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Surface bound states in the continuum (SBICs) have been found to occur in diverse settings, but so far always
at the interface of nonhomogeneous media, such as discrete lattices or periodic systems. Here, we show that they
can also exist at the interface of homogeneous media, resulting in unique SBICs. Specifically, we found that,
contrary to general belief, leaky Dyakonov states exist at the interface between materials that exhibit opposite
signs of anisotropy. In addition, properly breaking the anisotropy symmetry leads to the formation of both guided
states and also SBICs embedded within the continuum. A direct implication of our finding is the possibility to
create SBICs and Dyakonov states in a whole new class of materials and metamaterials.
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I. INTRODUCTION

Bound states in the continuum (BICs) are radiationless
modes that are embedded in the part of the spectrum corre-
sponding to radiating modes. First discovered in the context
of quantum mechanics [1,2], BICs are now understood as a
general wave phenomenon [3,4]. The existence of photonic
BICs was first theoretically predicted in parallel arrays of
dielectric gratings and cylinders [5] and in photonic crys-
tals of dielectric rods with defects [6]. This was followed
by landmark experimental demonstrations of photonic BICs
in an array of waveguides with defects [7] and in a pho-
tonic crystal slab [8]. This led to an explosion of interest
in the study of photonic BICs in various geometries such
as layered nanospheres [9], anisotropic waveguides [10],
one-dimensional (1D) photonic crystals with anisotropic de-
fect layers [11,12], epsilon-near-zero metamaterials [13],
plasmonic systems [14,15], all-dielectric and plasmonic meta-
surfaces [16,17], PT -symmetric systems [18–20], tailored
photonic crystal environments [21,22], and other periodic sys-
tems [23–26]. Several potential applications of photonic BICs
have also been suggested [27–30]. The photonic BICs in all
these geometries involve localizing light in a waveguide [6,10]
or a resonator [31] by canceling the coupling of the light to
an available radiation channel by exploiting mechanisms such
as symmetry protection or destructive interference. Another
class of photonic BICs, known as surface BICs (SBICs), exist
where the light is localized at an interface between two un-
like materials. SBICs have been reported at the interfaces of
finite 1D arrays of waveguides [32–35] and photonic crystals
[36–39]. However, all SBICs reported so far involve discrete
lattices or photonic crystals, whose characteristic geometric
dimensions restrict the existence of SBICs to specific wave-
lengths.

In this Research Letter we report the existence of SBICs
at the interface between two semi-infinite, fully homoge-
neous media. Specifically, we address the interface between

two anisotropic uniaxial materials with opposite signs of
birefringence. Interfaces involving birefringent materials are
known to support hybrid, full-vector Dyakonov surface waves
(DSWs) when certain conditions are met [40–43]. To date,
all lossless DSWs are known to occur in structures made of
positive birefringent materials, while only generalized states
arising in non-Hermitian or truncated structures have been
found to exist elsewhere [44–46]. However, here we discov-
ered that material interfaces between media with opposite sign
of anisotropy and, importantly, where the anisotropy sym-
metry is broken [41,47] may also support lossless DSWs. In
addition, in such structures, radiation channels that couple the
states otherwise fully localized at the interface with the con-
tinuum arise, thus creating leaky surface states. Nevertheless,
we also discovered that, under suitable conditions, the radi-
ation channel of such leaky surface states can be suppressed
completely, transforming them into anisotropy-induced BICs
[10], which, therefore, are lossless SBICs. While all previous
reports of SBICs involved discrete structures [32–39], here
we report the existence of SBICs supported at the interface
between two homogeneous media.

