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Electronic materials harbor a plethora of exotic quantum phases, ranging from unconventional superconduc-
tors to non-Fermi liquids and, more recently, topological phases of matter. While these quantum phases in integer
dimensions are well characterized by now, their presence in fractional dimensions remains vastly unexplored.
Here, we theoretically show that a special class of crystalline phases, namely, higher-order topological phases
that via an extended bulk-boundary correspondence feature robust gapless modes on lower-dimensional bound-
aries, such as corners and hinges, can be found on a representative family of fractional materials: quantum
fractals. To anchor this general proposal, we demonstrate realizations of second-order topological insulators and
superconductors, supporting charged and neutral Majorana corner modes on planar Sierpiński carpet and triangle
fractals, respectively. These predictions can be experimentally tested on designer electronic fractal materials, as
well as on various highly tunable metamaterial platforms, such as photonic and acoustic lattices.
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Introduction. Crystals are ubiquitous in nature, mani-
festing discrete reflection, rotational, and translational sym-
metries. On the other hand, quasicrystals and fractals are
paradigmatic examples of noncrystalline materials. While
quasicrystals are projections of higher-dimensional crystals
on lower-dimensional branes, realized by completely tilling
the physical space in an aperiodic fashion, thereby exhibiting
local discrete, often crystal-forbidden, rotational symmetries
[1–3], fractals by contrast display a fourth type of symmetry,
self-similarity, resulting in pattern repetition over many scales
[4]. Fractals appear at macroscale (coastline and trees), as
well as at microscales, with the recently engineered elec-
tronic Sierpiński triangle in designer materials opening a
paradigm of quantum fractals [5]. Despite being embedded
in integer d-dimensional space, fractals are characterized by
irrational Hausdorff or fractal dimension dfrac < d . Therefore,
when combined with the geometry and topology of the elec-
tronic wave function, quantum fractals give rise to a rich,
still vastly unexplored, landscape of topology in fractional
dimensions [5–14].

Here, we explore this territory by focusing on a newly
emerged family of crystalline phases, namely, higher-order
topological (HOT) phases, and show realizations of both HOT
insulators and HOT superconductors on Sierpiński carpet and
glued Sierpiński triangle fractals (Figs. 1–3). In general, HOT
phases via an extended bulk-boundary correspondence host
robust topological modes on lower-dimensional boundaries,
such as corners and hinges, characterized by respective codi-
mensions dc = d and d − 1 [15–53]. As such, a HOT phase
of order n can be constructed from its conventional first-order
counterpart by systematically introducing n number of suit-
able discrete symmetry-breaking Wilson-Dirac masses that

partially gap out the edge or surface states, for example, with
dc = 1, leaving the modes residing on boundaries with dc = n
gapless [19,26]. We show that this principle is operative on
fractal lattices as well. In particular, when the global shape of
these two fractals is tailored in such a way that four corners
reside along the inversion axes of the second-order Wilson-
Dirac mass, both HOT insulators and HOT superconductors
support robust topological corner modes (Figs. 1 and 3).
Moreover, the HOT insulators possess quantized quadrupole
moment Qxy = 0.5, which becomes origin independent in the
thermodynamic limit, indicating their intrinsic nature (Fig. 2).
By contrast, Qxy in HOT superconductors exhibit a significant
origin dependence and are thus possibly extrinsic in nature.

The HOT phases on fractals are unique in the sense that
they harbor inner corner modes, besides the conventional
outer corner modes which can also be observed in crystals.
However, due to distinct internal geometries, such inner cor-
ner modes are at finite but close-to-zero energy (still separated
from the rest of the states) in the Sierpiński carpet fractal
(Fig. 1), while they are pinned at zero energy on the glued
Sierpiński triangle fractal (Fig. 3).

