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Exciton binding energy and screening length in two-dimensional semiconductors
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We approximately solve the Schrödinger equation for two-dimensional Wannier-Mott excitons in the effective-
mass approximation and derive an expression for the exciton energy levels, hence the exciton binding energy.
The electron-hole interaction is described by the Rytova-Keldysh potential in a logarithmic approximation.
From the derived expression, we introduce approximate expressions to experimentally determine the exciton
binding energy (along with the quasiparticle band gap), the screening length, and the exciton reduced mass from
measured exciton transition energies of the ground state (1s), and the first (2s) and the second (3s) excited states.
Our results agree well with experimental data and theoretical calculations.
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An exciton is an electron-hole pair bound by Coulomb
interactions in semiconductors. In two-dimensional (2D)
semiconductors, the Coulomb interaction is significantly en-
hanced due to the effects of spatial quantum confinement
and reduced dielectric screening [1]. As a consequence, the
electron-hole pairs are tightly bound, and the exciton states are
stable even at room temperature [2–6]. These tightly bound
excitons may have binding energies up to hundreds of meV
and dominate the optical response. In particular, a quantitative
understanding of s-state excitons and the ground-state (1s)
exciton binding energy is important for optoelectronic appli-
cations [7–9].

In the Wannier-Mott exciton model [10,11] for three-
dimensional (3D) semiconductors, an electron-hole pair in
parabolic bands is treated as a hydrogen atom, where the hole
plays the role of the proton, and the electron-hole interaction is
described by the Coulomb potential [12]. The analytical solu-
tion of the Schrödinger equation for the hydrogen problem has
been well known. The 3D hydrogenic exciton binding energy
(in Hartree atomic units, h̄ = m0 = e = 1) is E3D

b = μ/(2ε2
0 ),

where ε0 is the background dielectric constant, and μ is the ex-
citon reduced mass. The 2D hydrogenic exciton energy levels
[13] are E2D

n = −μ/[2ε2
0 (n − 1/2)2], where n = 1, 2, 3, . . .

is the principal quantum number. Then, the 2D hydrogenic
exciton binding energy is E2D

b = −E2D
1 = 4E3D

b . However, the
exciton binding energy in 2D semiconductors has been shown
to deviate significantly from the hydrogenic model due to
the nonlocal screening of electron-hole Coulomb interactions
[2,3,6,14,15]. The 2D excitons of the lowest-lying states are
nonhydrogenic, though the ones of the higher-lying states
exhibit hydrogenic behaviors.

The 2D exciton in a monolayer semiconductor is usually
modeled as an electron-hole pair in the plane of a dielectric
layer of zero thickness. The electron-hole interaction potential
V in momentum space (q) is found by solving the Poisson
equation V (q) = −2π/[q(κ + r0q)], where κ is the average

*nguyentruongthanhhieu@vlu.edu.vn

dielectric constant of the surrounding environment, and the
screening length r0 = 2πα with α being the 2D polarizability
of the material [16]. The inverse Fourier transform of V (q)
is known as the Rytova-Keldysh (RK) potential in real space
[17,18],

V (r) = − π

2r0

[
H0

(κr

r0

)
− Y0

(κr

r0

)]
, (1)

where H0 is the Struve function, Y0 is the Neumann function
(also called the Bessel function of the second kind), and r is
the electron-hole distance.

Analytically solving the Schrödinger equation for the RK
potential requires approximations. This potential is often ap-
proximated by the Coulomb potential −1/(κr), and recently
by the Kratzer potential −1/(κr) + g2r0/(κr)2 with g being
an adjustable parameter [19]. The RK potential behaves as a
Coulomb potential at large distances, but diverges logarith-
mically at short ones. Neglecting this logarithmic divergence
may lead to unreliable results for the ground-state exciton due
to its nonhydrogenic nature. A complete analytical solution
of the Schrödinger equation for a logarithmic potential is
lacking. Nonetheless, asymptotic solutions for this problem
have been reported in literature [20–23].

