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The SU(4) Heisenberg model on a honeycomb lattice is expected to host a quantum spin-orbital liquid at low
temperature with a surprising candidate material, α-ZrCl3. We employed the canonical thermal pure quantum
state method to investigate the finite-temperature phase of this model. Exploiting the full symmetry of SU(4),
calculation up to a 24-site cluster, which is equivalent to 48 sites in the spin- 1

2 language, is possible. This state-
of-the-art computation with large-scale parallelization enables us to capture the thermodynamic properties of the
SU(4) Heisenberg model on a honeycomb lattice. In particular, the specific heat shows a characteristic peak-
and-shoulder structure, which should be related to the nature of the low-temperature quantum spin-orbital liquid
phase. We also discuss what can be concluded from the assumption that the ground state is gapped and symmetric
in view of the generalized Lieb-Schultz-Mattis theorem.
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Introduction. Quantum spin liquids are an unusual state of
matter without long-range order beyond the Landau paradigm
[1,2]. Specifically, Kitaev materials, such as d5 iridates and
α-RuCl3, have attracted attention because of their explicit
fractionalization [3–13]. As a consequence, the thermody-
namic signatures including specific heat and thermal Hall
conductivity show a characteristic behavior [14,15], which
is difficult to explain without rewriting spin operators with
Majorana fermions and is therefore regarded as a precursor
of fractionalized topological excitations.

However, the Kitaev model does not have continuous sym-
metry, differently from usual SU(2)-symmetric spin liquids,
and the signature of fractionalization must also be different.
For example, the two-peak structure of specific heat was
discussed in a kagome spin liquid [16], but later the low-
temperature peak has been shown to disappear in large-scale
thermal pure quantum (TPQ) state calculations [17–19], and
now it is not regarded as an indication of fractionalization in
the kagome spin liquid.

In spin liquids with a global symmetry G, a concept
called symmetry fractionalization plays an important role.
Low-energy excitations called anyons generically have a G
charge which is described by a projective representation of
G [3]. This means that the symmetry action gets nonlocal in
space, which should be one of the most definite signatures of
quantum spin liquids.

A completely different avenue of physics of symmetry
fractionalization appears in d1 systems with strong spin-orbit
coupling [20–22], which seemingly have a lower symmetry in
spin space. However, an emergent SU(4) symmetry appears in
d1 systems, which would lead to multicomponent frustration
between spin and orbital degrees of freedom [23–29]. In this
case, as is exemplified in honeycomb α-ZrCl3, an emergent
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SU(4) symmetry may lead to a rich symmetry fractionaliza-
tion which is not expected in the usual SU(2) systems.

Then, how can we prove the existence of symmetry frac-
tionalization? Is there any thermodynamic signature? To see
this, it is important to define each thermodynamic quan-
tity for each symmetry sector. For example, the calculation
of the specific heat defined for each symmetry sector es-
sentially requires a full treatment of SU(4) symmetry in
finite-temperature simulations, which is challenging because
the dimension of the Hilbert space gets larger.

Therefore, we developed a state-of-the-art canonical ther-
mal pure quantum (cTPQ) state method [18] to solve this
problem. Exploiting the full symmetry of SU(4) enables us
to calculate a specific heat up to a 24-site cluster, which is
equivalent to 48 sites in spin- 1

2 language. This is comparable
to the Hilbert space size achieved by the cutting-edge ground
state exact diagonalization method [30]. We stress again that
our calculation is done with finite temperature, which is en-
abled by a large-scale parallelization in supercomputers and a
graphics processing unit (GPU).

Although the ground state of the SU(4) Heisenberg model
on the honeycomb lattice was proposed to be a gapless
Dirac spin liquid in a previous study [24], we modestly
propose another scenario, the possibility of a gapped symmet-
ric ground state. In this gapped spin-orbital liquid case, the
fractionalization of PSU(4) symmetry can be proven from a
refined version of the generalized Lieb-Schultz-Mattis theo-
rem [20,22,31,32]. In this sense, symmetry fractionalization
is more visible in gapped spin-orbital liquids, which may be
detected by some thermodynamic signatures.

In this Letter, we theoretically present the finite-
temperature specific heat of the SU(4) Heisenberg model on
a honeycomb lattice. The specific heat shows a character-
istic peak-and-shoulder structure, which would be useful to
identify the realization of this model in real materials. The
results are consistent with a gapped scenario, and we also
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discuss what can be concluded from the assumption that the
ground state is gapped and symmetric.

