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Three-dimensional (3D) topological materials exhibit much richer phenomena than their lower-dimensional
counterparts. Here, we propose self-localized topological states (i.e., topological solitons) in a 3D nonlinear
photonic Chern insulator. Despite being in the bulk and self-localized in all 3D, the topological solitons at
high-symmetry points K and K ′ rotate in the same direction, due to the underlying topology. Specifically, under
the saturable nonlinearity the solitons are stable over a broad frequency range. Our results highlight how topology
and nonlinearity interact with each other and can be extended to other 3D topological systems.

DOI: 10.1103/PhysRevB.105.L201111

Introduction. Since the discovery of the quantum Hall ef-
fect and its topological interpretation, extensive efforts have
been put into the research of exotic topological materials
[1,2]. Dimensionality plays a key role in the classification
of topological materials and determination of the topological
states [3–5]. Since for a realistic material three is the largest
number of spatial dimensions in which electrons can move,
three-dimensional (3D) topological materials including Weyl
semimetals, 3D topological insulators, and 3D Chern insu-
lators gain particular attention [6,7]. In recent years, various
engineered systems have been implemented as the classical
analogs of 3D topological materials [8–16]. Among them, 3D
photonic topological materials support robust photonic propa-
gation along a nonplanar surface, which may find applications
in topological lasers and photonic circuits [8–10]. In these
studies, the interaction between photons is neglected.

In topological photonics, it is straightforward to include
interparticle interactions. Under high intensity, photons can
effectively interact in a nonlinear optical medium with an
intensity-dependent refractive index. Several forms of non-
linear refractive indices such as Kerr nonlinearity, competing
nonlinearity, and saturable nonlinearity exist [17], and they
provide a fertile ground to study the interplay between topol-
ogy and nonlinearity. Nonlinear topological photonics arises
with many opportunities for fundamental discoveries and new
functionalities for photonic devices [18]. However, the vast
majority of research is carried out in lower dimensions. The
studies of 3D photonic topological materials with nonlinearity
acts on all three spatial dimensions are rare.

In this Letter we propose self-localized topological states
(i.e., topological solitons) which are solely induced by the
nonlinearity in a 3D photonic Chern insulator. The 3D Chern
insulator is realized by stacking 2D Chern insulators in the
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vertical direction [7]. In the linear regime (low optical inten-
sity), the 3D Chern insulator supports 2D surface states with
chiral propagation along the surfaces, while for the topologi-
cal states that we discovered in the nonlinear regime, they are
self-localized in the bulk of the Chern insulator, rather than
localized on the exterior or extended in the vertical direction.
Due to the same underlying topology that is shared with the
linear surface states, the topological solitons reside in the
linear bulk band gap and solitons at the high-symmetry points
K and K ′ rotate in the same direction. Specifically, under
saturable nonlinearity, topological solitons are dynamically
stable for a wide frequency range.

Our topological solitons in 3D differ from previously re-
ported solitons in lower-dimensional topological materials.
First, our topological solitons are self-localized in the bulk.
They are fundamentally different from the edge solitons which
are localized at the structure exterior or domain wall due to
the bulk-boundary correspondence of their linear host lattices
[19–25]. Second, our topological solitons are also different
from the bulk solitons [26–31]. In the linear regime, by
stacking 2D Chern insulators into a 3D Chern insulator, the
chiral edge states change into chiral surface states which are
extended in the stacking direction. In the nonlinear regime,
the introduction of another spatial dimension usually leads to
soliton stripes [17]. Our topological solitons are self-localized
also in the vertical direction, where interlayer coupling is del-
icately compensated by nonlinearity. The principle is similar
to the balance between diffraction and nonlinearity in the
propagation direction of an edge soliton [19,21,23,24]. Such
self-localization is important for constructing diffraction-free
topological states in 3D topological materials and designing
3D topological photonic devices.