II. THEORETICAL FORMULATION

We address the planar interface located at x = 0 where the
negative and positive x half-spaces are occupied by lossless,
uniaxial, dielectric materials with negative (material 1) and
positive (material 2) birefringence, respectively. We study
bound solutions of the full Maxwell equations for this struc-
ture in different configurations. Light propagation is along the
y direction, so ky is the propagation constant and k0 is the free-
space wave number. The optic axes of materials 1 and 2 lie in
the interface plane and make angles φ1 and φ2 with the direc-
tion of light propagation. The layout is shown in Fig. 1(a).
The structure is then anisotropy symmetric when φ1 = φ2,
while introducing an offset � = φ1 − φ2 results in azimuthal,
or weak, anisotropy-symmetry breaking [47]. The permittivity
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FIG. 1. (a) Geometry comprising two semi-infinite uniaxial ma-
terials with their interface at x = 0. A schematic of the optic axes’
layout is shown. (b) Schematic of the refractive indices of the system.
The dashed gray line shows the interface. The solid black lines show
the ordinary indices, which are constant, while the dotted black
lines indicate the extraordinary indices, which vary with optic axis
orientation in the range shown by the colored arrows. Prop. Dir.,
propagation direction; Ref. Ind., refractive index.

tensor in material i when φi = 0 is ε̂ = diag(εo
i , ε

e
i , ε

o
i ), where

εo
i and εe

i are its principal values. The ordinary refractive
index is constant and is given by no

i = √
εo

i , whereas the
extraordinary refractive index varies as a function of the optic
axis orientation ne

i (φ) = √
εe

i (sin2 φi + εe
i

εo
i

cos2 φi )−1/2. For a
given value of the mode effective index N = ky/k0, four basis
waves propagating in a uniaxial material (two ordinary and
two extraordinary) can be obtained from an eigenvalue equa-
tion [47,48]. One of each kind propagates in the +x direction,
while the other propagates in the −x direction. The transverse
component of the ordinary, κo = ko

x/k0, and extraordinary,
κe = ke

x/k0, normalized wave vectors is obtained as the eigen-
values

κo = ±
√

εo − N2,

κe(φ) = ±
√

εe − N2
(

sin2 φ + εe

εo
cos2 φ

)
, (1)

with the corresponding eigenvectors

�F o =

⎡
⎢⎢⎣

κo sin φ

εo sin φ

−κo cos φ

(κo)2 cos φ

⎤
⎥⎥⎦, �Fe =

⎡
⎢⎢⎣

(κo)2 cos φ

εoκe cos φ

εo sin φ

−εoκe sin φ

⎤
⎥⎥⎦, (2)

where the four rows of �Fo and �Fe correspond to the tangential
electric and magnetic field components Ey, zoHz, Ez, and z0Hy,
where z0 is the vacuum impedance. One ordinary wave and
one extraordinary wave, out of the four waves, have to be
selected in each medium. For a standard DSW, the effective
index is real with N > no, ne(φ), and the basis waves decaying
exponentially perpendicular to the interface are selected. For
the leaky DSW, the effective index is complex N , with Re(N )
being less than one of the refractive indices of the system.
The basis wave corresponding to that index is defined as the
radiation channel via which the mode couples to the con-
tinuum where Im(N ) approximates the wave radiation loss.
Due to flux considerations, the radiation channel basis wave
must grow exponentially away from the interface [49]. In this
Research Letter, leaky DSWs feature Re(N ) < no

1; thus the

ordinary wave in the negative uniaxial media is the radiation
channel.

Boundary conditions for the tangential field components
at the interface between materials 1 and 2 yield the homoge-
neous set of linear equations

ao
1
�F o
1 + ae

1
�F e
1 = ao

2
�F o
2 + ae

2
�F e
2 , (3)

where ao/e
i is the amplitude of the corresponding basis

wave. Writing Eq. (3) in a matrix form, R̂�a = 0, with R̂ =
[ �F o

1
�F e
1 − �F o

2 − �F e
2 ] and �a = [ao

1 ae
1 ao

2 ae
2]T be-

ing a 4 × 4 matrix and a 4 × 1 column vector, respectively,
the requirement for a nontrivial solution, |R̂| = 0, yields the
dispersion equation

2εo
2ε

o
1κ

o
1κ

o
1

(
κe

1 − κo
2

)(
κe

1 − κo
1

)
sin φ2 sin φ1 cos φ2 cos φ1

+ κo
2κ

o
1

(
κo

1 − κo
2

)(
εo

1κ
e
1

(
κo

2

)2 − εo
2κ

e
2

(
κo

1

)2)
cos2 φ2 cos2 φ1

+ εo
2κ

o
1

(
κe

2 − κo
1

)(
εo

2

(
κo

1

)2 − εo
1κ

e
1κ

o
2

)
sin2 φ2 cos2 φ1

+ εo
1κ

o
2

(
κe

1 − κo
2

)(
εo

1

(
κo

2

)2 − εo
2κ

e
2κ

o
1

)
sin2 φ1 cos2 φ2

+ εo
2ε

o
1

(
κe

2 − κe
1

)(
εo

2κ
o
1 − εo

1κ
o
2

)
sin2 φ2 sin2 φ1 = 0. (4)