Here, using the logarithmic approximation

V (r) ≈ − 1

r0
ln

(
1 + r0

κr

)
, (2)

which satisfies both limits of the RK potential V (r) ≈
−1/(κr) for κr � r0 and V (r) ∼ ln(κr/r0) for κr � r0,
we approximately solve the Schrödinger equation for 2D
Wannier-Mott excitons in the effective-mass approximation
(− 1

2μ
∇2 + V )ψ = Eψ . The envelope function ψ in polar

coordinates (r, ϕ) has the form ψ (r, ϕ) = 1√
2π

eimϕR(r), where

R(r) is the solution of the radial equation r2R′′ + rR′ +
[2μ(E − V )r2 − m2]R = 0, and m = 0,±1,±2, . . . is the
angular quantum number. For s-state excitons (m = 0), we
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FIG. 1. The ns-state exciton energy levels: red symbols—this
work; blue symbols—numerical solution of the 2D Schrödinger
equation (SE) for an isolated monolayer 2H -WS2 [14]; green
symbols—experimental data from measurements of reflectance con-
trast (RC) spectra for a monolayer WS2 on a SiO2/Si substrate
(a 300-nm SiO2 layer on a Si substrate) [2]; brown symbols—
experimental data from measurements of differential reflectance
(DR) spectra for a monolayer WS2 on a sapphire substrate [30];
orange and violet symbols—experimental data from measurements
of magnetoabsorption spectroscopy (MAS) [7] and of magnetopho-
toluminescence (MPL) [31] for a monolayer WSe2 encapsulated by
hexagonal boron nitride, respectively.

find

En = − 25κ2

8μr2
0

⎛
⎝

√
n − 1

2
+ 2

√
2μr0

5κ2
−

√
n − 1

2

⎞
⎠

4

. (3)

To derive this expression, besides the approximation (2), we
also use other approximations which are valid for large r. We
present the mathematical derivation in the Supplemental Ma-
terial [24] (see also Refs. [25–29] therein). In the following,
we compare our results with experimental data and theoreti-
cal calculations, including those based on the Bethe-Salpeter
equation (BSE).

Figure 1 depicts the ns-state exciton energy levels for 2D
semiconductors WS2 and WSe2. In Fig. 1(a), our results are
consistent with the numerical solutions of the 2D Schrödinger
equation [14] for an isolated monolayer 2H-WS2 (κ = 1, μ =
0.19, α = 5.25 Å [14], r0 = 2πα ≈ 32.99 Å). In experiments,
a monolayer semiconductor is usually placed on an insulating
substrate or sandwiched between two dielectric layers. Then,
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FIG. 2. The hBN-encapsulated monolayer WSe2: the ns-state ex-
citon energy levels vs the average dielectric constant.

the influence of the surrounding dielectric environment should
be taken into account.

For a 2D semiconductor placed on an insulating substrate,
the average dielectric constant of the surrounding environment
(substrate and vacuum) κ = (1 + εsub)/2, where εsub is the
dielectric constant of the substrate. In Figs. 1(b) and 1(c),
our results agree with experimental data from measurements
of reflectance contrast spectra [2,30] for a monolayer WS2

(r0 = 37.89 Å, μ = 0.167 [29]) on a SiO2/Si substrate (κ = 2
[32]) and on a sapphire substrate (κ = 2.07 [30]), respectively.

For a 2D semiconductor sandwiched between two dielec-
tric layers, κ = (ε1 + ε2)/2, where ε1 and ε2 are the dielectric
constants of the two layers. In Figs. 1(d) and 1(e), our results
are consistent with experimental data from measurements of
magnetoabsorption spectroscopy [7] and of magnetophoto-
luminescence [31] for a monolayer WSe2 (r0 = 45 Å [7],
μ = 0.25) encapsulated by hexagonal boron nitride (hBN,
εhBN = 4.5 [29], κ = 4.5).

Figure 2 displays the exciton energy levels En as functions
of κ . Our results agree with the numerical calculations for
a hBN-encapsulated monolayer WSe2 [7]. The separations
between energy levels reduce with increasing κ . In the limit of
large κ , the energy separations �1n between the ground state
(1s) and the ns excited states approach the exciton binding
energy Eb = −E1. In the 2D hydrogenic model, E2D

b = 9
8�12.

