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Spin accumulation without spin current

Atsuo Shitade 1 and Gen Tatara2

1Institute for Molecular Science, Aichi 444-8585, Japan
2RIKEN Center for Emergent Matter Science (CEMS) and RIKEN Cluster for Pioneering Research (CPR),

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Received 21 December 2021; revised 22 April 2022; accepted 2 May 2022; published 11 May 2022)

The spin Hall (SH) effect is a phenomenon in which the spin current flows perpendicular to an applied electric
field and causes the spin accumulation at the boundaries. However, in the presence of spin-orbit couplings, the
spin current is not well defined. Here, we calculate the spin response to an electric-field gradient, which naturally
appears at the boundaries. We derive a generic formula using the Bloch wave functions and the phenomenological
relaxation time. We also calculate the response for the uniform Rashba model with δ-function nonmagnetic
disorder within the first-order Born approximation and corresponding vertex corrections. We find the nonzero
spin accumulation, although the SH conductivity exactly vanishes.
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Introduction. Spintronics is an active research field in
condensed-matter physics to make use of the spin degree
of freedom of electrons. Key steps are creation, transporta-
tion, and detection of spins, and, hence, the spin current
has been believed to play an important role. Such a current
can be generated via spin-orbit (SO) couplings perpendicular
to an applied electric field. This phenomenon, proposed by
D’yakonov and Perel’ [1] and later by Hirsch [2], is called
the spin Hall (SH) effect [3]. It has attracted renewed interest
since the theoretical proposals [4,5] and experimental obser-
vations in semiconductors [6,7].

Experimentally, the spin current in the SH effect has
not been directly observed. Only indirectly observed are the
charge current in the inverse SH effect [8,9] and the mag-
netization dynamics in the ferromagnetic resonance [10,11].
In Refs. [6,7], the spin accumulation at the boundaries was
detected optically and attributed to the SH effect: The spin
current is generated via the SH effect and then turns into spin
at the boundaries, as depicted in Fig. 1(a). Hence, spin, rather
than the spin current, is the primary physical object in order
to describe these experimental results. This idea was pointed
out already in the first theoretical proposal [1] and repeatedly
in many subsequent papers [12–22].

In the presence of SO couplings, spin is not conserved,
and the spin current is not well defined. When a spin current
density J i

sa (t, x) is given, there exists the corresponding spin
torque density τa(t, x), and the spin continuity equation is
expressed as ∂t sa(t, x) + ∂xi J i

sa (t, x) = τa(t, x). Widely used
is the conventional definition, Ĵ i

sa (k) = {ŝa, v̂
i(k)}/2, where

ŝa and v̂i(k) are the spin and velocity operators, respec-
tively. However, this definition is unphysical in the sense
that its uniform equilibrium expectation value is nonzero
in noncentrosymmetric systems, such as the Rashba and
Dresselhaus models [23]. Another definition is the so-called
conserved spin current [24,25]. If the spin torque vanishes in
average over the whole system, we can define the spin torque
dipole density as τa(t, x) = −∂xi P i

τa (t, x), and J̃ i
sa (t, x) =

J i
sa (t, x) + P i

τa (t, x) is conserved on average. This definition

has interesting properties, such as the Středa formula between
the SH conductivity and the SO magnetic susceptibility [26]
and the Mott relation between the SH and the spin Nernst con-
ductivities [27,28]. Whatever definition we choose, however,
we need to consider the corresponding spin torque density
to evaluate the observable spin density. Note that using the
scattering approach for mesoscopic systems, the prohibition
of the equilibrium spin current [29], an electrical measurement
scheme [30], and the Onsager reciprocal relations [31] were
shown without defining the spin current.

In the case of the Rashba model that describes n-type
semiconductor heterostructures, the SH conductivity of the
conventional spin current exactly vanishes when the vertex
corrections are taken into account [12,32–37]. This cancella-
tion is owing to the special property that the conventional spin
current operator is proportional to the time derivative of the
spin operator [34–36]. The SH conductivity of the conserved
spin current also vanishes [38]. Following the typical scenario
in Fig. 1(a), the spin accumulation would be zero but, in fact,
observed experimentally [7]. Thus, it is clearly insufficient to
focus on the SH conductivity only.