Model. The SU(4) Heisenberg model on the honeycomb
lattice is defined as follows,

H =
∑
〈i j〉

(
2Si · S j + 1

2

)(
2T i · T j + 1

2

)
, (1)

where Si are spin- 1
2 operators for the spin sector, and T i are

spin- 1
2 operators for the orbital sector. 〈i j〉 runs over every

nearest-neighbor bond of the honeycomb lattice. We put a
fundamental representation of SU(4) per site, which consists
of two spin and two orbital degrees of freedom. It is better to
rewrite the Hamiltonian by the swapping operator,

H =
∑
〈i j〉

Pi j, (2)

where Pi j is a swapping operator for two fundamental repre-
sentations on the ith and jth sites of the honeycomb lattice.
In this way, the SU(4) symmetry is made explicit. This is
a natural generalization of the SU(2) Heisenberg model to
SU(4) and can be realized, for example, as a low-energy
effective model of α-ZrCl3 [20]. From now on we consider
an N-site cluster of the honeycomb lattice with a periodic
boundary condition.

Method. In order to compute finite-temperature quantities
for the above model, we employ the cTPQ method (the Hams–
de Raedt method [33]). In a finite-size system, the cTPQ
method is regarded as a stochastic approximation of a trace
of a large matrix. To compute a physical observable A, we use

Tr Ae−βH ∼ 〈0|e−βH/2Ae−βH/2|0〉 , (3)

where |0〉 is a Haar random vector in the Hilbert space. In
practice, it is better to expand the e−βH/2 by a power of H ,
and we define

|k〉 = (l − H )k |0〉 , (4)

where l is a real value larger than the maximal eigenvalue of
H . e−βH/2 is expanded up to the �th power of l − H . With a
large N limit, a single random vector |0〉 is enough to compute
any physical quantities, but in practice it is better to sample
Nsample vectors and take an average.

For simplicity, we set l = maxi{Ei} + 1, � = 2000, where
Ei is each eigenvalue of H . For calculations with N � 20, we
also set Nsample = 100. Errors are estimated by the jackknife
method. For N = 24, it is difficult to take an average, so we
show raw data for two samples (shown as No. 1 and No. 2).

In reality, we use the above cTPQ method for each sym-
metry sector of SU(4) and sum up the results afterwards
because the Hamiltonian is block-diagonal. This direct-sum
decomposition is achieved by the method developed for exact
diagonalization by Nataf and Mila [34,35]. However, their
original method is not suitable for a large-scale parallelization,
so we modify their idea a little to improve the computational
efficiency.

As is usually the case, difficulty in the exact diagonal-
ization or the cTPQ method arises when we make a lookup
dictionary for the subspace basis. In the case of Nataf and
Mila’s method [34], such a problem is reduced to the problem
to index and retrieve standard Young tableaus (SYTs) because

FIG. 1. A graph associated with a Young tableau (3, 2, 1) in the
Wilf-Rao-Shanker method. Arrows are connected when a reduced
Young tableau is obtained by eliminating a corner box of the original
Young tableau. Each path starting from (3, 2, 1) to (1) corresponds
to a single SYT by assigning a number from 1 to 6 to an added box
when going backwards from (1) to (3, 2, 1).

each basis of a specific symmetry sector associated with a
Young tableau γ (with N boxes) is labeled by an SYT with the
same shape as γ . We note that SYTs are prepared by filling
γ with numbers, 1, 2, . . . , N , with a constraint that they are
aligning in ascending order both in the row and the column.
The problem of indexing and retrieving such SYTs for a fixed
γ is solved by Wilf, Rao, and Shanker [36,37]. We note that
a similar idea was discussed in Ref. [38]. In their method, a
graph is associated with each γ by eliminating a corner box
recursively from a Young tableau γ (see Fig. 1). Then, we
can identify each SYT with each path starting from γ to a
single box. These paths are indexed and retrieved by Wilf’s
method [36] for any such graphs very efficiently, and by this
method we can parallelize the exact diagonalization or the
cTPQ method for any SU(Nc) Heisenberg models.

For calculations with N � 20, we use a GPU machine
with a CUDA implementation. For N = 24, we use a large-
scale supercomputer with a message-passing-based cTPQ
implementation. A flat message passing interface (MPI) paral-
lelization up to 18 432 processes is used. The multiplication of
off-diagonal components is possible through MPI ALLTOALLV.
All codes are written in the JULIA language [39–41].

Specific heat. The specific heat shows a peak-and-shoulder
structure for all the system sizes calculated (see Fig. 2). This
typical shape becomes clearer in the larger system size. Phys-
ically the low-temperature peak is associated with a color
gap, i.e., an energy scale of excitations with an SU(4) color
charge, and the high-temperature shoulder is associated with
the interaction energy scale.

