune between purely
anisotropic and hyperbolic propagation. According to Hamil-
tonian (1) and from previous knowledge of a nominal gap, one
might think that the condition εF < � implies that hyperbolic
propagation is impossible because of the absence of intraband
transitions. However, as Fig. 5(c) shows, the propagation of
hyperbolic plasmon is still possible because of the appearance
of the indirect zone. This suggests that the Fermi energy
dependence of the transitions illustrated in Fig. 5 is a clear
indication of the presence of tilt and mass in the system.

There is a proposal to generate contrasting gaps in
2D Dirac materials using magnetic impurities [40,41]. We
have also performed calculations considering these valley-
dependent gaps. In this situation, the additional breaking of
the time-reversal symmetry leads to a more complex spectral
behavior of the optical response, given the extra possibilities
for the position of the Fermi level and the associated spectrum
of allowed excitations [24]. As a consequence, similar topo-
logical transitions in the form of collective mode propagation,
like those described above, have been found with extended
tunability.

Two effects ignored in this theoretical treatment can
limit the observation of hyperbolic plasmons and the fea-
tures described in this Letter, namely, nonlocality and
finite-temperature effects. The former becomes relevant for
plasmons with large spatial momentum q, like those involved
in Figs. 4(b) and 4(d). However, hyperbolas with smaller wave
vectors are obtained by increasing the degree of anisotropy.
We found that the “size” of the hyperbolic curves displays
a sensitive dependence on the material parameters used; for
larger values of vx, vy, or |vx − vy| or for larger values of
tilting γ (like in WTe2 [35]), the hyperbolas involve q/k0 of
the order of hundreds (comparable to the values reported for
black phosphorus [13]) instead of thousands. However, some
remarks are in order about the effects of spatial dispersion. In
the tilted and gapped α-(BEDT-TTF)2I3 material, the Fermi
velocity is about one order of magnitude smaller than that of
graphene, which would imply a larger wave vector cutoff im-
posed by the spatial nonlocality. On the other hand, the impact
of nonlocal effects on the hyperbolic propagation reported in
Ref. [13] is applicable to a few layers of black phosphorus,
including a quadratic term ∼k2 in its low-energy Hamiltonian.
Thus, it is unclear to what extent the nonlocality will influence
the propagation and losses of the hyperbolic plasmons in
our Dirac system. Even if such effects drastically limit their
localization and directionality, one could expect at most a
behavior similar to that of black phosphorus, in which the
hyperbolic topology changes to a canalization regime, which
is also of technological interest. The inclusion of nonlocality
in our system deserves a proper investigation, which is beyond
the scope of the present work. We hope our findings stimulate
further exploration.

Finite-temperature effects will be irrelevant at low enough
temperature kBT � εF ,�. For other cases, we can estimate
the effects of finite temperature on the propagative losses by
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comparing them with gapped graphene, given that the overall
sizes of the Imσii(ω) spectra are similar. Following the usual
thermal-convolution path [42,43] to calculate σi j (ω, T ), it is
found that Re(q)/Im(q) decreases by about an order of mag-
nitude at room temperature for gapped graphene. Assuming
the same for our tilted system, one might expect a reduction of
about the same order of magnitude in the propagation length
of the plasmons at room temperature.

We remark, however, that despite all these possible
reducing effects, well-defined natural hyperbolic plasmon
propagation, involving large wave vectors, was recently ex-
perimentally demonstrated in the far-IR range in thin films
of the transition metal dichalcogenide WTe2 at low temper-
atures (10–20 K) [6]. Since the k · p model Hamiltonian for
low-lying excitations for this material [35] in its 1T ′ phase is
similar to Eq. (1), this system becomes a platform where our
theoretical predictions can be tested.

In summary, we have shown how an anisotropic 2D sys-
tem with broken inversion and particle-hole symmetries can
support well-defined, highly collimated, hyperbolic surface
electromagnetic modes in the terahertz range. In particular, si-
multaneous mass and tilt lead to indirect gaps along the tilting
direction, an additional source of anisotropy that substantially
modifies the interband contribution to the optical response.
Consequently, regions of hyperbolicity arise for the exciting
frequency, tunable by the appropriate location of the Fermi

level or the magnitude of the tilting. This mechanism differs
from those reported for natural hyperbolic 2D systems like
black phosphorus or some transition metal dichalcogenides
like WTe2. The characteristic topological transitions between
closed and open forms of plasmon propagation suggest an
optical signature of the simultaneous occurrence of tilt and
mass. For typical material parameters, such as those involved
in gapped graphene, 8-Pmmn borophene, α-(BEDT TTF)2I3,
and WTe2, the hyperbolic plasmons in our model lie in the
range of a few tens of terahertz. Such a frequency range
coincides with the one explored with far-infrared absorption
spectroscopy in a recent experimental confirmation of hy-
perbolic plasmons in WTe2 [6]. As in graphene plasmonics
[44–46], one might expect that the current tools of far-infrared
spectroscopy or near-field optical scattering techniques, which
allow excitation with high values of the in-plane wave vectors,
should be applicable for probing the hyperbolic propaga-
tion we report. Although motivated by systems like 8-Pmmn
borophene, α-(BEDT-TTF)2I3, and WTe2, our study should
have relevance for the optical properties of anisotropic atomi-
cally thin materials.
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