Model. To outline the general protocol of engineering HOT
phases, here we consider its paradigmatic example on a square
lattice, captured by the Hamiltonian operator ĥ = ĥ1 + ĥ2,
where

ĥ1 = t[sin(kxa)σ3τ1 + sin(kya)σ0τ2] + M(k)σ0τ3,

ĥ2 = g[cos(kxa) − cos(kya)]σ1τ1. (1)

The uniform first-order Wilson-Dirac mass

M(k) = m0 + 2t0 − t0[cos(kxa) + cos(kya)] (2)
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FIG. 1. HOT insulator on a Sierpiński carpet fractal. (a) Energy
spectra of the Hamiltonian H [Eq. (3)] on a Sierpiński carpet fractal
of generation f = 3 (containing 512 sites) for t = t0 = 1, m0 = 0,
and g = √

2. (b) The local density of states (LDOS) of the four near-
zero-energy modes, shown in red in the inset of (a), confirms their
sharp corner localization. For the definition of the generation number,
see Sec. S1 and Fig. S1 of the Supplemental Material (SM) [56].
(c) Localization of four states with closest-to-zero, but finite energy
[blue dots in the inset of (a)] near the innermost corners. See Fig. S4
of the SM. Here LDOS is normalized by its maximum value.

preserves all discrete symmetries. Two sets of the Pauli ma-
trices {σμ} and {τμ} operate on the spin and orbital indices,
respectively, with μ = 0, . . . , 3. Hereinafter we set the lattice
spacing a = 1. Only in the parameter regime −2 < m0/t0 <

4, ĥ1 features two counterpropagating one-dimensional edge
modes with dc = 1 for opposite spin projections, thereby
yielding a first-order quantum spin Hall insulator. Otherwise,
the system is a trivial or normal insulator, devoid of any
topological edge states [54].

The second-order Wilson-Dirac mass ĥ2 anticommutes
with ĥ1. It thus acts as a mass to one-dimensional coun-
terpropagating edge modes of ĥ1 by causing hybridization
between them. Naturally, ĥ2 gaps out the edge modes, how-
ever, only partially as it assumes the profile of a domain-wall
mass flipping sign four times under 2π rotation and vanishing
along the diagonal 〈11〉 directions. Thus ĥ2 breaks fourfold
rotational (C4) symmetry. As a result, when the corners of a
square lattice reside along its diagonals, four corner modes
with dc = 2 get pinned therein, following the spirit of the
generalized Jackiw-Rebbi mechanism [55]. We then realize
a second-order topological insulator. These modes appear at
zero energy due to both unitary and antiunitary particle-hole
symmetries of ĥ, generated by C = σ2τ1 and � = σ3τ1K,
respectively, where K is the complex conjugation, as {ĥ,C} =
{ĥ,�} = 0 [40]. The model also breaks the time-reversal
symmetry, generated by T = σ2τ0K, and parity, generated by
P = σ0τ3, under which k → −k, thus preserving composite
C4T , C4P , and PT symmetries.

Fractal HOT insulators. This mechanism is not restricted
to the square lattice. If we maintain the symmetry of the
model and cleave the system such that four corners are placed
along the inversion axes of the HOT Wilson-Dirac mass, it
can support corner-localized zero-energy modes. To extend
the jurisdiction of this model beyond the realm of topologi-
cal crystals, we consider a real-space version of ĥ, given by

FIG. 2. (a) Origin (x0, y0 ) dependence of the quadrupole mo-
ment Qxy (modulo 1) of a HOT insulator, supporting corner modes
(Fig. 1) on a Sierpiński carpet fractal of generation f = 3 containing
N = 512 sites [56] with open boundary conditions for t = t0 = 1,
m0 = 0, and g = √

2. Here, x0 and y0 are measured in units of L,
the linear dimension of the system in each direction. Except for a
very few origin choices we indeed find Qxy = 0.5. (b) Scaling of the
fraction of the area Fr in the (x0, y0) plane, displaying Qxy = 0.5, with
the inverse of the generation number f and site number N (insets)
in the Sierpiński carpet (blue dots) and glued Sierpiński triangle
(red squares) fractals for the same parameter values as in (a). In the
thermodynamic limit ( f or N → ∞) as Fr → 1, Qxy becomes origin
independent. (c) Global phase diagram in the (m0, |g|) plane showing
HOT (trivial) insulator with Qxy = 0.5 (0.0) on Sierpiński carpet
fractal for t = t0 = 1. (d) Scaling of the spectral gap (Eg) between
the zero-energy corner modes and the closest-to-zero-energy modes
that are not outer corner localized for HOT insulators (HOTIs) and
HOT superconductors (HOTSCs) in two fractal lattices, ensuring that
Eg remains finite (inset) in the thermodynamic limit. Here, Eg is
computed by finding energies of a few states near zero energy using
the Lanczos algorithm (not an exact diagonalization).