In contrast to the spin current, spin is well defined. Regard-
ing the Rashba model, the spin polarization at the boundaries
has been calculated using the coupled diffusion equations ob-
tained microscopically [12,13,17,18], the Landauer-Keldysh
formalism [14–16], and the scattering problem [19–21]. Now
it is well understood that the essence of the SH effect is the
spin accumulation. However, in these formalisms, we need to
impose the open boundary conditions or attach the leads to
the system. It is difficult to deal with such finite geometries
in first-principles calculations for real materials, which may
have multiple bands and complicated SO couplings. Hence,
the Kubo formula of the SH conductivity is widely used in
first-principles calculations [39–41] despite the aforemen-
tioned problems. It is highly desired to establish the Kubo
formula of the spin accumulation.

Recently, one of the authors considered the spin response
to an electric-field gradient [42]. When a uniform electric field
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FIG. 1. (a) Typical scenario: The spin current is generated
by a uniform electric field via the SH effect and then turns into
spin at the boundaries. In the uniform Rashba model, the SH
conductivity vanishes, and no spin accumulation is expected.
(b) Our scenario: Spin is induced by the electric-field gradi-
ent at the boundaries. The spin accumulation may occur even
when the SH conductivity vanishes. Our theory is free from the
ambiguity regarding the definition of the spin current and spin
torque.

is applied to a finite-size system, the charge current vanishes at
the boundaries. What we call the electric field here effectively
describes such a boundary effect, and its gradient has peaks
there as depicted in Fig. 1(b). Since the spin-diffusion length
that characterizes the spin accumulation is much longer than
the mean free path, we can safely assume that the electric field
slowly decreases towards the boundaries. Then, the spin ac-
cumulation can be emulated imposing the periodic boundary
conditions, which are compatible to first-principles calcula-
tions. The theory also explains generation of spin current
using the SH effect or the spin pumping and detection using
the inverse SH effect in terms of the nonlocal spin fluctuation.

In this Letter, we study the spin response to the electric-
field gradient with the quantum-mechanical linear-response
theory. First, we derive a generic formula expressed by the
Bloch wave functions. Although disorder effects are taken into
account via a phenomenological relaxation time, the formula
can be applied to any Bloch Hamiltonian. Second, we calcu-
late the spin response with the Green’s functions. We consider
the uniform Rashba model with δ-function nonmagnetic dis-
order within the first Born approximation and corresponding
vertex corrections, which results in the vanishing SH con-
ductivity [12,32–37]. Nonetheless, we find the nonzero spin
accumulation, which is consistent with the experimental result
[7]. This theory enables us to calculate the observable quantity
in the SH effect for real materials.

Bloch formulas. First, we calculate the spin–charge-
current correlation function that characterizes 〈�ŝa〉(�, Q) =
χR

ŝa Ĵ j (�, Q)Aj (�, Q), where � and Q are the frequency and
the wave number of an external vector potential. Using
the Bloch wave-functions |un(k)〉 for the Bloch Hamiltonian
Ĥ(k), the correlation function is expressed as

χR
ŝa Ĵ j (�, Q) = −q

∑
nm

∫
dd k

(2π )d
〈un(k−)|ŝa|um(k+)〉

× 〈um(k+)|v̂ j (k; Q)|un(k−)〉
× f (εn(k−)) − f (εm(k+))

h̄� + εn(k−) − εm(k+) + iη

= χŝa Ĵ j (0, Q) + (i�)αR
ŝa Ĵ j (�, Q), (1)

where q is the electron charge, d is the spatial dimension,
η → +0 is the convergence factor, v̂ j (k; Q) = [v̂ j (k+) +

v̂ j (k−)]/2 with k± = k ± Q/2, and f (ε) = [e(ε−μ)/T + 1]−1

is the Fermi distribution function. We expand Eq. (1) up to the
first order with respect to Q with keeping � nonzero. The first
term in Eq. (1) takes the form of χŝa Ĵ j (0, Q) = εi jk (iQi)χ so

ak ,
and we reproduce the SO magnetic susceptibility [43,44],

χ so
ak = −q

h̄

∑
n

∫
dd k

(2π )d

[( − εi jks i
na ∂k j εn + snamnk

)
f ′(εn)

+ bnak f (εn)
]
. (2)

The argument of k is omitted for simplicity. We have intro-
duced sna = 〈un|ŝa|un〉, the magnetic moment mnk [45–47],
spin magnetic quadrupole moment s i

na [48,49], and spin Berry
curvature bnak as

εi jkmnk = Im[〈∂ki un|(εn − Ĥ)|∂k j un〉], (3a)

s i
na = Im(〈∂ki un|Q̂nŝa|un〉), (3b)

εi jkbnak = −Im[〈∂ki un|Q̂n(sna + ŝa)Q̂n|∂k j un〉] +
∑

m( �=n)

× Im[〈un|ŝa|um〉〈um|(∂kiεn + h̄v̂i )Q̂n|∂k j un〉]
εn − εm

− (i ↔ j), (3c)

with Q̂n = 1 − |un〉〈un| being the antiprojection operator.
Equation (3c) is a spin analog of the Berry curvature because
it is reduced to the Berry curvature when ŝa is replaced by
1 and totally antisymmetric with respect to ∂ki , ∂k j , and ∂Ba .
Here, Ba is the Zeeman field conjugate to ŝa.

