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Twistronic heterostructures have recently emerged as a new class of quantum electronic materials with
properties determined by the twist angle between the adjacent two-dimensional materials. Here, we study moiré
superlattice minibands in graphene (G) encapsulated in hexagonal boron nitride (hBN) with an almost perfect
alignment with both the top and bottom hBN crystals. We show that, for such an orientation of the unit cells
of the hBN layers that locally breaks inversion symmetry of the graphene lattice, the hBN/G/hBN structure
features a kagome network of topologically protected states with energies near the miniband edge, propagating
along the lines separating the areas with different miniband Chern numbers.
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Recently, graphene-based systems have been shown to host
various topological effects [1] among their electronic proper-
ties [2–21], which stem from the Berry phase/curvature in the
electronic band structure of mononolayer graphene [22,23]
or its Bernal bilayers [3,11,16,18,21,24–28]. The topological
effects manifest themselves in states forming at the edges of
the system or around internal structural defects, and propa-
gating in opposite directions in the two valleys of graphene.
These states have been studied in detail in gapped bilayer
graphene with either AB/BA domain boundaries [7,8,29], or
an electrostatically inverted interlayer asymmetry gap [9,30].

Topological zero line states have also emerged in the con-
text of twistronic graphene systems [6,13,15,31–34] and in
heterostructures of graphene (G) and hexagonal boron (hBN).
As a result of the G-hBN lattice mismatch, δ ≈ 0.018, the
latter system features a moiré superlattice [35–38] (mSL),
even at zero misalignment angle θ . The electronic properties
of this system are qualitatively modified by the mSL with a
period λ ≈ a/

√
δ2 + θ2, reaching 14 nm for small misalign-

ment angles θ → 0. The system features a well-defined first
miniband edge on the valence side of the graphene layer’s
dispersion [36,37], as illustrated in Fig. 1.

The encapsulation of graphene between two hBN crystals
with a high-precision alignment [39] leads to a further refine-
ment of the superlattice effects, caused by the interference
of Dirac electrons Bragg-scattered off the moiré superlattice
(mSL) determined by the top and bottom G/hBN interfaces.
Here, we study the influence of the relative lateral offset τ

between the top and bottom hBN crystals on moiré minibands
in double-aligned hBN/G/hBN structures, considering the
orientation (parallel versus antiparallel) of the unit cells in the
hBN lattices. For graphene’s minibands, the unit cell orien-
tation matters due to the lack of inversion symmetry in the
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hBN monolayer, which is maximally passed onto graphene
encapsulated between two hBN layers with parallel unit cell
orientations but mutually cancels in the antiparallel case.

The inversion asymmetry, induced by hBN in graphene,
leads to minigaps at the moiré miniband edges [36] (in
particular, at the bottom edge of the first miniband on the
valence band side v corresponding to graphene doping of
four holes per moiré supercell), of graphene’s dispersion in
Fig. 1, whose size, together with the Chern numbers of the
minibands [40,41], depends on the lateral offset between the
top and bottom hBN crystals. For hBN/G/hBN structures

FIG. 1. A typical miniband spectrum of graphene encapsulated
into mutually aligned hBN crytals. Top inset: Map of locally defined
v-miniband Chern number Q. Bottom inset: Dispersion and Berry
curvature at the v/v′ miniband edge in the gapped regions and 1D
modes counterpropagating in K± valleys along a kagome network of
locally gapless v/v′ miniband edges.
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FIG. 2. Right: Graphene encapsulated between bottom and top
hBN layers with twists θ ± 1

2 θ̃ , respectively (|θ̃ | � δ). The inter-
ference of the layers results in a mSL of period λ, featuring a
long-period variation of period �, whose unit cells are shown. Top
inset: The offset vector τ between the unit cells of the top and bottom
hBN layers has components (τx, τy ) along the zigzag and armchair
axes, respectively. Bottom inset: The valley Chern number Q of
miniband v, the gap �cv , and the minigap �vv′ against offset for
aligned hBN layers (θ̃ = 0).

with a small misalignment angle, θ̃ � δ, between the top and
bottom hBN layers, this offset varies across the coordinate
space as

τ(r) = θ̃ez × r, (1)

which leads to a long-period, � ≈ a/|θ̃ |, variation of the mSL
properties (see Fig. 2). A peculiar feature of this modulation is
the closing and reopening of a minigap at the v/v′ miniband
edge, which occurs along the lines forming a kagome struc-
ture in the real space, sketched in Fig. 1. Below, we study
electron states at the v/v′ miniband edge, confined to this
kagome network and discuss how one-dimensional (1D) states
(propagating in opposite directions in the K± valleys) provide
this system with a finite conductivity even when its Fermi
level would be set between the v and v′ miniband edges in
the gapped areas of the structure, with a characteristic pattern
of Aharanov-Bohm oscillations.