Hamiltonian. We start from a general Hamiltonian

HL = (
ν0δkz + ν ′

0δk2
z

)
σ0 + νxδkxσ1 + νyδkyσ2

+(
νzδkz + ν ′

zδk2
z

)
σ3 + mσ3, (1)
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where σ0 is the identity matrix, σi (i = 1, 2, 3) are Pauli ma-
trices, m is the effective mass, νx(y) is the group velocity in
the x(y) direction, and ν0,z and ν ′

0,z are the group velocity
and group velocity dispersion (GVD) in the z direction, re-
spectively. When ν ′

0 = ν ′
z = 0 and m = 0, this Hamiltonian

reduces to a typical Weyl Hamiltonian [6]. Based on the
Weyl Hamiltonian, first we include the GVD terms with δk2

z
which are necessary to study the nonlinear effect. Specifically,
when ν0 = νz = 0 the second-order contributions need to be
considered. The resulting Hamiltonian corresponds to a semi-
Weyl point with linear dispersions in the x and y directions,
and quadratic dispersion in the z direction (similar to the
semi-Dirac point or hybrid Dirac point [32–34]). Then we
introduce the mass term m which opens a band gap at the
nodal point. Usually, a mass term can be created by breaking
the time-reversal symmetry and/or inversion symmetry [35].

Transforming to position space [28], the Hamiltonian is

HL = − iσ0
(
ν0∂z − iν ′

0∂
2
z

) − iνxσ1∂x − iνyσ2∂y

− iσ3
(
νz∂z − iν ′

z∂
2
z

) + mσ3, (2)

with i∂t� = HL� and � = (ψA, ψB)T . We can extend the
system into the nonlinear regime by adding a general non-
linear term HNL = N0(�)σ0 + Nz(�)σ3 with N0,z ∈ C(R) and
N0,z(0) = 0 to the original Hamiltonian, and the second term
Nz(�) is equivalent to a nonlinearity-induced mass. The whole
Hamiltonian is H = HL + HNL, and it can be split into two
parts H = H‖ + Hz with

H‖ = − iνxσ1∂x − iνyσ2∂y + mσ3 + Nz(� )σ3, (3)

Hz = − iσ0
(
ν0∂z − iν ′

0∂
2
z

) − iσ3
(
νz∂z − iν ′

z∂
2
z

)
+ N0(� )σ0. (4)

Using the Hamiltonian H‖, we get a generalized nonlin-
ear Dirac equation. In the special case where Nz(�) =
Nz(�†σ3�), the Gross-Neveu/Soler type of nonlinear Dirac
equation supports the Dirac solitons, which are topological
solitons in 2D [29,36,37]. The Hamiltonian Hz also admits the
existence of solitons in the z direction, provided that the inter-
layer coupling governed by ∂2

z is balanced with the nonlinear
term N0(�) [17]. This principle has been used to realize the
edge solitons [19,21,23,24]. Thus, the whole Hamiltonian H
should support topological solitons that are self-localized in
all 3D.

Lattice model. We study the tight-binding lattice model
of a 3D photonic Chern insulator, which is constructed
by AA stacking 2D Haldane honeycomb lattices in the
vertical direction [38] and introducing interlayer hopping
[39] [Fig. 1(a)]. The on-site frequencies at sublattice
sites A and B (orange and purple spheres) are ωA,B,
respectively. In the xy plane, the nearest-neighbor (NN)
hopping (black lines) is t1, and the next-nearest-neighbor
(NNN) hoppings (orange and purple arrows) are t2e±iφ .
In the z direction, the interlayer hoppings for sublattice
sites A and B are tA (orange lines) and tB (purple
lines), respectively. The lengths of the nearest-neighbor
bonds in the xy plane and z direction are a0 and h,
respectively. In the linear regime, the Hamiltonian of this
3D photonic Chern insulator is HL = ∑

i=0,1,2,3 diσi, where

FIG. 1. (a) A 3D Chern insulator constructed by AA stacking
the 2D Haldane honeycomb lattices. The orange and purple spheres
denote sublattice sites A and B, respectively. In the xy plane, the
black solid lines represent the NN hopping t1, and the orange and
purple arrows represent the NNN hopping t2 exp(±iφ). The orange
and purple lines represent interlayer hoppings tA and tB, respectively.
(b) Brillouin zone of the 3D Chern insulator.