H = H1 + H2, with

H1 =
∑
j �=k

G(r jk )

2
c†

j [−it (σ3τ1 cos φ jk + σ0τ2 sin φ jk )

− t0σ0τ3]ck +
∑

j

c†
j (m0 + 2t0)σ0τ3c j,

H2 = g
∑
j �=k

G(r jk )

2
c†

j (cos 2φ jk )σ1τ1ck, (3)

and c j = [c j↑α, c j↑β, c j↓α, c j↓β ]
. Here, c jστ is the electron
annihilation operator at site j, with spin projection σ =↑,↓
and on orbital τ = α, β. The azimuthal angle between the
jth and kth lattice sites, located at r j and rk , respectively, is
φ jk , measured with respect to the horizontal direction. For
the derivation of Eq. (3) from Eq. (1), consult Sec. S2 of the
Supplemental Material (SM) [56]. In order to ensure that the
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FIG. 3. HOT insulator on a glued Sierpiński triangle fractal.
(a) Number of zero-energy modes (ZEM) with the generation
number (insensitive to boundary condition). (b) Energy spectra in
generation f = 6 (containing 1394 sites) for t = t0 = 1, m0 = 0, and
g = √

2 with open boundary conditions. (c) and (d) Spatial distribu-
tion of LDOS for the 16 near-zero-energy modes in a system with
open and periodic boundary conditions, respectively.

sites in any noncrystalline lattice remain well connected, we
replace the nearest-neighbor hopping probabilities by a long-
range one, described by the rotationally invariant function

G(r jk ) = exp

(
1 − |r j − rk|

r0

)
. (4)

Here, r0 is the decay length, typically set to be the nearest-
neighbor distance. In principle, this generalized model for
a HOT insulator can be implemented on any noncrystalline
systems, such as fractals, amorphous materials [57], and qua-
sicrystals [20,24,25], as well as on a regular square lattice.
Here, we focus on the fractal system and scrutinize the pos-
sibility of realizing HOT insulators with corner modes on
quantum fractals. It should be noted that irrespective of the
geometry and internal structure of the system (such as the
connectivity among the sites), the above model always enjoys
both unitary and antiunitary particle-hole symmetry, now gen-
erated by Clat = σ2τ1I	×	 and �lat = σ3τ1I	×	 K, respectively,
where I	×	 is an 	-dimensional identity matrix and 	 is the
number of sites in the system.

Results obtained on a Sierpiński carpet fractal with dfrac =
ln(8)/ ln(3) ≈ 1.89 are shown in Fig. 1, depicting four near-
zero-energy (due to finite system size) modes, which are well
separated from the rest of the spectra. For explicit computation
of dfrac, see Sec. S1 of the SM [56]. The spatial distribution of
the corresponding local density of states (LDOS) shows that
these modes are highly localized at four outer corners, while
the inner corners are devoid of any such mode, in contrast to
Ref. [8]. This observation strongly suggests a possible real-
ization of an electronic HOT insulator on a Sierpiński carpet
fractal. Near zero energy there exist four states [blue dots in
the inset of Fig. 1(a)] that are localized near the innermost
corners of Sierpiński carpet fractal. See Fig. 1(c) and Fig. S4
of the SM [56]. Notice that outer corners of the Sierpiński

carpet are characterized by the coordination number 2. How-
ever, in the interior of the Sierpiński carpet there exists no
corner with coordination number 2. Consequently, the blue-
colored modes from the inset of Fig. 1(a) never become
zero-energy states, and their local density of states spreads
slightly away from the inner corners.

To anchor this claim, we compute the quadrupole moment
Qxy for the fractal HOT insulators [57–59]. To proceed, we
first evaluate

n = Re

[
− i

2π
Tr

(
ln

{
U † exp

[
2π i

∑
r

q̂xy(r)

]
U

})]
, (5)

where q̂xy(r) = xyn̂(r)/L2, n̂(r) is the number operator at
r = (x, y) of an open boundary system of linear dimension L
in each direction, and U is constructed by columnwise arrang-
ing the eigenvectors for the negative-energy filled states. The
quadrupole moment is then defined as Qxy = n − nal (modulo
1), where nal = (1/2)