The second term in Eq. (1) takes the form of [44]

αR
ŝa Ĵ j (�, Q) = [

χR
ŝa Ĵ j (�, Q) − χŝa Ĵ j (0, Q)

]/
(i�)

= ih̄

h̄� + iη
α j

a + h̄2(iQi)

(h̄� + iη)2
γ i j(I)

a

− ih̄(iQi )

h̄� + iη
γ i j(II)

a , (4)
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where

α j
a = −q

h̄

∑
n

∫
dd k

(2π )d
sna∂k j εn f ′(εn), (5a)

γ i j(I)
a = − q

h̄2

∑
n

∫
dd k

(2π )d
sna∂kiεn∂k j εn f ′(εn), (5b)

γ i j(II)
a = −q

h̄

∑
n

∫
dd k

(2π )d

× (
s i

na ∂k j εn − snaε
i jkmnk

)
f ′(εn). (5c)

Equation (5a) describes the Edelstein effect [50], whereas
Eqs. (5b) and (5c) describe the spin accumulation induced
by the electric-field gradient. Note that we drop the in-
terband Fermi-sea term because it breaks the time-reversal
symmetry.

Combining Eqs. (2) and (4), the spin density is induced by
electromagnetic fields as

〈�ŝa〉(�, Q) = ih̄

h̄� + iη
α j

a E j (�, Q)

+
[

h̄2

(h̄� + iη)2
γ i j(I)

a − ih̄

h̄� + iη
γ i j(II)

a

]

× (iQi )Ej (�, Q) + χ so
ak Bk (�, Q). (6)

Taking the limit of � → 0 and introducing the phenomeno-
logical relaxation time h̄/η, we arrive at one of our main
results,

〈�ŝa〉(0, Q) = h̄

η
α j

a E j (0, Q) −
[

h̄2

η2
γ i j(I)

a + h̄

η
γ i j(II)

a

]

× (iQi )Ej (0, Q). (7)

Let us apply the above formulas to the uniform Rashba
model,

Ĥ(k) = h̄2k2

2m
+ h̄α(kyσx − kxσy), (8)

where σ is the Pauli matrix corresponding to the spin operator
ŝ = (h̄/2)σ. The eigenvalues are εσ (k) = h̄2k2/2m + σ h̄αk.

At T = 0, we obtain the SO magnetic susceptibility (2) and
spin accumulation (5c) as [44]

χ so
zz = − q

4π

{
0 (μ > 0)√

1 + 2μ/mα2 (μ < 0)
, (9a)

γ xy(II)
z = − q

8π

{
1 (μ > 0)
0 (μ < 0) . (9b)

Note that Eq. (9a) is consistent with the previous result
[51,52]. The spin accumulation (9b) is nonzero when the
chemical potential is above the Rashba crossing. However, it
is natural to ask if Eq. (9b) survives when the vertex correc-
tions are taken into account.

Green’s functions. The above results are phenomenological
in the sense that h̄/η is interpreted as the relaxation time.
Here, we consider δ-function nonmagnetic disorder within
the first Born approximation and take into account the cor-
responding ladder-type vertex corrections for the uniform
Rashba model (8). The bare retarded Green’s function is
expressed as

ĝR(ε, k) = 1

ε + iη − Ĥ(k)

= 1

2

[
gR

+(ε, k) + gR
−(ε, k)

]+1

2

[
gR

+(ε, k) − gR
−(ε, k)

]
× (σx sin φ − σy cos φ), (10)

with gR
σ (ε, k) = [ε + iη − εσ (k)]−1 being the diagonalized

one. The imaginary part of the self-energy is then
expressed as

�̂(ε) = −Im

[
niv

2
i

∫
d2k

(2π )2
ĝR(ε, k)

]

= �0

{
1 (ε > 0)
1/

√
1 + 2ε/mα2 (ε < 0)

, (11)

with �0 = mniv
2
i /2h̄2. Below, we denote �̂(ε) as �(ε). The

renormalized retarded Green’s function is expressed as

ĜR(ε, k) = 1

ε + i�(ε) − Ĥ(k)

= 1

2
[GR

+(ε, k) + GR
−(ε, k)]

+ 1

2
[GR

+(ε, k) − GR
−(ε, k)]

× (σx sin φ − σy cos φ), (12)

with GR
σ (ε, k) = [ε + i�(ε) − εσ (k)]−1 [53,54].