d0=ωA+ωB
2 +(tA + tB) cos(kzh) + 2t2 cos φ

∑
i=1,2,3 cos(k · vi ),

d1 = t1
∑

i=1,2,3 cos(k · ei ), d2 = −t1
∑

i=1,2,3 sin(k · ei ), and
d3=ωA−ωB

2 +(tA − tB) cos(kzh) − 2t2 sin φ
∑

i=1,2,3 sin(k · vi ).
The two sets of vectors e1,2,3 and v1,2,3 are defined for the
NN hopping and NNN hopping in the horizontal plane,
respectively. Since we are interested in a 3D Chern insulator
where the bulk bands are characterized by a triad of Chern
numbers C = (Cx,Cy,Cz ) = (0, 0, 1), in the following we
let ωA = ωB, tA = tB > 0, and φ = π/2. Along the KH
and K ′H ′ lines in the Brillouin zone (BZ) [Fig. 1(b)], this
3D photonic Chern insulator has linear dispersions in the
horizontal plane with d1 = ∓vF δkx, d2 = −vF δky, and
d3 = ±3

√
3t2 according to k · p theory (“−” for KH and

“+” for K ′H ′). Now the mass term is solely induced by the
NNN hopping, which breaks the time-reversal symmetry.
Here, the group velocity vF is defined as vF =

√
3

2 t1a

with the transverse lattice period a = √
3a0. To study

the dispersion in the vertical direction, we focus on the
four high-symmetry points, K , K ′, H , and H ′, since near
these points the first-order contributions are zero. From
d0 = ωA+ωB

2 ± (tA + tB)(1 − h2

2 δk2
z ) − 3t2 cos φ (“+” for K

and K ′, and “−” for H and H ′), this 3D photonic Chern
insulator has a quadratic dispersion in the vertical direction.
Specifically, it has anomalous GVDs at K and K ′, and
normal GVDs at H and H ′. Now the Hamiltonian HL with
d0,1,2,3 resembles the Hamiltonian in Eq. (1), except that the
eigenfrequency ω is shifted by ωA+ωB

2 .
Transforming the Hamiltonian HL into position space, we

add a saturable nonlinear term HNL = diag[N (ψA), N (ψB)]
to HL, where N (ψA,B) = g|ψA,B|2/(1 + σ |ψA,B|2) with the
nonlinear parameter g, saturation coefficient σ , and two
pseudospin components ψA,B. Here, we only focus on the self-
focusing nonlinearity with g > 0 (the case of self-defocusing
nonlinearity with g < 0 can be studied similarly [40]). The
existence of bright solitons requires anomalous GVDs in the
vertical direction [17], which are fulfilled only at K and K ′.
Thus, the whole Hamiltonian is

H =
∑

i=0,1,2,3

σidi, (5)
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where

d0 = ωA + ωB

2
+ tA + tB + tA + tB

2
h2∂2

z + N (ψA) + N (ψB)

2
,

(6)

d1 = ±ivF ∂x, (7)

d2 = ivF ∂y, (8)

d3 = ±3
√

3t2 + N (ψA) − N (ψB)

2
. (9)

Here, “±” correspond to K and K ′, respectively. Note that
this Hamiltonian can also be derived directly from the coupled
equations in position space [40].

Similar forms of the Hamiltonian have been studied in
free-space Bose-Einstein condensates (BECs) with spin-orbit
coupling (SOC), where the SOC terms are analogous to the
linear dispersions in the xy plane [41]. However, in contrast
to the externally imposed SOC, the linear dispersions are
inherent in our lattice model. We only study the fundamental
solitons since the higher-order solitons are usually unstable
[36], and the parameters are ωA = ωB = 10, t1 = 2/

√
3, t2 =

1.05/3
√

3, tA = tB = 0.5, a = 1, h = 1, g = 1, and σ = 10.
The topological solitons reside spectrally in the topological
band gap created by the linear bulk bands. Figures 2(a1)–
2(b2) show the two pseudospin components ψA,B for the
topological solitons at K with ω = 10. For the sake of clarity,
parts of the isosurfaces are removed. From the isosurfaces
[Figs. 2(a1) and 2(b1)], in the horizontal plane the pseudospin
component ψA features a hump at a nonzero radius, and the
component ψB decreases monotonously in the radial direction.
This behavior of our topological solitons is different from
the soliton profile in a Soler model [29], but they share the
same origin that nonlinearity induces a mass inversion and
creates a topological domain wall in the bulk [26–29,31,40],
while in the z direction, the topological solitons are self-
localized because of the balance between interlayer coupling
and nonlinearity. From the phase distributions on the iso-
surfaces [Figs. 2(a2) and 2(b2)], a vortex torus carrying a
vorticity of lA = −1 is formed for the pseudospin component
ψA, and the isosurface for ψB is a sphere with a zero vorticity,
namely lB = 0. The vorticity (or topological charge) is defined
as lA,B = (1/2π )