The above statement is based on the analysis of local
miniband characteristics of the trilayer structure depicted in
Fig. 2. Here, the bottom/top hBN monolayers with parallel

orientation of their nonsymmetric unit cells are twisted with
respect to graphene by θ ± 1

2 θ̃ , respectively, with a small
mutual misalignment |θ̃ | � δ, which determines the spatial
variation of their local offset in Eq. (1). For each fixed offset
τ, the Hamiltonian [36,42–44] of electrons in the Kξ valley
(ξ = ±) of graphene is

Ĥ = −ih̄vσ · ∇ + 2
∑
P=±

5∑
m=0

CmeiGm·rUP,m + 1

2
�cvσz,

UP,m = uP
0 Pm+ 1

2 + (−P )m+ 1
2
(
uP

3 σz − iξuP
1 em · σ

)
,

σ = (ξσx, σy), �cv ≈ 2

3

5∑
m=0

(
C2

m�u − S2
m�h

)
,

Cm = cos

(
1

2
gm · τ

)
, Sm = sin

(
1

2
gm · τ

)
. (2)

The values of the parameters used are given in Table
S1 in the Supplemental Material (SM) [45] (see also
Refs. [4,36,37,40,41,44,46–52] therein), and the expression
for graphene encapsulated between hBN monolayers with an-
tiparallel orientation of their unit cells is given in SM S2 [45].

The first term in Eq. (2) is the Dirac Hamiltonian for
electrons in monolayer graphene [42]. The second term de-
scribes the mSL produced by the layers, with the reciprocal
mSL vectors, Gm ≈ δgm − θez × gm, expressed in terms of
the reciprocal lattice vectors of graphene, gm = 4π√

3a
ez × em,

em = (cos mπ
3 , sin mπ

3 ), m = 0, 1, . . . , 5. This term includes
mSL potentials, sublattice asymmetry gaps, and gauge fields
of parity P = ± (under spatial inversion), quantified using the
parameters uP

0 , uP
3 , and uP

1 , respectively.
The orientation and offset τ of the unit cells in each hBN

layer determine the magnitude of the odd-parity terms in
Eq. (2), which are responsible for the inversion symmetry
breaking features in the dispersion, such as the opening of
a minigap between minibands v and v′. This corresponds
to graphene doping of four holes per moiré supercell, with
electron density −4n0 (n0 = 2/

√
3λ2). In the parametrization

of Hamiltonian (2), we take into account that the positions of
the graphene atoms rearrange to minimize graphene’s adhe-
sion energy with the hBN layers while maintaining the mSL
period [44,53–55]. The in-plane and out-of-plane rearrange-
ments combine with the second term to give the respective
contributions �u and �h to the sublattice asymmetry gap �cv .
This gap appears in the odd-parity, nonoscillatory third term,
which breaks the sublattice symmetry of graphene. In an-
tiparallel alignment, the contributions to the odd-parity terms
from each layer cancel, and inversion symmetry is preserved.
Instead, we focus on parallel alignment where the inversion
symmetry breaking is enhanced, depending strongly on the
offset τ.

To study the minibands of Dirac electrons in this system,
we diagonalize Hamiltonian (2) using the basis of plane-wave
Dirac states, folded onto the mSL Brillouin zone shown in
Fig. 1. An example of a typical miniband dispersion is shown
in Fig. 1, with other examples displayed in SM S3 [45].
Similarly to single-interface G/hBN heterostructures
[35–37,56–59], this system features a well-defined first
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valence miniband v for twists |θ | � 1 ◦, whereas on the
conduction band side the minibands strongly overlap on
the energy axis. The inversion symmetry breaking produces
a minigap �vv′ at the edge between minibands v and v′,
whose magnitude, together with the v/v′ edge position in the
Brillouin minizone, depends on the offset τ. The dependence
of the minigap �vv′ on the offset τ is shown in the bottom
inset of Fig. 2. This panel shows that �vv′ (which is formally
defined below) takes zero value and also changes sign on
the lines which approximately correspond to the condition
Cm = 0. This variation should be contrasted with the τ

dependence of the gap �cv across the main Dirac point at the
c/v miniband edge shown on the top inset, where one can see
that �cv never changes sign.