∑
r xy/L2 represents n in the atomic

limit and at half filling. As each single-particle state is oc-
cupied by one particle, the computation of Qxy rests on the
fermionic nature of quasiparticles, which has no classical ana-
log. Identification of HOT insulators from quantized Qxy =
0.5 thus justifies the name “quantum fractal.” The results are
displayed in Fig. 2(a). We compute Qxy for all origin choices.
When the HOT insulator supports corner modes, for most of
the origin choices Qxy is quantized to 0.5 within the numerical
accuracy. However, in any finite system there always exist a
few origin choices for which Qxy = 0, despite the presence of
the corner modes. Such an origin dependence can be quan-
tified by Fr , measuring the fraction of all origin choices for
which corner modes corroborate quantized Qxy = 0.5. As the
generation number f or number of lattice sites N is increased
[56], Fr → 1 in the thermodynamic limit, corresponding to
f → ∞ or N → ∞ [Fig. 2(b)]. The quadrupolar operator
q̂xy(r) is gauge invariant, and the variation of the charge cen-
ters (r) or the origin is tantamount to a gauge transformation
[59], in turn allowing us to scrutinize the gauge invariance of
Qxy when computed in a quantum many-body ground state.
Hence the origin independence of Qxy in the thermodynamic
limit ensures it gauge independence, and it stands as a bona
fide order parameter for HOT insulators on quantum fractals.
Thus the HOT insulator on a Sierpiński carpet fractal is intrin-
sic in nature.

The ultimate origin independence of Qxy allows us to con-
struct a global phase diagram in the (m0, |g|) plane [Fig. 2(c)].
It supports two topologically distinct phases: (a) a fractal
HOT insulator with Qxy = 0.5 and (b) a trivial insulator with
Qxy = 0. Small and moderate (large) values of |m0| and |g| are
conducive to a HOT (trivial) insulator. Only the entire fractal
HOT insulator phase supports four zero-energy corner modes.
The stability of the fractal HOT insulator can be established
from the scaling of the gap between corner modes with the
closest finite energy states (not corner localized), shown in
red and blue, respectively, in the inset of Fig. 1(a), with the
generation and site numbers. This gap remains finite as we
approach the thermodynamic limit [Fig. 2(d)], in turn ensur-
ing that corner modes are separated by a finite gap, thereby
yielding stability to the fractal HOT insulator.
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Next we investigate the possibility of realizing HOT insu-
lators on a glued Sierpiński triangle fractal. In order to obtain
four outer corners along the inversion axes of the second-order
Wilson-Dirac mass, we glue two Sierpiński triangle fractals,
each being a right-angled triangle, slightly different from its
known geometry [4]. Consequently, the corresponding fractal
dimension is dfrac = ln(6)/ ln(

√
8) ≈ 1.72 (see Sec. S1 of the

SM [56]). Numerical diagonalizations reveal that the number
of zero-energy modes can depend on the generation number
[Fig. 3(a)]. In the sixth generation there are altogether 16 such
modes [Fig. 3(b)], well separated from the other nearby states
[Fig. 2(d)]. As HOT insulators are crystalline topological
phases, the number of zero-energy modes and their spatial dis-
tributions depend on structural details of the system. See, for
example, Fig. 4 of Ref. [60]. On the glued Sierpiński triangle,
the number of zero-energy modes increases with generation
number f , as the number of inner naked corners increases with
it. However, it always describes the same topological phase,
namely, the HOT insulator, characterized by Qxy = 0.5.

The LDOS of zero-energy modes predominantly occu-
pies four outer corners in a system with open boundaries
[Fig. 3(c)], qualitatively similar to the situation in a Sierpiński
carpet fractal. However, in contrast, the LDOS of all zero-
energy modes also displays subdominant localization at the
inner shared naked corners, which are devoid of other neigh-
boring sites. Therefore the manifold of the zero-energy modes
does not fragment between the outer and inner naked corners.
See Fig. S5 of the SM [56]. Consequently, in a periodic sys-
tem, the number of zero-energy modes remains unchanged,
and the corresponding LDOS appears only at the inner cor-
ners [Fig. 3(d)]. Additionally, the LDOS weakly spreads
over the inner edges making a π/4 angle with the hori-
zon, since the Wilson-Dirac mass vanishes in that direction
[Figs. 3(c) and 3(d)].