However, this relation is less reliable for nonhydrogenic ex-
citons [3]. A relation between the exciton binding energy Eb

and the energy separations �12,�13 is introduced later.
Figure 3 shows a comparison of exciton binding energies

between our results and BSE values from the Computational
2D Materials Database (C2DB) [25,26] for 58 isolated mono-
layer semiconductors (see Supplemental Material for details).
Our results agree reasonably with the BSE values; in most
cases the absolute error |Eb − EBSE

b | is less than 0.05 eV
(symbols within the gray region). In general, the exciton
binding energy tends to increase with increasing quasiparticle
band gap (indicated by the symbol color). Both the exciton
binding energy and quasiparticle band gap tend to decrease
with increasing screening length. In the limit of large μr0/κ

2,
the exciton binding energy is inversely proportional to the
screening length: Eb ≈ 5/r0. In such a limit, e.g., for a suf-
ficient large screening length, the exciton binding energy is
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FIG. 3. The exciton binding energy for 58 isolated monolayer
semiconductors (34 MXY Janus, 13 TMDC-H, and 11 TMDC-T).
The symbol color indicates the quasiparticle band gap. Data are taken
from the Computational 2D Materials Database (C2DB) [25,26]. The
inset shows an illustration of the band structure.

almost mass and dielectric independent, and the screening
length plays a decisive role in determining the exciton binding
energy.

In addition to comparing with the BSE calculations, we
also compare with variational and Monte Carlo calculations.
Table I lists the exciton binding energy for monolayer semi-
conductors MX2 (M = Mo, W; X = S, Se). The materials
are isolated (κ = 1) or placed on a silica substrate (κ = 2
[32]), and the material parameters are taken from Ref. [29].
Our results agree well with those calculated by the varia-
tional method (VM) [33], the simplified variational method
(simVM) [29], the stochastic variational method (stoVM)
[34], the path integral Monte Carlo (PIMC) method [32], and
the diffusion Monte Carlo (DMC) method [35]. Comparing
to the freestanding case, the exciton binding energy for a
monolayer semiconductor placed on a dielectric substrate is
lower due to substrate effects. Under the influence of the
surrounding dielectric environment, the strength of electron-
hole interactions is decreased with increasing κ . As a result,
the exciton binding energy is reduced, leading to a reduc-
tion of the quasiparticle band gap. The ability to tune the
quasiparticle band gap (and the exciton binding energy) of
2D semiconductors by engineering the surrounding dielectric
environment may be useful in nanotechnology [36].

Next, we introduce approximate expressions based on the
expression (3) and the C2DB (see also Fig. 4),

Eb

�12
≈ 1 + 1

3

(μr0

κ2

)0.3
, (4)

TABLE I. The exciton binding energy for monolayer semicon-
ductors (isolated or placed on a silica substrate).

Material Substrate Eb (eV) Method Ref.

MoS2 Isolated 0.5352 This work
0.5557 simVM [29]
0.5550 stoVM [34]

0.5265(2) PIMC [32]
0.5514 DMC [35]
0.54 VM [33]

Silica 0.3362 This work
0.3486(2) PIMC [32]

MoSe2 Isolated 0.4720 This work
0.4867 simVM [29]
0.4804 stoVM [34]

0.4769(2) PIMC [32]
0.4778 DMC [35]
0.47 VM [33]

Silica 0.3069 This work
0.2914 simVM [29]

0.3229(2) PIMC [32]

WS2 Isolated 0.5038 This work
0.5301 simVM [29]
0.5235 stoVM [34]

0.5098(2) PIMC [32]
0.5191 DMC [35]
0.50 VM [33]

Silica 0.3000 This work
0.2892 simVM [29]

0.3229(2) PIMC [32]

WSe2 Isolated 0.4532 This work
0.4738 simVM [29]
0.4702 stoVM [34]

0.4564(2) PIMC [32]
0.4667 DMC [35]
0.45 VM [33]

Silica 0.2764 This work
0.2652 simVM [29]

0.2946(2) PIMC [32]

and

�13

�12
≈ 1.175

(μr0

κ2

)0.04
, (5)

where �12,�13 are the energy separations between the
ground state and the first/second excited state. Consequently,

Eb ≈ �12

[
1 + 1

3

(
1

1.175

�13

�12

)7.5]
. (6)

By definition, the quasiparticle band gap Eg is the sum of
the exciton binding energy Eb and the optical gap Eopt (i.e.,
the lowest exciton transition energy). Therefore, we are able
to determine both the exciton binding energy and the quasi-
particle band gap by measuring exciton transition energies
of the ground state (1s), and the first (2s) and the sec-
ond (3s) excited states, hence the energy separations �12

and �13.
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μr0/κ

2 (in Hartree atomic units, a.u.). The symbol color indicates
the quasiparticle band gap. The inset shows an illustration of ns-state
exciton energy levels.