Now we evaluate the spin response to a vector potential,

〈�ŝz〉(�, Q) = iqAy(�, Q)
∫

dε

2π

∫
d2k

(2π )2
tr[ŝzĜ(ε+, k+)v̂y(k; Q)Ĝ(ε−, k−)]<

= iqAy(�, Q)
∫

dε

2π

∫
d2k

(2π )2
tr{−ŝzĜ

R(ε+, k+)v̂y(k; Q)ĜA(ε−, k−)[ f (ε+) − f (ε−)]

+ ŝzĜ
A(ε+, k+)v̂y(k; Q)ĜA(ε−, k−) f (ε+) − ŝzĜ

R(ε+, k+)v̂y(k; Q)ĜR(ε−, k−) f (ε−)}, (13)
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FIG. 2. Feynman diagrams for (a) the spin–charge-current correlation function of the first order with respect to Qx , (b) the renormalized
velocity vertex, and (c) the renormalized spin vertex. The filled squares, open squares, and open circles represent the bare vertices of v̂x , v̂y,
and ŝz, respectively.

in which ε± = ε ± h̄�/2, up to the first order with respect to � and Qx. The zeroth-order terms with respect to Qx vanish owing
to the C4 symmetry of the Rashba model. The first-order terms are decomposed into two; one is the zeroth-order Fermi-sea
term with respect to � and describes the SO magnetic susceptibility, whereas the other is the first-order Fermi-surface term and
describes the spin accumulation. These terms are expressed as [44]

〈�ŝz〉(0,1,II)(�, Q) = ih̄q

2
QxAy(�, Q)

∫
dε

2π
f (ε)

∫
d2k

(2π )2

× tr[ŝzĜ
A(v̂xĜAv̂y − v̂yĜAv̂x )ĜA − (A → R)], (14a)

〈�ŝz〉(1,1,I)(�, Q) = ih̄2q

4
�QxAy(�, Q)

∫
dε

2π
f ′(ε)

∫
d2k

(2π )2

× tr[−2ŜzĜ
R(v̂xĜRV̂ y − V̂ yĜAv̂x )ĜA

+ ŝzĜ
A(v̂xĜAv̂y − v̂yĜAv̂x )ĜA + ŝzĜ

R(v̂xĜRv̂y − v̂yĜRv̂x )ĜR], (14b)

and diagrammatically represented in Fig. 2(a). The arguments
of ε and k are omitted for simplicity. In the Fermi-surface term
(14b) that involves both the retarded and the advanced Green’s
functions, we have replaced v̂y(k) and ŝz with V̂ y(ε, k) and
Ŝz(ε), respectively. These renormalized vertices, diagrammat-
ically represented in Figs. 2(b) and 2(c), are obtained by
solving

V̂ y(ε, k) = v̂y(k) + niv
2
i

∫
d2k′

(2π )2

× ĜR(ε, k′)V̂ y(ε, k′)ĜA(ε, k′), (15a)

Ŝz(ε) = ŝz + niv
2
i

∫
d2k′

(2π )2

× ĜA(ε, k′)Ŝz(ε)ĜR(ε, k′). (15b)

For the bare velocity vertex v̂y(k) = h̄ky/m + ασx and spin
vertex ŝz = (h̄/2)σz, the renormalized vertices are V̂ y(ε, k) =
h̄ky/m + αV yx(ε)σx and Ŝz(ε) = (h̄/2)Sz

z (ε)σz, respectively.
In the limit of �0 → +0, Eq. (14a) reproduces the SO mag-

netic susceptibility (9a) obtained by the Bloch formula. To
neglect the vertex corrections, we only have to put V̂ yx(ε) =
Ŝz

z (ε) = 1, and Eq. (14b) reproduces Eq. (9b) by identifying
η ↔ 2�(ε). When we take into account the vertex corrections,
we reproduce [32,44]

V yx(ε) =
{

0 (ε > 0),
−2ε/mα2 (ε < 0),

(16)

and Sz
z (ε) = 1 [50]. Then, the correct spin accumulation at

T = 0 becomes [44]

〈�ŝz〉(1,1,I)(�, Q) = −h̄

2�(μ)
×

(
− q

8π

)
(iQx )Ey(�, Q)

×
{

1 (μ > 0)√
1 + 2μ/mα2 (μ < 0).

