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Quantum criticality and confinement in weak Mott insulators
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Electrons undergoing a Mott transition may shed their charge but persist as neutral excitations of a quantum
spin liquid (QSL). We introduce concrete two-dimensional models exhibiting this exotic behavior as they
transition from superconducting or topological phases into fully charge-localized insulators. We study these
Mott transitions and the confinement of neutral fermions at a second transition into a symmetry-broken phase.
In the process, we also derive coupled-wire parent Hamiltonians for a non-Abelian QSL and a Z4 QSL.
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Introduction. The Mott transition [1] of spinful fermions
is central to numerous compelling phenomena in quantum
many-body physics. High-temperature superconductivity in
the cuprates, for example, arises near the transition between a
nonmagnetic metal and an antiferromagnetic insulator [2]. In
addition, “weak Mott insulators,” i.e., systems just barely on
the insulating side of the quantum phase transition (QPT), pro-
vide fertile ground for exotic forms of quantum magnetism, as
observed in various organic compounds [3,4]. A small charge
gap promotes multispin interactions, stabilizing QSL ground
states with fractional “spinon” excitations [5–10].

Many properties of QSLs, such as deconfined spin- 1
2 ex-

citations, are naturally present in weakly interacting metals
or superconductors. There, they are the electronic or Bogoli-
ubov quasiparticles, respectively. In the weak Mott insulator,
spinon excitations may fruitfully be viewed as an inheritance
of the nearby itinerant phase. Within this framework, QSLs
arise when electrons discard their charge but evolve otherwise
smoothly across the QPT. Similarly, a singlet Cooper pair
relates to a dimer (valence bond) in a spin model. The natural
fate of a superconductor undergoing a Mott transition is thus
either a valence bond solid (VBS) with frozen dimers or a
QSL with fluctuating dimers [11].

We focus on two-dimensional systems of spin- 1
2 fermions

or bosons at an average filling of one particle per unit cell.
When such systems undergo a Mott transition, one of two
things must happen concomitantly with the localization of
unit charge to each site: Either some symmetry breaks spon-
taneously or a QSL forms. Experimentally, Mott transitions
are typically first order. Theoretical studies of these QPTs
are challenging due to the lack of any small parameter—the
transition occurs when the interaction strength and band-
width are comparable. Still, field-theoretical analyses have
shown that second-order transitions are also possible in both
cases [12–16].

A prototypical phase diagram of electrons undergoing
a Mott transition is illustrated in Fig. 1 for the exam-
ple of a superconductor. When both sides of the QPT are
conventional phases, it is either first order or exhibits “decon-
fined” criticality [17]. By contrast, the Mott transition into a
QSL may be governed by the critical point of the classical

three-dimensional (3D) XY model [18]. Finally, QSLs and
topologically trivial Mott insulators are separated by a con-
finement transition.

To describe the Mott transition, we begin deep within a
superconductor or topological insulator. We locally deform
its Hamiltonian to write it as a sum of two parts, H charge

and H spin, which commute up to irrelevant contributions. The
“spin” part does not involve charge transfer between different
sites. Consequently, the system remains in its ground state as
charge carriers localize due to strong on-site repulsion. The
competition between the latter and H charge, projected onto the
ground state of H spin, then characterizes the Mott transition. In
one dimension, this property is quite generic; Luttinger liquids
factorize into charge and spin sectors, and phase transitions in
the former do not affect the latter.

To carry out these steps in two dimensions we build on
the coupled-wire framework [19]. In particular, the Mott tran-
sition and subsequent confinement transitions are accessible
in a well-controlled way. Known properties of QPTs out of
Abelian and non-Abelian QSLs are reproduced in an almost

FIG. 1. Phase diagram of a superconductor that undergoes a Mott
transition upon increasing the on-site repulsion u. The parameter λ

modifies the spin correlations within the superconductor. Depending
on its value, the insulating phase may be a valence bond solid or
a Z2 spin liquid. The coupled-wire formalism affords us theoretical
control along the dashed line, passing through all phases and phase
transitions.
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pedestrian manner, without reference to gauge theories [20].
Additionally, we derive the critical properties of two QPTs
that were not previously discussed: (i) between an s-wave
superconductor and VBS, and (ii) between a bosonic Laughlin
state and chiral QSL. Crucially, for each QPT, we construct a
physically sensible microscopic model, i.e., one that is local
and only involves two-body interactions.