The transcendental equation (4) is solved numerically to ob-
tain the effective index N for the range of values φ1 and
φ2 over which the solution exists, resulting in the narrow
range of propagation directions typical in DSWs. Purely real
solutions of Eq. (4) correspond to standard guided DSWs,
whereas complex solutions of Eq. (4) correspond to leaky
DSWs. SBICs are embedded on the leaky DSWs and exist
when Im(N ) = 0. A necessary but insufficient condition for
the existence of surface waves in this geometry is an overlap
between the extraordinary indices of the two materials, i.e., in
terms of the permittivities:[

εo
1 > εo

2

] ∧ [
εe

1 < εe
2

]
. (5)

III. RESULTS AND DISCUSSION

Without loss of generality, we consider a structure with a
negative uniaxial material with no

1 = √
εo

1 = 1.80 and ne
1(φ1 =

90◦) = √
εe

1 = 1.40 and a positive uniaxial material with no
2 =√

εo
2 = 1.25 and ne

2(φ2 = 90◦) = √
εe

2 = 2. A schematic of
the refractive indices is shown in Fig. 1(b).

A. Leaky DSWs

Figure 2(a) shows the propagation constant of the DSW
when the optic axes in the two materials are aligned (� = 0◦),
corresponding to a structure that maintains anisotropy symme-
try. A surface wave exists in the vicinity of the point where
ne

1(φ1) = ne
2(φ2) and cuts off at the points where Re(N ) =

ne
1(φ1) and Re(N ) = ne

2(φ2). Re(N ) is greater than ne
1(φ1),

ne
2(φ2), and no

2, and the corresponding three basis waves decay
exponentially away from the interface. However, Re(N ) < no

1,
and therefore the ordinary basis wave in material 1 acts as
the radiation channel via which the leaky mode couples to the
continuum. Therefore, with � = 0◦, and for small values of
azimuthal anisotropy-symmetry breaking, the surface wave is
a leaky DSW for all values of φ2 where the solution exists.
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FIG. 2. (a) Mode propagation constant Re(N ) of DSWs (red)
as a function of φ2 when � = 0◦ and only leaky DSWs exist. The
ordinary (dotted lines) and extraordinary (dashed lines) refractive in-
dices of material 1 and 2 are plotted in gray and brown, respectively.
(b) 1/e propagation length L (log scale) of the leaky DSW in (a) at
λ0 = 632 nm. (c) Transverse profile of the field |Ez| at φ2 = 45◦ [blue
dot in (a)]. The dashed gray line at x/λ = 0 indicates the interface.

However, there are no SBICs embedded on the leaky DSW in
this configuration.

Figure 2(b) shows the logarithm of L, defined as the 1/e
propagation length for the leaky DSW at λ0 = 632 nm. While
L is larger at larger values of φ2, its value for the leaky
DSW is generally small (∼10 μm). Figure 2(c) shows the
field amplitude Ez along the transverse axis x for the leaky
DSW at φ2 = 45◦. Though there is radiation away from the
DSW, the field is localized at the interface. Since N is complex
for leaky DSWs, the x component of the radiation channel’s
normalized wave vector, κo

1 , is also complex, with Im(κo
1 ) and

Re(κo
1 ) resulting, respectively, in the exponential growth and

the oscillations in the transverse field profile leaking from the
DSW, as seen in Fig. 2(c).