The HOT insulators with outer and naked inner corner
modes on glued Sierpiński triangle fractals possess quantized
Qxy = 0.5, which slowly becomes origin independent as we
approach the thermodynamic limit [Fig. 2(b)]. The slowness
of Fr → 1 possibly stems from the inner edges at the π/4
angle, which always absorb a tiny fraction of the LDOS asso-
ciated with the zero-energy modes. The global phase diagram
of this system in the (m0, |g|) plane is qualitatively similar to
the one in Fig. 2(c). See Fig. S2 of the SM [56].

Fractal HOT superconductors. Continuing the journey
through the territory of HOT phases on quantum fractals,
next we search for HOT superconductors on Sierpiński car-
pet and glued Sierpiński triangle fractals. In principle, with
suitable choices of Hermitian matrices and the corresponding
spinor, which includes both electron- and holelike compo-
nents (Nambu doubling), ĥ can also describe a second-order
topological superconductor [Eq. (1)]. Namely, the quantity
appearing with t describes an odd-parity p-wave pairing, the
term proportional to g represents an even-parity dx2−y2 pair-
ing, and M(k) gives rise to a Fermi surface when −2 <

m0/t0 < 4 on a square lattice with only nearest-neighbor
hopping amplitude. The resulting mixed-parity, time-reversal-
symmetry-breaking p + id pairing is a prominent candidate
for a HOT superconductor that supports four corner-localized
Majorana zero modes [34,44]. Naively, it is therefore
tempting to conclude that quantum fractals harbor HOT

superconductors based on the results shown in Figs. 1–3; this
conclusion, however, encounters a few fundamental as well as
practical shortcomings.

Primarily, the Hamiltonian ĥ does not reveal any micro-
scopic origin of the p + id pairing nor does it unveil any
potential material platform where such pairing can be realized.
Even more importantly, when we extend ĥ to a real-space hop-
ping Hamiltonian [Eq. (3)], the pairing terms (proportional
to t and g) become infinitely long-ranged connecting all the
sites with decaying amplitude of the Cooper pairs [Eq. (4)],
which is unphysical. Finally, the notion of a Fermi surface
in the absence of an underlying translational symmetry, as
in fractals, becomes moot. To circumvent these limitations,
we search for a suitable material platform where on-site or
local pairings can give rise to HOT superconductors, which do
not strictly rely on a sharp Fermi surface. A class of systems
that satisfies all these realistic requisite features is the second-
order Dirac insulator, whose normal state is described by
the Hamiltonian ĥ [Eq. (1)]. To accommodate superconduct-
ing orders in this system, we Nambu-double the spinor. The
Hamiltonian then reads as ĥNam = η3ĥ1 + η0ĥ2. The newly
introduced Pauli matrices {ημ} with μ = 0, . . . , 3 operate on
the Nambu or particle-hole index. Here, we focus only on the
local or on-site pairings which are oblivious to the underlying
lattice structure and thus possess natural immunity against the
lack of crystalline order. Due to the Pauli exclusion principle,
the number of such pairings is restricted to be six, which
is exactly the number of purely imaginary four-dimensional
Hermitian matrices. See Sec. S4 of the SM [56] for details.

The local second-order topological superconductor can be
unambiguously identified from its requisite symmetries. For
example, it must anticommute with the Dirac kinetic energy,
captured by the terms proportional to t in ĥNam, such that the
pairing represents a topological Nambu-Dirac mass. In addi-
tion, it must commute with the first-order Wilson-Dirac mass,
so that the boundary modes of this pairing are not uniformly
gapped. Finally, it must anticommute with the second-order
Wilson-Dirac mass such that the Majorana edge modes are
gapped, but only partially, producing localized zero-energy
Majorana modes at four corners, when they reside along the
〈11〉 directions. These constraints select a unique candidate
for the second-order topological superconductor, for which
the effective single-particle Bogoliubov–de Gennes Hamilto-
nian reads

ĥpair = �(η1 cos φ + η2 sin φ)σ1τ2. (6)

Here, � is the pairing amplitude, and φ is the U(1) supercon-
ducting phase. The Nambu Hamiltonian ĥtotal

Nam = ĥNam + ĥpair

can be implemented on any fractal lattice following Eq. (3).
Without loss of generality, we set φ = 0.