∮
L ∇[arg(ψA,B)] · d�l . Thus, the topological

solitons here are semivortex types [42]. Different from the
semivortex BEC solitons which are replaced by the Townes
solitons in the absence of SOC [43], our topological solitons
vanish when the linear dispersion terms are mathematically
removed.

In Figs. 2(c1)–2(d2) we show the topological solitons at
the high-symmetry point K ′ with ω = 10. For a 3D Chern
insulator with time-reversal symmetry breaking (inversion
symmetry is preserved), d3 has an opposite sign at K ′ com-
pared with the value of d3 at K . This leads to the equal
Berry curvatures � at K and K ′, i.e., �(k) = �(−k), which
indicates a nonzero Chern number Cz [38]. Due to the same
underlying topology, according to the Hamiltonian H in
Eqs. (5)–(9), if we make transformations ψA → −ψB and
ψB → ψA to the equations at K , we can get the equations at
K ′. From the figures, the component ψA has a zero vorticity

(d1)

xy

z

(c1)

xy

z

(b1)

xy

z

0.8 × Max(Mag[ψA])

0.4 × Max(Mag[ψA])

(a1)

xy

z

xy

z

(d2)

xy

z

-π π
(a2)

xy

z

(c2)

xy

z

(b2)

FIG. 2. (a1) Two different isosurfaces and (a2) the phase
distribution on the isosurface with 0.8 × Max(Mag[ψA]) of the pseu-
dospin component ψA at K . (b1) Isosurfaces and (b2) the phase
distribution of the pseudospin component ψB at K . (c1) Isosurfaces
and (c2) the phase distribution of ψA at K ′. (d1) Isosurfaces and
(d2) the phase distribution of ψB at K ′. The isosurfaces are plotted
with ω = 10 and parts of the isosurfaces are removed for the sake of
clarity.

with lA = 0, and the component ψB carries a vorticity of
lB = −1. Thus, the topological solitons at K and K ′ both
rotate clockwise with a phase difference of π . Note that for
a 3D valley-Hall insulator, the topological solitons at K and
K ′ rotate in opposite directions [40].

Existence and stability. In Figs. 3(a) and 3(b), the frequency
spectrum is plotted as a function of the powers PA,B, which
are defined as PA,B = ∫ |ψA,B(�r)|2d3r. We only show the plots
for the topological solitons at K , because the curves for the
topological solitoins at K ′ can be obtained just by replacing
A(B) with B(A). The dashed lines indicate the linear band
edges. The topological solitons bifurcate from the lower linear
band edge with a nonzero PB, which implies that the topo-
logical solitons do not exist below a certain power threshold.
The family of topological solitons terminates when the powers

L201111-3



LI, LI, JIA, AND LIU PHYSICAL REVIEW B 105, L201111 (2022)

xy

z

(d) -π π

0 500 1000
9.95

10.05

10

PA

(a)

0 1 2
9.95
9.96

(e)

xy

z

-π π

9.95 10.0510
0

2

4

Im
(δ

)
(*

10
-3

)

(c)

0 250 500
9.95

10.05

10

PB (*103)

(b)

200
9.95

9.96

FIG. 3. (a), (b) The power of the two pseudospin components
ψA,B. The insets are enlarged figures for PA,B. (c) The growth rate
Im(δ) of the topological solitons. The dashed lines in (a)–(c) denote
the linear band edges. (d), (e) The perturbation eigenmode ε̃A and ε̃B

at ω = 9.953.

saturate. The power is monotonic within most of the spectrum
range. However, near the lower linear band edge, we have
dPB/dω < 0 [inset of Fig. 3(b)]. This negative slope is related
to the stability of the topological solitons.