Superconductor and VBS. The conceptually clearest exam-
ple is the Mott transition out of an s-wave superconductor.
To describe it, we begin with an array of one-dimensional
quantum wires in the Luttinger liquid phase. At low energies,
spin-σ electrons near the right (R) or left (L) Fermi points
are annihilated by ψy,σ,R/L . The singlet Cooper-pair operator
is �̂y = ψy,↑,Rψy,↓,L − ψy,↓,Rψy,↑,L . We couple neighboring
wires via pair hopping, i.e., HSC = g�̂†

y+1�̂y + H.c. (Here and
throughout, we lighten the notation by leaving the summation
over wires and integration along the wire implicit. The wire
index y will also be suppressed unless needed.) When HSC

is relevant in the renormalization group sense or has a large
coefficient, a superconductor with 〈�̂〉 �= 0 and a hard spin
gap arises.

Two-particle intrawire umklapp processes described by
HMott = uψ

†
↑,Rψ

†
↓,Rψ↑,Lψ↓,L + H.c. induce the Mott transi-

tion. Microscopically, they arise from density-density in-
teractions between electrons, e.g., on-site repulsion in a
Hubbard model. At half filling, repulsion favors localizing
the electrons on each wire and thus competes against pair
hopping. When the former prevails, it suppresses the latter,
but the spin gap may persist. Indeed, at second order in
g, HSC generates H spin

SC ∼ �̂†
y�̂y = ψ

†
↑,Rψ↑,Lψ

†
↓,Lψ↓,R + H.c.

This intrawire interaction opens a spin gap in Luttinger liq-
uids and survives the Mott transition by not transferring
charge.

To characterize the insulator and the QPT, we employ
Abelian bosonization [21,22]. The charge and spin degrees
of freedom are encoded by canonically conjugate long-
wavelength operators θ c/s

y and ϕc/s
y ; we use the convention

where their densities are ρc/s = 1
π
∇θ c/s. The Cooper-pair op-

erator is then �̂ = eiϕc
cos[2θ s]. The intrawire interactions

introduced above are HMott ∼ cos[4θ c] and H spin
SC ∼ cos[4θ s].

According to these two terms alone, each wire breaks trans-
lation symmetry independently, and the ground state is
macroscopically degenerate. Residual interwire couplings, the
leading of which is δH spin

VBS = u′ cos[2θ c
y+1 + 2θ c

y ] cos[2θ s
y+1 +

2θ s
y ], will lock the order parameters of individual wires into a

global symmetry-breaking pattern. The resulting VBS ground
state does not exhibit topological order, i.e., fractional excita-
tions are confined.

By construction, H spin
SC does not experience competition

from HMott, δH spin
VBS, or HSC, i.e., the latter is the “charge”

Hamiltonian. The transition is thus governed by HSC-VBS ≡
〈HMott + δH spin

VBS + HSC〉H spin
SC

. Here, projection onto the “spin”
ground state amounts to replacing all instances of the pinned
operators θ s by c numbers; we find

HSC-VBS = u′ cos
[
2θ c

y + 2θ c
y+1

] + u cos
[
4θ c

y

]
+ cos

[
ϕc

y+1 − ϕc
y

]
. (1)

This Hamiltonian also describes the transition between
an easy-plane antiferromagnet and a spatially anisotropic
VBS [17]. Its ultimate fate is believed to be a first-order
transition [23–27]. Explicitly breaking the wire translations
permits the lower-order term cos[2θ c

y ], placing the transition
into the universality class of the 3D XY model.

Superconductor and Z2 QSL. We now modify the parent
superconductor to obtain a Mott transition into a deconfined
phase. As we will see, a QSL arises from a phase with the or-
der parameter �̂′

y = ψy,↑,Rψy−1,↓,L for odd y and with R ↔ L
for even y. Pairing is induced by Cooper-pair hopping, i.e.,
H�′ = gy�̂

′†
y+1�̂

′
y + H.c. Only half of the low-energy elec-

trons participate in this interaction. We gap out the others
with Hm = m̂y + H.c., where m̂y = ψ

†
y−1,↑,Lψy,↑,R for even y

and m̂y = ψ
†
y−1,↓,Rψy,↓,L for odd y [28]. The ground state

of HSC′ = H�′ + Hm features a spin gap and spontaneously
breaks charge conservation. It also exhibits accidental edge
states that depend on the termination. These do not play an
important role here and are addressed below.