Along the lines on the τ maps, where the minigap at the
v/v′ miniband edge closes and reopens as a function of τ,
the Chern number ξQ [40,41] of miniband v also changes
(note that the miniband’s Chern number has opposite sign
in the Kξ valleys, ξ = ±). Here, Q is found by computing
the integral of the miniband’s Berry curvature over the mSL
Brillouin minizone (see SM S4 [45] for details). The resulting
map of Q(τ) dependence is displayed as the middle inset in
Fig. 2. The correlation between the behavior of the inversion-
asymmetry gap �vv′ at its edge with miniband v′ and of its
Chern number suggests a simultaneous change of quantum
topological properties of states in both v and v′, captured by
the effective Hamiltonian [50] applicable to the part of the
Brillouin minizone in the vicinity of this edge,

Hvv′
q = εvv′ + 1

2�vv′σz + h̄
(
ξvx

s qxσx + vy
s qyσy

) + ξ h̄va · q,

(3)

whose basis is minibands v and v′. Here, q is the wave vector
relative to the position of the band edge, vs and va are the sym-
metric and antisymmetric velocities, respectively (the latter of
which tilts the dispersion along the axis parallel to va [50]),
and εvv′ is a constant energy shift. The parameters in Eq. (3)
are fitted numerically to the minibands computed using Eq. (2)
(see SM S5 [45]). The sign of �vv′ is determined by the sign
of the Berry curvature at the miniband edge, which changes
simultaneously with the change of the Chern number.

The variation of the offset τ over the plane of a
hBN/G/hBN structure, given by Eq. (1), enables us to map
the the computed dependence of miniband characteristics dis-
played on the insets in Fig. 2 onto the real space: For this, we
only need to rotate those plots by 90◦ and rescale them by a
factor 1/θ̃ . This produces a kagome network of lines where
the secondary minigap �vv′ closes and then inverts its sign,
and where the Chern number of miniband v changes (from 0
to 1). We show in SM S6 [45] that the shape of this network is
independent of the model parameters. Topologically protected
channels form along these lines, supporting spin-degenerate,
one-dimensional states which propagate in opposite directions
in the time-reversed valleys.

The form and dispersion of these states can be found
(in SM S7 [45]) by analyzing Hamiltonian (3) with
q ≈ (q‖,−i∂x⊥ ) and �vv′ ≈ x⊥∂x⊥�vv′ |x⊥=0 (∂x⊥�vv′ |x⊥=0 ∼
|u−

3 |/� > 0) where x‖ and x⊥ are local coordinates along
and perpendicular to the kagome network line. These states
have a Jackiw-Rebbi [46] form ϕq‖ ≈ eiq‖x‖e−x2

⊥/2ℵ2
ζq‖ (ζq‖ is

a two-component vector), with Gaussian confinement within a

FIG. 3. Top left: The hexagonal structural element of the kagome
network of channels of area A = √

3�2/2 and containing one Q = 0
bowtie and one Q = 1 hexagon. The propagation of electrons in
the K+ valley is shown, scattering at the three nodes. Clockwise
from top right: The five shortest paths for an electron wave packet
to propagate from an injection position “i” to “f” (double arrows
indicate a channel is traversed twice).

length ℵ ∼
√

2h̄vx
s �/|u−

3 | perpendicular to the interface, and
disperse linearly, ε(q‖) = ξ h̄Vq‖, with a 1D velocity V ∼ vx

s .
To consider these states independently for each segment of
the kagome network, we should require λ < ℵ � �, which is
satisfied for mismatches |θ̃ | < 0.1◦.

For a gapped moiré miniband spectrum, one could expect
insulating behavior of a perfectly aligned hBN/G/hBN doped
to the v/v′ miniband edge. For slightly (|θ̃ | � δ) misaligned
hBN crystals, the long-range variation of the local hBN-hBN
offset and a network of states, which it generates inside the
minigap �vv′ , quenches the resistivity of the hBN/G/hBN
structure. While the exact calculations of the limiting resis-
tivity would require a more rigorous consideration, based
on the previous experiences of two-dimensional models for
the network of 1D states [31,32,60], we expect its value
to correspond to a conductivity σxx ∼ e2/h and to exhibit
Aharonov-Bohm oscillations as a function of an out-of-plane
magnetic field B. To describe the latter, we consider coherent
electron waves (separately in the K± valleys) on a network
sketched in Fig. 3, where the structural element includes three
nodes connected by channels. At each node, an incoming
wave packet scatters left or right according to the scattering
matrix (

b
b′

)
= S

(
a
a′

)
, S = eiη/3

(√
PR i

√
PL

i
√

PL
√

PR

)
, (4)

whose factor of i takes into account the Maslov’s phase, and
whose scattering probabilities, PR and PL (PR + PL = 1), can
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be considered as energy-independent within the narrow en-
ergy window of �vv′ (see SM S8 [45] for details).