B. Standard guided DSWs

Figure 3(a) shows the surface wave supported by a struc-
ture for an amount of azimuthal anisotropy asymmetry given
by � = −70◦. The surface wave solution in this structure cuts
off at N = no

1 on one side and at N = ne
2(φ2) on the other

side. Throughout all the range of existence, N is purely real
and is greater than all four refractive indices of the structure.
Therefore this structure supports standard, guided DSWs that
are made up of four basis waves which decay exponentially
away from the interface, as Fig. 3(c) shows at φ2 = 67.3◦.
As is typical in DSWs, when compared with propagation
directions near the DSW cutoff N = no

1, the field of the DSW
remains primarily in material 1, while traversing away from
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FIG. 3. (a) Same as Fig. 2(a) but when � = −70◦ and only
guided DSWs exist. (b) Magnification of the area in the black box
in (a). (c) Transverse profile of the field |Ez| at φ2 = 67.3◦ [blue dot
in (b)].

this point towards the cutoff N = ne
2(φ2) results in the ma-

jority of the field moving to material 2 [42]. The structure
exhibits the standard challenge regarding excitation of DSWs,
i.e., a narrow range of allowed propagation angles φ2 [red line
in Fig. 3(a)]. However, this range is much broader when leaky
DSWs are considered [red line in Fig. 2(a)].

There have been a few reports of the existence of sur-
face waves at interfaces involving negative uniaxial materials;
however, these proposals contain added constraints such as
dissipative media [44], birefringent metals [45], or a finite
interface [46]. This Research Letter reports the existence of a
guided DSW at an infininte planar interface between a positive
uniaxial material and negative uniaxial material without any
added constraints.

C. SBIC embedded on leaky branches of DSWs

For a range of values of � between the two previous cases
with varying amounts of azimuthal anisotropy asymmetry, the
structure supports both purely guided and leaky DSWs, as
shown in Fig. 4(a) for � = −56◦. The leaky DSW exists at
values of φ2 where Re(N ) � no

1, with the ordinary wave in
material 1 serving as the radiation channel. The transition to
purely guided DSWs occurs for higher values of φ2, where
N is greater than all the refractive indices in the system and
therefore it is purely real.

We study the conditions for cancellation of the radiation
channel for the leaky DSW using an auxiliary condition by
setting the radiation channel amplitude in Eq. (3) to zero,
ao

1 = 0 [10,50]. The auxiliary condition yields four auxiliary
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FIG. 4. (a) Same as Fig. 2(a) but for � = −56◦. (b) 1/e propa-
gation length L (log scale), of the leaky DSW in (a). L diverges at
the SBIC (red dot). (c) Magnification of the area in the black box in
(a). The colored markers in (b) and (c) show the values of φ2 where
we plot the normalized transverse profile |Ez| for (d) a leaky DSW
at φ2 = 64.1◦, (e) the SBIC at φ2 = 65.82◦, and (f) a leaky DSW at
φ2 = 66.75◦.

equations, one of which is

εo
2ε

o
1κ

o
2

( − κe
2 + κe

1

)
sin2 (φc) sin (φs)

+ εo
2κ

o
2

(
κo

1

)2( − κe
2 + κo

2

)
sin (φc) cos (φc) cos (φs)

+ εo
1

(
κo

2

)3(
κe

1 − κo
2

)
sin (φs) cos2 (φc) = 0. (6)

The SBIC exists only when the solutions of the dispersion
equation and all four auxiliary equations coincide, resulting
in φBIC

2 = 65.82◦. We calculate L, the 1/e propagation length
from Im(N ) over the range of the leaky DSW [Fig. 4(b)],
showing that L diverges at the angle found before, φBIC

2 , re-
sulting in a SBIC where the leakage is canceled. Figure 4(e)
shows the field profile |Ez| for the SBIC, showing that despite
being embedded in the leaky part of the DSW with Re(N ) <

no
1, the field decays exponentially away from the interface.

This contrasts with the field profile for two leaky DSWs on
either side of the SBIC, shown in Figs. 4(d) and 4(f), at
φ2 = 64.1◦ and φ2 = 66.75◦, respectively. Both figures show
the characteristic radiation into the substrate via the radiation
channel.