Both terms in HSC′ involve electrons hopping across wires
and are suppressed once charges localize. Still, terms gen-
erated from these two interactions may persist across the
Mott transition. Consider specifically H spin

SC′ ≡ H�′ |g→ĝ with
ĝy = m̂y+1m̂y. Inside the superconductor, 〈ĝy〉 is of order
unity, and H�′ , H spin

SC′ are interchangeable. Crucially, the inter-

actions in the latter, ei4θ̃ s
2y+1 ≡ �̂

′†
2y+2�̂

′
2y+1ĝ2y+1 and ei2ϕ̃s

2y ≡
�̂

′†
2y+1�̂

′
2yĝ2y, do not involve charge transfer between wires.

Their phases, expressed through operators that satisfy canon-
ical commutations with ϕs

2y+1 and θ s
2y, thus remain pinned

across the Mott transition. All the charge transfer is contained
in Hm, which takes on the role of H charge

SC′ .

In the Mott insulator, H spin
SC′ realizes precisely the Z2 QSL

described in Ref. [29]. The QPT is described by HSC′-Z2
≡

〈H charge
SC′ + HMott〉H spin

SC′
. We find

HSC′-Z2
= cos

[
1
2

(
ϕ̃c

y+1 − ϕ̃c
y

)] + u cos
[
4θ c

y

]
, (2)

with dressed charge operators ϕ̃c
y that are canonical conjugates

to θ c
y and avoid competition with H spin

SC′ . The same Hamiltonian
describes the Mott transition of bosons eiϕ̃c/2 at integer filling,
which is in the universality class of the 3D XY model. In the
present case, there is no local boson with unit charge, and the
transition is refined to the XY∗ type [12]. The slowest fluctu-
ating observable is the Cooper pair with anomalous exponent
η ≈ 1.47 [30,31]. It is encoded as eiϕ̃c

y = �̂′
ym̂yei2θ̃ s

y for odd y

and eiϕ̃c
y = �̂′

ym̂yeiϕ̃s
y for even y.

To complete the analysis of the Mott transition, we trace
the evolution of individual electrons into spinons. Consider
the operator O2y′+1,2y = ψ

†
2y′+1,↑,Rψ2y,↑,L. We obtain Ospin by

dressing it with the unique product of m̂ that compensates for
all interwire charge transfer. Inside the superconductor SC′,
the bare and dressed operators are interchangeable. By con-
struction, the latter evolves smoothly across the QPT. Finally,
〈Ospin〉HMott yields the creation operator for a spinon particle-
hole pair (see also Supplemental Material [32]) [29].

Confinement transition. The QPT between the Z2 QSL
and the VBS is described by HZ2-VBS ≡ 〈λH spin

SC′ + H spin
SC +
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δH spin
VBS〉HMott . Notice that θ̃ s are pinned in both the VBS and

QSL. Replacing them with c numbers, we find

HZ2-VBS =u′ cos
[
θ s

2y+2 − θ s
2y

] + λ cos
[
2ϕ̃s

2y

] + cos
[
4θ s

2y

]
.

(3)

The first two terms are equivalent to Eq. (2). The final
term introduces a fourfold anisotropy, which is (dangerously)
irrelevant at the 3D XY transition [33]. Breaking wire-
translation symmetry explicitly permits a strongly relevant
twofold anisotropy. Then, the confinement transition occurs
independently of spatial symmetries and is described by a
(dual) Ising model.

The models above realize all the phases in Fig. 1. To
complete the phase diagram, we show that SC and SC′ are in
the same phase. Recall that the latter exhibits accidental edge
modes. Specifically, when terminating on an odd wire, the
electron modes ψR,↓, ψL,↑ there are decoupled. These modes
become gapped when coupled to a nearby region described
by HSC, suggesting no phase transition occurs. To verify that
SC and SC′ are smoothly connected, we use that �̂ and �̂′
have nonzero expectation values in their respective supercon-
ductors. We thus describe SC and SC′ by free fermion models
HMF

SC = �̂ + H.c. and HMF
SC′ = Hm + (�̂′ + H.c.) and find no

gap closure when tuning between them (see Supplemental
Material [32]).