As a monochromatic wave of energy ε propagates across
the network, its amplitude evolves according to the scattering
matrix at the nodes and acquiring phase factors, eiε�/2V , after
passing each ballistic segment of the network. At longer dis-
tances, partial waves, e.g., split from an incoming wave at “i”
(see the side panels in Fig. 3), rejoin and interfere in another
ballistic segment “f.” An important feature of a periodic and
C3 rotationally symmetric network, such as in Figs. 1 and 3, is
that the effect of the interference, constructive or destructive,
of edge states that travel from i to f along paths containing
the same number N of segments does not depend on the exact
energy (or wavelength) of the electron. This is because their
ballistic phases eiNε�/2V are the same, producing the inter-
ference contribution determined only by their shapes through
the energy-independent scattering amplitudes in Eq. (4). On
the contrary, the interference of waves brought together by
paths with a different number of segments (such as I and IV in
Fig. 3) oscillates from constructive to destructive (and back)
upon energy variation at the scale of h̄V/�.

Therefore, in the high-temperature regime, where kBT �
h̄V/�, the interference effects between waves arriving from
i to f along paths of different lengths would be wiped out by
the smearing of the Fermi step for electrons. The interference
between waves brought from i to f by same-length paths (such
as IIa, IIb, III, and IV in Fig. 3) would survive thermal aver-
aging, without suppression, though this contribution would be
sensitive to the external magnetic field, due to the Aharonov-
Bohm phases from magnetic field fluxes encircled by the pairs
of same-length paths.

When discussing the interference effects in electronic
transport at high temperatures, we are also conscious of the
inelastic decoherence of electron waves, which efficiently de-
stroys interference effects for the longer paths. For a system
with decoherence length �, this can be accounted by a sup-
pression factor e−�/4� applied to each ballistic segment of the
kagome network. Therefore, to discuss the high-temperature
limit, we consider the shortest paths that can contribute to
the interference effect in transport, shown in the side panels
of Fig. 3. These paths are related to the “forward” electron
propagation from a segment in one network unit cell to the
equivalent segment in the next one, counted in the direction of
the propagation of the edge state (for valley K). These short-
est paths contain three (I) and six (IIa, IIb, III, IV) ballistic
segments of length �/2, and the interfering amplitude at the
point f for a wave starting at i with unit amplitude would be

ψ ≈ − eiπφ/4φ0

√
P2

L PRz3 + z6eiπφ/2φ0

× (−2PLP2
R + P2

L PR + e−i2πφ/φ0 P2
L PR

)
,

where z = eiη/3eiε�/2h̄Ve−�/4�. We also account for additional
phases, induced by the out-of-plane magnetic field and de-

scribed in terms of magnetic field flux φ = BA through the
unit cell area A = √

3�2/2 of the kagome network (φ0 = h/e
is the flux quantum).

Then, we express the probability 〈W〉T for the electron to
get from the segment i to f, averaged over the kBT energy
interval near the Fermi level, as

〈W〉T ≈ P2
L PR|z|6 + [

4P2
L P4

R + 2P4
L P2

R

]|z|12

+ 2
[
P4

L P2
R − 2P3

L P3
R

]|z|12 cos

(
2πφ

φ0

)
, (5)

whose second line originates from the encircled Aharonov-
Bohm phases, which, for the pairs of shortest paths, are all
determined by the magnetic field flux through the unit cell
area of the kagome network. As the probability, described
by Eq. (5), is a characteristic of the forward propagation of
electrons, its oscillations also determine the Aharonov-Bohm
oscillations in the network conductivity (see SM S9 [45] for
backwards propagation),

σxx(φ) ≈ e2

h

[
α + βe−5�/2� cos

(
2πφ

φ0

)]
, (6)

where α, β ∼ 1.
Overall, we have demonstrated the existence of a kagome

network of states lying in the minigap at the edge of the first
moiré miniband on the valence band side of graphene encap-
sulated between hBN with parallel unit cells. This edge state
network gives rise to quenched resistivity, ∼h/e2, of graphene
even when its Fermi level doping reaches that minigap. This
conductivity, in Eq. (6), exhibits Aharonov-Bohm oscillations,
whose period is determined by the area of the unit cell of the
kagome network and, consequently, the misalignment. For the
networks with a longer decay length � (or a shorter period),
the magnitude of the Aharonov-Bohm oscillations should in-
crease, accompanied by the emergence of a finer structure,
composed of higher-frequency harmonics corresponding to
the rational factor between the magnetic field flux through
the kagome network cell and flux quantum φ0. Such edge
state networks emphasize the role of twistronic heterostruc-
tures as hosts of topological phenomena and deserve further
theoretical studies, e.g., taking into account electron-electron
interactions in the channels [61–65], as well as the effects of
edge states at the physical edge of a finite system [66].
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