(17)

This equation is another main result. The spin accumulation
is nonzero even in the case where the chemical potential is
below the Rashba crossing. We emphasize again that the SH
conductivity vanishes in our setup [12,32–37]. If we consider
the diffusion process, the spin accumulation decays in the
scale of the spin-diffusion length [42] as in the experimental
[7] and theoretical results [13–17].

Discussion. First, let us discuss the directions of the spin
and electric field. The second term of the Bloch formula (5c)
involves the spin sna and the orbital magnetic moment mnk .
Since these two are parallel to each other, the spin accumula-
tion takes the form of 〈�ŝa〉(0, Q) ∝ [iQ × E(0, Q)]a, more
precisely, 〈�ŝa〉(0, Q) ∝ [iQ × 〈�Ĵ〉(0, Q)]a considering the
boundary effect as argued in the Introduction. Thus, the di-
rection of the spin accumulation is consistent with the typical
scenario of the SH effect.

Second, we discuss a relation between our results and
the previous results on the SH conductivity. By multiplying
(−i�) to Eq. (6), we obtain the time derivative of the spin
expectation value. If we take the limits of � → 0 and η → +0

L201202-4
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in the arbitrary order, we may obtain

(−i�)〈�ŝa〉(�, Q)

= α j
a E j (�, Q) −

[
h̄

η
γ i j(I)

a + (
γ i j(II)

a + εi jkχ so
ak

)]

× (iQi )Ej (�, Q). (18)

Here, we have used Faraday’s law, (−i�)B(�, Q) = −(iQ) ×
E(�, Q). Since the second term is the divergence, we can read
the spin (Hall) conductivity as

σ̃ i j
sa = h̄

η
γ i j(I)

a + (
γ i j(II)

a + εi jkχ so
ak

)

= h̄

η
γ i j(I)

a − q

h̄

∑
n

∫
dd k

(2π )d

× [
s j

na ∂kiεn f ′(εn) + εi jkbnak f (εn)
]
. (19)

This formula is consistent with the SH conductivity of the
conserved spin current [44] proposed in Refs. [24,25]. Fur-
thermore, the Středa formula between the SH conductivity
and the SO magnetic susceptibility [26] is obvious in this
formalism. Equation (19) can be interpreted that the SH con-
ductivity is not related to the spin accumulation in the case
of the nonzero SO magnetic susceptibility. However, when
the vertex corrections are taken into account, Eq. (19) no
longer holds, and the SH conductivity is not related to the spin
accumulation regardless of the presence or absence of the SO
magnetic susceptibility.

Third, we mention first-principle calculations of the spin
accumulation, which is obtained by the product of −h̄/η and
Eq. (5c). Although we have treated η → +0 as a constant, it
is better to take η proportional to the density of states. This
choice is justified for δ-function nonmagnetic disorder within

the first Born approximation, although the vertex corrections
cannot be taken into account. To do so, the Korringa-Kohn-
Rostoker formalism combined with the coherent potential
approximation is useful as demonstrated in the context of the
SH conductivity [41].

In Ref. [42], one of the authors calculated the spin response
to the electric-field gradient for the Rashba model using the
first-order perturbation theory with respect to the Rashba SO
coupling α. It was found that the response vanishes for the
uniform α and is nonzero only when α is nonuniform. Here,
we have calculated the same response nonperturbatively and
obtained the nonzero response for the uniform α. In fact,
Eq. (17) is universal, i.e., independent of α, apart from the
imaginary part of the self-energy, which cannot be captured
by the perturbation theory.

Summary. We have calculated the spin response to the
electric-field gradient, which naturally appears at the bound-
aries. First, we have derived the Bloch formula (7) assuming
the phenomenological relaxation time. We have also cal-
culated the response for the uniform Rashba model with
δ-function nonmagnetic disorder using the first-order Born
approximation and corresponding ladder-type vertex correc-
tions. Although the SH conductivity vanishes [12,32–37], the
spin response (17) is nonzero as observed experimentally [7].
This theory enables us to calculate the spin accumulation in
the SH effect without imposing the open boundary conditions
or attaching the leads and, hence, can be implemented in
first-principles calculations for real materials.
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