The resulting energy spectra and LDOS corresponding to
the near-zero-energy modes are qualitatively similar to the
ones shown in Figs. 1 and 3 on the Sierpiński carpet and
glued Sierpiński triangle fractals, respectively. See Fig. S3
of the SM [56]. These observations confirm the realization
of HOT superconductors on quantum fractals. Furthermore,
to attribute the resulting corner modes solely to the paired
state, we choose the normal state to be topologically trivial.
However, the quadrupole moment associated with a second-
order topological superconductor is found to be Qxy = 0.5 for
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a very few origin choices, and there is no clear indication
of Fr → 1 in the thermodynamic limit, due to strong inter-
band scattering. Therefore, in all likelihood the fractal HOT
superconductors, in contrast to their insulating counterparts,
are extrinsic in nature. Still the spectral gap between (near-
)zero-energy corner modes and other closest-to-zero-energy
(not corner localized) states approaches a finite value in the
thermodynamic limit [Fig. 2(d)]. So, extrinsic fractal HOT
superconductors and their hallmark corner modes are stable.
These outcomes remain qualitatively unaltered even when the
normal state is a fractal HOT insulator.

Summary and discussion. Here, we construct a concrete
path to theoretically harness HOT phases on a family of
fractional materials, quantum fractals, and demonstrate their
realizations on Sierpiński carpet and glued Sierpiński triangle
fractals. While the HOT insulators are intrinsic in nature, their
superconducting cousins are possibly extrinsic. Nonetheless,
the HOT paired state in a second-order Dirac insulator is
energetically most favored among all symmetry-allowed local
pairings over a wide parameter range [56]. This procedure
can be generalized to identify HOT phases on fractals with
different geometries, as well as on higher-dimensional fractals
[4,10,61]. Furthermore, by stacking planar HOT fractals in the
out-of-plane direction, one can construct HOT semimetals in a
hybrid dimension. These exciting possibilities, inhabiting the
landscape of topological quantum fractals, will be systemati-
cally explored in the future following our general principle of
construction.

Electronic fractal materials, such as the ones recently
engineered in designer electronic [5] and molecular [6] com-
pounds, constitute the ideal platform where our proposed
fractal HOT insulators and superconductors can be realized

in experiments. In these quantum fractals, while the insulat-
ing HOT phases can be unveiled by designing appropriate
hopping elements, their pairing counterparts should become
energetically favored upon chemical doping. Our predicted
fractal HOT insulators can also be tailored on various clas-
sical metamaterials, such as photonic [62] and phononic or
acoustic [63,64] lattices, with longer-range coupling between
the photonic waveguides and microwave resonators, respec-
tively. Topolectric circuits constitute yet another promising
platform where our predictions can be tested [65,66], espe-
cially given that quasicrystalline quadrupole insulators have
already been realized therein [67], as well as HOT insula-
tors with long-range hopping [68]. For practical purposes,
it should be noted that it is not necessary for the hopping
amplitudes to be sufficiently long ranged [Eq. (4)]. As long
as all the sites on fractal lattices stay connected, all our find-
ings remain qualitatively unchanged. Although topological
boundary modes in classical metamaterials can be detected
from the spatial distribution of on-resonance impedance
(topolectric circuits) or two-point pump-probe spectroscopy
(photonic lattices) or absorption spectra (phononic lat-
tices), many-body quantum topological invariants, such as
the quadrupole moment Qxy, cannot be measured in these
systems.

Note added. Recently, we became aware of two experimen-
tal works [69,70] where our predictions of HOT insulators in
Sierpiński carpet fractals have been observed.
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[21] T. Nag, V. Juričić, and B. Roy, Phys. Rev. Research 1,

032045(R) (2019).
[22] A. L. Szabó, R. Moessner, and B. Roy, Phys. Rev. B 101,

121301(R) (2020).
[23] B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B.

Bradlyn, and B. A. Bernevig, Nat. Commun. 11, 627 (2020).
[24] R. Chen, C.-Z. Chen, J.-H. Gao, B. Zhou, and D.-H. Xu, Phys.

Rev. Lett. 124, 036803 (2020).
[25] S. Spurrier and N. R. Cooper, Phys. Rev. Research 2, 033071

(2020).