Topological superconductor and non-Abelian QSL. The
simplest topological superconductor is comprised of spin-
less fermions [34]. To realize this phase, we thus begin
by trivially gapping the ↓ electrons using Hm and H↓ =
ψ

†
2y+1,↓,Rψ2y,↓,L + H.c. The remaining electrons are effec-

tively spinless. A topological superconductor can be obtained
from them by diligently constructing interwire interactions
such that a chiral Majorana fermion at the boundary remains
uncoupled [35]. Alternatively, one may use the fact that a
topological superconductor arises upon inducing pairing to
Dirac electrons [36]. A single Dirac cone for part of the ↑
electrons is realized by

H↑,Dirac = ψ
†
4y−2,↑,L[ψ4y+1,↑,R − ψ4y−3,↑,R] + H.c. (4)

To induce pairing without explicitly violating charge con-
servation, we first let the remaining electrons form a
trivial (strongly paired) superconductor. Specifically, we take
H↑,SP = �̂

†
↑,4y+3�̂↑,4y−1 + H.c., with the Cooper-pair opera-

tor �̂↑,y = ψy+1,↑,Lψy,↑,R. Finally, the “proximity” coupling
H↑,� = g�̂†

↑,2y+1�̂↑,2y−1 + H.c. yields a topological super-
conductor with a single chiral Majorana fermion at the edge.

All terms in this model involve charge transfer between
wires and are suppressed upon undergoing the Mott transition.
However, as before, there are vestigial terms. To obtain the
“spin” part of all couplings described above, we multiply them
by the unique product of m̂ operators that compensates for all
interwire charge transfer. By construction, the resulting terms
do not compete with the opening of the Mott gap.

To identify the insulating phase, we note that H spin
↓ , H spin

↑,SP
do not face competition and pin three operators per four-wire
unit cell. The final mode plays an entirely different role. To

reveal it, we define neutral fermions fχ = eiφ̃χ

, with

φ̃
χ

4y ≡ ϕs
4y+1 − ϕs

4y + θ c
4y − θ c

4y−1 − θ s
4y − θ s

4y−1

+ 2

{
θ c

4y+1, χ = R,

−θ c
4y+2 − θ s

4y+2 − θ s
4y+1, χ = L.

(5)

Notice that interwire hopping of these fermions is not a local
process. Still, they constitute deconfined excitations on top of
the topologically nontrivial background formed by the pinned
operators. Their effective Hamiltonian is Hf ≡ 〈H spin

↑,Dirac +
H spin

↑,� 〉H spin
↓ +H spin

↑,SP
. We find

Hf = f †
4y,L[ f4y+4,R − f4y,R] + gf †

4y,R f †
4y,L + H.c., (6)

which describes a neutral version of the electronic model
discussed above. In particular, the f fermions form a topolog-
ical superconductor with a single chiral Majorana fermion at
each edge. Consequently, the physical spin system realizes a
non-Abelian QSL. The Mott transition is described by Eq. (2)
with modified microscopic expressions for ϕ̃c [32]. Still, the
Cooper-pair operator �̂4y−1m̂4y exhibits critical correlations
with anomalous exponent η ≈ 1.47.

Before we conclude this example, we note that a lattice
model realizing the electronic band structure, H↓ + Hm +
H↑,Dirac, is readily constructed by engineering a suitable flux
background [32]. Adding the pairing terms described above
and an on-site repulsion then results in a lattice model for this
non-Abelian QSL.

Quantum Hall insulators and chiral QSLs. We turn to
the Mott transition out of topological insulators. Here, the
appealing perspective of Cooper pairs evolving into dimers
is not applicable. Still, the techniques introduced above apply,
and their implementation is even more straightforward. As a
prototypical example of quantum Hall insulators, we consider
a bilayer Laughlin state of bosons at filling factor νσ = 1

2 . A
parent Hamiltonian for this phase is the sum of [19,35]

H charge
220 = cos

[
2�c

y

]
cos

[
2�s

y

]
, H spin

220 = cos
[
4�s

y

]
, (7)

with canonical variables

�c/s
y ≡ 1

4

(
ϕc/s

y + ϕ
c/s
y−1

) + θ c/s
y − θ

c/s
y−1, (8a)

�c/s
y ≡ 1

4

(
ϕc/s

y − ϕ
c/s
y−1

) + θ c/s
y + θ

c/s
y−1. (8b)

The insulator described by 〈H spin
220 〉HMott is a variant of the

Kalmeyer-Laughlin chiral QSL [37], discussed in wire models
by Refs. [38,39].