For example, from measurements of reflectance contrast
(RC) spectra for a monolayer WS2 [2], Eopt = 2.09 eV, �12 =
0.163 eV, and �13 = 0.220 eV, we obtain Eb = 0.316 eV and
Eg = 2.406 eV. Our results are consistent with the RC data
[2]: Eb = 0.32 ± 0.04 eV and Eg = 2.41 ± 0.04 eV. From
measurements of differential reflectance (DR) spectra for
a monolayer WS2 [30], Eopt = 2.017 eV, �12 = 0.180 eV,
and �13 = 0.229 eV, we obtain Eb = 0.289 eV and Eg =
2.305 eV. Our results agree with the DR data [30]: Eb =
0.282 eV and Eg = 2.3 eV. From measurements of photolumi-
nescence excitation (PLE) spectroscopy for a monolayer WS2

[6], Eopt = 2.008 eV, �12 = 0.163 eV, and �13 = 0.227 eV,
we obtain Eb = 0.360 eV and Eg = 2.368 eV. Our results are
close to the PLE data [6]: Eb = 0.32 ± 0.05 eV and Eg =
2.33 ± 0.05 eV. From measurements of two-photon photolu-
minescence (2PPL) excitation spectroscopy for a monolayer
WSe2 [3], Eopt = 1.65 eV, �12 = 0.165 eV, and �13 =
0.231 eV, we obtain Eb = 0.370 eV and Eg = 2.020 eV.
Our results are consistent with the 2PPL data [3], Eb =
0.37 eV and Eg = 2.02 eV, which are independent of any
exciton model. From measurements of polarized magneto-
optical spectroscopy (PMS) for a monolayer WSe2 [7], Eopt =
1.723 eV, �12 = 0.124 eV, and �13 = 0.145 eV, we obtain

FIG. 5. Same as Fig. 3 but for the screening length.

Eb = 0.165 eV and Eg = 1.888 eV. Our results agree with the
PMS data [7]: Eb = 0.167 eV and Eg = 1.89 eV.

Apart from the exciton binding energy, we are also in-
terested in the screening length. From the expression (3),
we deduce the screening length as a function of the exciton
binding energy,

r0 = 5

2Eb

[√
2 −

(
2κ2

μ
Eb

)1/4
]2

. (7)

Figure 5 shows a comparison of screening lengths between
the C2DB data and our results (using the BSE values EBSE

b as
the exciton binding energy). In most cases the absolute error
between the present and the C2DB screening lengths is less
than 5 Å (symbols within the gray region).

Alternatively, the screening length can be evaluated from
the energy separations. Indeed, the expressions (3)–(5)
lead to

r0 ≈ 25

8βEb

⎛
⎝

√
1

2
+ 2

√
2

5
β −

√
1

2

⎞
⎠

4

, (8)

where β = ( 1
1.175

�13
�12

)25. For a given screening length and av-
erage dielectric constant, the exciton reduced mass can also
be estimated from the energy separations

μ ≈ κ2

r0
β. (9)

For instance, from the aforementioned RC measurements for
a monolayer WS2 on a SiO2/Si substrate [2], we obtain κr0 =
78.84 Å (κ = 2 [32], r0 = 39.42 Å) and μ = 0.21. These
results are comparable to the reported values [2]: κr0 = 75 Å
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and μ = 0.16. The screening length and the exciton reduced
mass for monolayer WS2 calculated from first principles are
equal to 37.89 Å [29] and 0.15–0.22 [2], respectively.

In conclusion, we have derived analytical expressions (3)
and (7) to theoretically calculate the exciton binding en-
ergy and the screening length, respectively. We have also
introduced approximate expressions (6), (8), and (9) to experi-
mentally determine the exciton binding energy (along with the
quasiparticle band gap), the screening length, and the exciton
reduced mass from measured exciton transition energies of
the ground state (1s), and the first (2s) and the second (3s)

excited states. These expressions may be useful for studying
2D excitonic properties. In fact, knowledge of the exciton
binding energy is necessary to understand the operation of
optoelectronic devices based on 2D semiconductors, such as
light-emitting diodes [37] and photovoltaic solar cells [38].
The determination of this quantity is also required to explain
photoluminescence and electroluminescence measurements
[39]. Besides the exciton binding energy, the screening length
and the exciton reduced mass are also important quantities and
are input to excitonic models [40]. Therefore, we expect the
present results to be widely applicable.
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