We study the stability properties of the topological solitons
using the linear stability analysis. The solution is sought at
the frequency δ in the form of ψA,B = (φA,B + εA,Be−iδt +
μ∗

A,Beiδ∗t )e−iωt , where φA,Be−iωt are the unperturbed soliton
solutions, and εA,B and μA,B are the perturbation eigenmodes.
Note that the perturbations may come from both the am-
plitudes and phases. For the perturbation eigenmode with a
certain vorticity q, the solution can be written as(

ψA

ψB

)
=

[(
φ̃A

φ̃B

)
+

(
ε̃A

ε̃B

)
e−iqϕe−iδt +

(
μ̃∗

A
μ̃∗

B

)
eiqϕeiδ∗t

]

×
(

e−iϕ

1

)
e−iωt . (10)

Obviously, the topological solitons are linearly stable if δ is
real, whereas they are linearly unstable if the imaginary part of
δ, namely the growth rate, is positive. From Fig. 3(c), the topo-
logical solitons are linearly stable within most of the spectrum
range. At a small regime near the lower linear band edge (ω <

9.957), the topological solitons are linearly unstable because
of the emergence of a nonzero imaginary part of δ via a Hopf
bifurcation in the q = 0 spectrum at ω = 9.957 [Figs. 3(d) and
3(e)]. Such instability is of an exponential nature and can be
predicted by the Vakhitov-Kolokolov criterion [44,45], due to
the fact that the power PB dominates the total power and there
is a negative slope with dPB/dω < 0 near the lower linear
band edge [Fig. 3(b)]. This behavior is different from that of
the topological solitons in 2D, which are linearly stable near
the lower linear band edge [46].

Dynamics. We add ±10% noises with uniform distribu-
tions to the topological solitons at K and study their temporal

t = 7950t = 7300t = 6650(a) t = 6000

t = 6000(b) t = 6650 t = 7300 t = 7950

FIG. 4. (a) The isosurfaces with 0.8 × Max(Mag[ψA(t = 0)]) of
the pseudospin component ψA of the stable topological soliton with
ω = 10 at K . The four subfigures from left to right correspond to t =
6000, 6650, 7300, and 7950, respectively. (b) The isosurfaces with
1.0∗Max(Mag[ψA(t = 0)]) of ψA of the unstable topological soliton
with ω = 9.953.

evolution. In Figs. 4(a) and 4(b), we show the isosurfaces of
the pseudospin component ψA at different times with ω = 10
and ω = 9.953, respectively. For the stable topological soli-
ton with ω = 10, although noises are imposed, the soliton is
always self-sustained in all 3D and the radius of the torus tube
is invariant [Fig. 4(a)]. For the unstable topological soliton
with ω = 9.953, it exhibits a breathing structure [Fig. 4(b)].
The radius of the torus tube and the magnitude of the soliton
oscillate along with the temporal evolution. Since the growth
rates Im(δ) are in the order of 10−3, the topological solitons
near the lower linear band edge are weakly unstable. Thus,
our topological solitons in 3D should be observable in the
whole spectrum range. Furthermore, although the topological
solitons are semivortex solitons where the pseudospin com-
ponent ψA has a nonzero vorticity, they are only disturbed
by the radially symmetric perturbations with q = 0 and radial
symmetry breaking is not observed. This behavior agrees with
the result from the linear stability analysis.

Conclusion. We find self-localized topological states (i.e.,
topological solitons) in a 3D nonlinear photonic Chern insu-
lator. The topological solitons at the high-symmetry points
K and K ′ rotate in the same direction, as a manifestation
of the topology of the linear host lattice. Specifically, these
solitons are stable over a broad frequency range. Because of
these features, it is feasible to observe the topological solitons
experimentally. Considering that both time-reversal symmetry
breaking and nonlinearity can be implemented in electrical
circuit lattices [47,48] and 3D circuit lattices are readily avail-
able [49], we propose a realistic circuit implementation to
observe the topological solitons [40]. Our work establishes
how the interplay between topology and nonlinearity leads to
a different type of soliton, and can be extended to other 3D
topological systems.
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