D. Cutoffs in �

The amount of azimuthal anisotropy asymmetry given by
� has a dramatic impact on the properties of the DSW and

FIG. 5. (a) Range of Re(N ) as a function of � for the structure
studied in Figs. 2–4. The dashed black line shows the value of
no

1 = 1.8 below which only leaky DSWs can exist. The dashed blue
lines show the point where guided DSWs start (�cm) and then cease
(�cM ) to exist. The dashed red line shows the value of �cL where
the leaky DSW first appears. (b) Range of φ2 as a function of �.
The color indicates the 1/e propagation length L for leaky DSWs at
λ0 = 632 nm. The inset shows the line of BICs. (c) and (d) Same as
(a) and (b) but for no

1 = 2, ne
1 = 1.2.

the existence of SBICs. We explore this effect in Fig. 5(a),
where the solid black lines show the upper and lower bounds
of Re(N ) as a function of �.

1. Cutoffs for standard guided DSW

We see that the guided DSW solution only exists for a
finite range of values of �, those where Re(N ) > no

1 = 1.8
[between the two blue dashed lines in Fig. 5(a)]. As we show
in Figs. 3(a) and 4(a), the guided DSW cuts off at the points
where N = no

1(⇒ κo
1 = 0) and N = ne

2(φ2) (⇒ κe
2 = 0). Mak-

ing use of no
1 = ne

2(φ2), we obtain the cutoff angle φ2c as

sin φ2c = ±
√

εe
2

(
εo

2 − εo
1

)
εo

1

(
εo

2 − εe
2

) , (7)

and then using κo
1 = 0 and κe

2 = 0 in the dispersion equa-
tion [Eq. (4)], together with Eq. (7), we find the cutoff angle

sin φ1c = ±
(
εo

1 − εe
2

)
εo

1

√(
εo

2 − εo
1

)
(
εe

1 − εo
1

) . (8)

Thus the cutoff in terms of azimuthal anisotropy asymmetry
can be calculated as �c = φ1c − φ2c. Since N is a function of
φ2, the sign selected in Eq. (8) determines whether the leading
or trailing edge of N passes through the point no

1 = ne
2(φ2).

The positive (negative) sign gives the value of �cm (�cM)
where pure guided DSWs start (cease) to occur [dashed blue
lines in Fig. 5(a)].

2. Cutoff for leaky DSW

It is useful to determine another cutoff in terms of az-
imuthal anisotropy-asymmetry, �cL, where leaky DSWs start
existing [dashed red line in Fig. 5(a)] since SBICs are embed-
ded in the leaky DSW. Leaky DSWs occur when Re(N ) < no

1.
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They start to exist at N = no
1 = ne

1(φ1), which implies κo
1 =

κe
1 = 0. This condition can only be fulfilled when φ1 = 0◦ ⇒

φ2 = −�. Applying these conditions to Eq. (4), we find that
�cL obeys the equation

tan2 �cL +
(
εo

2 − εo
1

)3/2

εo
2

√
εe

2 − εo
1

(
sin2 �cL + εe

2
εo

2
cos2 �cL

) = 0, (9)

which can be readily solved numerically.
Equations (7)–(9) determine the existence conditions for

DSWs in terms of the azimuthal anisotropy asymmetry �.
Guided DSWs only exist at negative values of �, with � >

�cm. As � increases, leaky DSWs start to appear at � > �cL,
coexisting with guided DSWs, and when � > �cM , only
leaky DSWs exist. In all cases, DSWs propagate in a range of
values of φDSW

2 , as shown in Fig. 5(b), where the color shows
the 1/e propagation distance L. The leaky DSW becomes
more radiative (low values of L) as � is increased. Note that,
while φDSW

2 is narrow for guided DSWs, reaching the larger
value φDSW

2 ∼ 4◦ for � = �cL, it increases for leaky DSWs
to φDSW

2 ∼ 22◦ near � = 0. Note that while, by and large,
the usually narrow range of allowed propagation angles for
standard DSWs to exist is an outstanding challenge for their
experimental generation [43], the larger range of propagation
directions of leaky DSWs facilitates their excitation.