This is in contrast to what has been observed for the
kagome spin liquid. In the kagome case, the low-temperature
physics below the spin gap is dominated by neutral exci-
tations [30], which is consistent with a recent expectation
that the low-temperature effective theory consists of neutral
Dirac cones [42]. On the other hand, in the present case, the
low-temperature peak structure is not dominated by singlet
excitations, which is demonstrated by the comparison with
the specific heat restricted to the singlet subspace (see Fig. 3).
This is also consistent with the exact diagonalization observa-
tion that the color gap 0.8882 is much smaller than the singlet
gap 1.1702 for N = 24.

We believe that our results are consistent with a gapped
spin-liquid ground state, most probably a Z4 spin liquid,
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(a) 16a (b) 16b (c) 20 (d) 24

(e)

FIG. 2. (a) Shape of the 16a cluster. (b) Shape of the 16b cluster.
(c) Shape of the 20-site cluster. (d) Shape of the 24-site cluster.
(e) Temperature dependence of the specific heat for the above clus-
ters calculated by the cTPQ method. For N � 20-site clusters we
take an average over Nsample = 100 samples, and errors are shown in
ribbons, while for the 24-site cluster we show raw data for the two
samples (shown as No. 1 and No. 2).

rather than a gapless one proposed previously [24]. This is
because the low-temperature peak associated with the O(1)
color gap seems to be converged to the thermodynamic limit
with the peak temperature almost unchanged. Indeed, the peak
temperature is almost constant for the 16b-, 20-, and 24-site
calculations, and we cannot expect that this peak disappears
or moves drastically in the thermodynamic limit. Of course,
we cannot rule out the possibility that singlet excitations begin
to dominate below the color gap for N > 24, but we believe
that this is an unlikely scenario. In order to explain everything
observed in our calculations, the gapped spin-liquid scenario

FIG. 3. Comparison of specific heats between the whole symme-
try sectors and the singlet sector. Solid lines are the same as those in
Fig. 2(e) with N = 24. Dashed lines are corresponding specific heats
calculated by confining the symmetry sector to the singlet sector. It
is clear that the low-temperature peak does not originate from singlet
excitations.

is more likely. We note that a previous gapless Dirac spin-
liquid scenario [24] has the problem of a relevant monopole
perturbation [43] and also cannot explain the existence of a
color gap. Based on this observation, we will discuss what can
be said from the assumption that the ground state is gapped
and symmetric from now on.

Rigorous proof of the Lieb-Schultz-Mattis-Affleck-Yamada-
Oshikawa-Jackeli theorem. Here, we briefly give a rigorous
version of the two-dimensional case of the Lieb-Schultz-
Mattis-Affleck-Yamada-Oshikawa-Jackeli (LSMAYOJ) theo-
rem [20,22,31,32], which was first “proven” physically by the
flux-insertion argument by Yamada, Oshikawa, and Jackeli
[20,22]. This is a G = PSU(N ) generalization of the Lieb-
Schultz-Mattis theorem, which was proven rigorously for
one-dimensional systems by Ogata, Tachikawa, and Tasaki
[44]. Its generalization to two dimensions is indeed straight-
forward. We here give a very simple proof, utilizing the fact
that the Ogata-Tachikawa-Tasaki proof [44] is directly treating
the infinite system.

Let us consider an infinite cylinder geometry with a spi-
ral boundary condition (sometimes called a tilted or twisted
boundary condition) [45–47]. The spiral boundary condition
is defined as follows. First, let us begin with Z2. We glue
it into an infinite cylinder by identifying (i, j) ∈ Z2 with
(i + 1, j + Ly) ∈ Z2, where Ly is a circumference. The point
is that this infinite cylinder has a one-unit-cell translation
symmetry as a one-dimensional system, which we call a
spiral translation symmetry. Thus, for any Ly we can use
the Ogata-Tachikawa-Tasaki theorem [44] to prove that the
ground state is degenerate [48] when the unit cell contains
a projective representation of G and the interaction is short
ranged. The degeneracy is maintained for any finite Ly with a
spiral boundary condition, so the degeneracy will be preserved
in the thermodynamic limit.

The advantage of this proof is that it is applicable to the
discrete group G case. However, one caveat is that this kind of
proof cannot give information on the number of degeneracies.
The information on the degeneracy can be deduced from the
argument of the next section.

Physical proof of the existence of symmetry fractionaliza-
tion. The extension of the Lieb-Schultz-Mattis theorem not
only can prove the ground state degeneracy, but also can prove
the existence of symmetry fractionalization of G. Here, we as-
sume that G is continuous and connected. This was physically
proven in Refs. [49,50] in the G = SO(3) case. For simplicity,
we also give our refined proof of this claim for G = SO(3)
in the following. This is actually achieved by proving the
degenerate ground states guaranteed by the LSMAYOJ the-
orem include different one-dimensional symmetry-protected
topological (SPT) states.