L201301-5

https://doi.org/10.1038/s41567-018-0328-0
https://doi.org/10.1038/nchem.2211
https://doi.org/10.1103/PhysRevB.98.205116
https://doi.org/10.1103/PhysRevB.100.155135
https://doi.org/10.1103/PhysRevB.101.045413
https://doi.org/10.1103/PhysRevResearch.2.023401
https://doi.org/10.1103/PhysRevResearch.2.013044
https://doi.org/10.1038/s41377-020-00354-z
https://doi.org/10.1103/PhysRevA.105.L021302
http://arxiv.org/abs/arXiv:2202.07658
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevLett.123.196401
https://doi.org/10.1103/PhysRevResearch.1.032045
https://doi.org/10.1103/PhysRevB.101.121301
https://doi.org/10.1038/s41467-020-14443-5
https://doi.org/10.1103/PhysRevLett.124.036803
https://doi.org/10.1103/PhysRevResearch.2.033071


MANNA, NANDY, AND ROY PHYSICAL REVIEW B 105, L201301 (2022)

[26] T. Nag, V. Juričić, and B. Roy, Phys. Rev. B 103, 115308
(2021).

[27] C.-A. Li, S.-B. Zhang, J. Li, and B. Trauzettel, Phys. Rev. Lett.
127, 026803 (2021).

[28] W. Zhu, M. Umer, and J. Gong, Phys. Rev. Research 3, L032026
(2021).

[29] R. V. Bhat and S. Bera, J. Phys.: Condens. Matter 33, 164005
(2021).

[30] Q. Wei, X. Zhang, W. Deng, J. Lu, X. Huang, M. Yan, G. Chen,
Z. Liu, and S. Jia, Nat. Mater. 20, 812 (2021).

[31] Q. Wei, X. Zhang, W. Deng, J. Lu, X. Huang, M. Yan, G. Chen,
Z. Liu, and S. Jia, Phys. Rev. Lett. 127, 255501 (2021).

[32] B. Wang, X. Zhou, H. Lin, and A. Bansil, Phys. Rev. B 104,
L121108 (2021).

[33] Y.-S. Hu, Y.-R. Ding, J. Zhang, Z.-Q. Zhang, and C.-Z. Chen,
Phys. Rev. B 104, 094201 (2021).

[34] Y. Wang, M. Lin, and T. L. Hughes, Phys. Rev. B 98, 165144
(2018).

[35] Z. Wu, Z. Yan, and W. Huang, Phys. Rev. B 99, 020508(R)
(2019).

[36] T. Liu, J. J. He, and F. Nori, Phys. Rev. B 98, 245413 (2018).
[37] X. Zhu, Phys. Rev. Lett. 122, 236401 (2019).
[38] X.-H. Pan, K.-J. Yang, L. Chen, G. Xu, C.-X. Liu, and X. Liu,

Phys. Rev. Lett. 123, 156801 (2019).
[39] S. A. A. Ghorashi, X. Hu, T. L. Hughes, and E. Rossi, Phys.

Rev. B 100, 020509(R) (2019).
[40] B. Roy, Phys. Rev. Research 1, 032048(R) (2019).
[41] S.-B. Zhang and B. Trauzettel, Phys. Rev. Research 2,

012018(R) (2020).
[42] R.-X. Zhang, Y.-T. Hsu, and S. Das Sarma, Phys. Rev. B 102,

094503 (2020).
[43] S. J. De, U. Khanna, and S. Rao, Phys. Rev. B 101, 125429

(2020).
[44] B. Roy, Phys. Rev. B 101, 220506(R) (2020).
[45] M. Kheirkhah, Z. Yan, Y. Nagai, and F. Marsiglio, Phys. Rev.

Lett. 125, 017001 (2020).
[46] T. E. Pahomi, M. Sigrist, and A. A. Soluyanov, Phys. Rev.

Research 2, 032068(R) (2020).
[47] A. Tiwari, A. Jahin, and Y. Wang, Phys. Rev. Research 2,

043300 (2020).
[48] A. K. Ghosh, T. Nag, and A. Saha, Phys. Rev. B 103, 045424

(2021).
[49] B. Fu, Z.-A. Hu, C.-A. Li, J. Li, and S.-Q. Shen, Phys. Rev. B

103, L180504 (2021).
[50] A. Chew, Y. Wang, B. A. Bernevig, and Z.-D. Song,

arXiv:2108.05373.

[51] T. Li, M. Geier, J. Ingham, and H. D. Scammell, 2D Mater. 9,
015031 (2022).
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[53] B. Roy and V. Juričić, Phys. Rev. B 104, L180503 (2021).
[54] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[55] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[56] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.105.L201301 for the computation of fractal
dimension dfrac and definition of generation number f , deriva-
tion of the real-space Hamiltonian, numerical results on the
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