E. Variation of the constitutive parameters

Equation (9) provides the starting point beyond which
SBICs, embedded in leaky DSWs, can exist in terms of
the azimuthal anisotropy asymmetry �. Indeed, the struc-
ture supports a line of SBICs for � > �cL, shown by the
blue line in the inset in Fig. 5(b). As no

1 increases, guided
DSWs disappear entirely when no

1 = ne
2(90◦) = 2, resulting

in φ2c = −�cL = 90◦, as the index corresponding to the ra-
diation channel becomes the highest refractive index in the
system. In this process, the SBICs move towards the cutoff
of the DSW and also disappear. It is, however, possible to
recover the line of SBICs by tuning the other constitutive
parameters of the system [51]. This is shown in Figs. 5(c) and
5(d), where in addition to no

1 = ne
2(90◦) = 2, we set ne

1 = 1.2.
Since Re(N ) < no

1 for all the range of existence of DSWs and
the radiation channel is always accessible, the structure only
supports leaky DSWs so that the line of SBICs, shown in the
inset in Fig. 5(d), are the only bound surface modes supported
by the system. The leaky DSW mode becomes more radiative
at higher values of � as shown in Figs. 5(b) and 5(d).

F. Materials

To show the feasibility of experimentally observing the
SBICs described above, we first note that DSW modes have
been experimentally observed, for example, at the interface
of nematic liquid crystals [52]. Thus we consider the inter-
face between the liquid crystal E7 in the nematic phase and
a calcite crystal, arranged so that � = −50◦. We consider
two different wavelengths λ0: 488 and 632 nm. At λ0 = 488
nm, the refractive indices of the materials are no

E7 = 1.5345,
ne

E7 = 1.7754, no
calcite = 1.6674, and ne

calcite = 1.4904 [53,54],
and the structure supports both guided and leaky DSWs in

the range of optic axis orientation 50.65◦ < φDSW
2 < 51.48◦.

Within the leaky-DSW range, there exists a SBIC at φBIC
2 =

50.72◦. Due to material dispersion, the refractive indices of
the materials are slightly different at λ0 = 632 nm with no

E77 =
1.5189, ne

E7 = 1.7304, no
calcite = 1.6557, and ne

calcite = 1.4849.
As a result, such a structure supports leaky DSWs in the
range 55.39◦ < φDSW

2 < 56.05◦ with an embedded SBIC at
φBIC

2 = 55.95◦. Therefore material dispersion leads to the two
situations discussed in Fig. 5, with the SBIC occurring at
different values of φ2 for each wavelength. Therefore, on
the one hand, one concludes that material dispersion affects
the type and location in the parameter space of the surface
states supported by the structure, but SBICs do exist. On
the other hand, intrinsic material absorption is not relevant
in this context, because the considered materials are highly
transparent and, anyway, BICs are exclusively related to the
suppression of radiative losses. As comparison, the absorption
coefficient for E7 at λ0 = 632 nm is 0.03 cm−1 [55], result-
ing in a propagation length LE7 ∼ 30 cm, which is orders of
magnitude larger than the propagation length of the leaky
DSW due to radiation losses, which typically is in the range
Lleaky ∼ 10–100 μm.

IV. CONCLUSIONS

In summary, we have uncovered the existence of SBICs
realized as Dyakonov states in uniaxial anisotropic media, in
structures where Dyakonov modes were considered to be im-
possible. The existence loci of these states is set by the amount
of anisotropy asymmetry and the constitutive parameters of
the materials. Here, we addressed only azimuthal anisotropy-
symmetry breaking and uniaxial media, but the Dyakonov
mechanism occurs in more general geometries and types of
anisotropy, where we anticipate that richer families of states
may exist. Our results open the possibility to create SBICs
and Dyakonov-like states in a whole new class of materials
and metamaterials, including different types of anisotropic
materials, such as hyperbolic materials.

Finally, it has to be properly appreciated that the SBICs we
found here are anisotropy induced [10]. Namely, they are full
vector, hybrid surface states situated above the light line and
exist without the presence of a trapping potential. Therefore
they do not arise from the interference of resonances, as,
e.g., Friedrich-Wintgen BICs do. Rather, the SBICs occur
when the ordinarily polarized wave that constitutes the radia-
tion channel is not needed to fulfill the boundary conditions.
This mechanism makes the anisotropic SBICs fundamentally
different from all surface BICs known to date [32–37], in
particular, those where a defect located at the interface acts
as a trapping potential.
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