Assuming the unit cell contains a projective representation
of G and the same setting as that of the proof of the LSMAYOJ
theorem, a unique and gapped ground state is forbidden. Let
us assume that the ground states are degenerate with a gap.
The point is that the SPT phase is distinguished by the Ogata
index σ R

x ∈ H2[G, U(1)] = Z2, where x = (i, j) is the origin
of the unit cell [44,51–53], and σ R

x = 0 and σ R
x = 1 are es-

sentially equivalent. This is because σ R
x = 0 and σ R

x = 1 are
exchanged just by changing the definition of the origin x
through a single spiral translation. This “democracy” of the
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Ogata index automatically guarantees that the same number
of σ R

x = 0 states and σ R
x = 1 states should be included in

the degenerate ground states. Such a distinction must be in-
dependent of the way of the dimensional reduction, which
physically finishes the proof [54].

It is not clear that the degeneracy of different SPT states
means symmetry fractionalization. Intuitively, this can be un-
derstood as follows. On a finite cylinder with an even number
of sites, the distinction of SPT phases can be captured by edge
states. A trivial SPT phase has no edge states, while a non-
trivial SPT phase has spin- 1

2 edge states. In the large-cylinder
limit, these two correspond to a vacuum sector and a spinon
sector of the topological phase, respectively, assuming that the
vacuum sector does not have an edge state. This means that
an original spin-1 excitation (magnon) is fractionalized into
two spinons and separated into both edges with long-range
entanglement. This is exactly the proof of the existence of
fractionalization in the G = SO(3) case.

The generalization to the case with G = PSU(N ) is
straightforward. In the case of the present SU(4) model, G =
PSU(4) and H2[G, U(1)] = Z4. As for the honeycomb lattice
model, i and i + 2 (i = 0, 1) in H2[G, U(1)] = Z4 are demo-
cratic, so this proves the degeneracy of σ R

x = i and σ R
x = i + 2

states as ground states.
In the thermodynamic limit, this not only means the ex-

istence of topological order, but also the fractionalization of
the symmetry G, i.e., the existence of spinons and orbitalons
which behave as a (six-dimensional) projective representation
of G. On the finite cylinder, the vacuum sector without edge
anyons, and the anyon sector with edge anyons must be almost
degenerate.

Counterexamples. There exists a counterexample such as
Wen’s plaquette model [55] for the discrete group G case.
This is because degenerate ground states guaranteed by the
Lieb-Schultz-Mattis theorem are exchanged directly by G, not
by translation. The Ogata index is defined only when all the
ground states in the infinite system are G symmetric, and
thus the above discussion fails in this case. However, this
never happens when G is continuous and connected, so our
conclusion is not affected by such a possibility. More detailed
discussions can be found in Refs. [49,50].

Origin of the peak. So far we have identified the energy
scale of the specific heat peak as the color gap, but the physical
origin of an existing peak is still not clear. If we assume that
there is no symmetry breaking, we have to come up with
another mechanism beyond the Landau theory to describe the
existence of a peak.

In contrast to the Landau theory, fermionic partons can ac-
quire a gap without spontaneous symmetry breaking because a
four-fermion condensate dynamically generates a gap without
a bilinear term. This condensate can be described in terms of
fermionic partons (spinons and orbitalons) fia, where i stands
for a site index and a = 1, . . . , 4 stands for a color index, as
follows [43,56],

� = 〈εabcd fia fib fic fid〉, (5)

where εabcd is a completely antisymmetric tensor. Thus, we
would see a crossover between the � ∼ 0 disordered phase
to the � > 0 ordered phase at some temperature Tc, which
potentially produces a peaklike behavior in the specific heat.

The gap opening and symmetry fractionalization occurs si-
multaneously at Tc because we have proven that the symmetric
gapped state inevitably leads to symmetry fractionalization.
In this sense, we can regard the low-temperature peak as
reminiscent of fractionalization, while it is not clear how the
action of SU(4) is transformed in this crossover.

Discussion. The existence of a low-temperature peak im-
plies that the ground state of the SU(4) Heisenberg model on
the honeycomb lattice is a gapped spin-orbital liquid rather
than a gapless liquid proposed previously [24]. If the ground
state is really gapped and symmetric, the LSMAYOJ theo-
rem guarantees ground state degeneracy, i.e., the existence
of topological order. Even more, the extended version of this
theorem proves the fractionalization of PSU(4) symmetry, and
the existence of spinons and orbitalons which behave as a
projective representation of PSU(4).

Finally, we conjecture a generalized version of the
Lieb-Schultz-Mattis-type theorem. The claim is that if the
representation of G per unit cell is projective, there must
be multiple degenerate ground states which are distinguished
as one-dimensional G-SPT phases after the dimensional re-
duction. This version is yet to be proven mathematically
rigorously, and left for the future work.
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