The nature of the QPT becomes apparent upon intro-
ducing fermions �c

R(L) ≡ ei(�c±�c ). We find that H220-CSL ≡
〈H charge

220 + HMott〉H spin
220

reads

H220-CSL = �
c,†
L,y

[
u�c

R,y+1 − �c
R,y

] + H.c., (9)

which describes a single-Dirac-cone band structure with mass
|1 − u|. Short-range interactions between Dirac fermions are
irrelevant in two dimensions. Consequently, the transition is
described by a single Dirac cone of free fermions that are
spinless but carry unit electric charge. Individual fermions are
nonlocal, but Cooper pairs represent pairs of physical bosons
with opposite spins. At the QPT, this charge-2e operator ex-
hibits power-law correlations with scaling dimension 2. By
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contrast, single-particle excitations remain gapped across the
transition.

Other topological phases of bosons or fermions with 2 × 2
K matrices can be analyzed analogously. The resulting Mott
insulators are chiral QSLs unless the Hall conductance of
the parent topological phase vanishes. For an example of
the latter, consider a quantum spin Hall state described by
HQSH = ∑

σ ψ
†
y,σ,Rψy+σ,σ,L + H.c. Upon undergoing a Mott

transition, only the correlated process of electrons swapping
wires survives. In the insulating phase, where θ c are replaced
by c numbers, we find this term to be H spin

QSH = cos[ϕs
y+1 − ϕs

y].
It describes an easy-plane antiferromagnet, whose ground
state spontaneously breaks U(1) spin-rotation symmetry. The
Mott transition is described by Eq. (2) with θ̃ c, ϕ̃c replaced by

�y ≡ 1
8

(
2θ s

y+1 + 2θ s
y − ϕc

y+1 + ϕc
y

)
, (10a)

�y ≡ ϕs
y+1 + ϕs

y − 2θ c
y+1 + 2θ c

y , (10b)

respectively, and u → u−1. Therefore, the transition is in the
universality class of the 3D XY model, agreeing with previous
findings for the Kane-Mele-Hubbard model [40–44]. We note
that interchanging the spin and charge modes yields a transi-
tion from the quantum spin Hall state to the superconductor of
the first example. [Reference [45] studied a related transition
for SU(2) symmetric models, which results in a different
universality].

Parton approach. An alternative route for describing Mott
transitions is based on the parton mean-field approach [46,47].
Specifically, a microscopic electron (boson) ψσ is expressed
as ψσ = c fσ , where fσ are fermionic (bosonic) “spinons” and
c is a bosonic “chargon.” The latter is at unit filling and,
within a mean-field treatment, may undergo a conventional
boson-Mott transition without changing the phase of the for-
mer. Fluctuations of the mean-field parameters take the form
of a compact U(1) gauge field that couples to chargons and
spinons.

When fσ form a superconductor, this emergent photon ac-
quires a Higgs mass and does not modify the critical behavior.
When fσ form a chiral phase, the emergent photon is rendered
massive by a Chern-Simons term. Here, the transition is mod-
ified, as we found in Eq. (9). Mean-field states where fσ form
nonchiral insulators are unstable to monopole proliferation
and require a different analysis. By contrast, our approach
treats all cases on equal footing and allows us to derive their
critical theories. We demonstrated this for VBS and QSH,
confining phases within the parton approach.

The superconductor-VBS transition described by Eq. (1)
does not permit a straightforward description in terms of c and
fσ . Fortunately, an alternative is suggested by the wire model.
This QPT is related to the antiferromagnet-VBS QPT [29]
by interchanging spin and charge variables. Consequently,
we propose the decomposition ψ↑ = sh+, ψ↓ = s†h†

−. Specif-
ically, the bosonic spinon s is gapped on either side of the
QPT, while the fermionic chargons h± transition from a trivial
to a QSH insulator.

Discussion. We adapted the coupled-wire approach for de-
scribing weak Mott insulators and the nearby itinerant phases.
We used concrete models to understand what conditions fa-
vor topologically ordered Mott insulators over trivial VBS
phases. In the superconductor denoted by SC, neighboring
wires interact only through the fluctuations of �̂ around its
expectation value, i.e., via the Goldstone mode. In particular,
interwire spin correlations are strictly zero. Consequently, an
intrawire VBS phase is its natural fate after undergoing a
Mott transition. Deforming the superconductor away from this
limit into the one denoted by SC′ creates more nontrivial spin
correlations, permitting a Z2 QSL to form.

Beyond the Mott transition itself, the weak-Mott-insulator
lens has been conceptually useful for understanding exotic
insulators. This perspective becomes practically useful for
generating parent Hamiltonians of these phases. First, con-
ventional coupled-wire constructions for spin-chain arrays
involve carefully tuned and seemingly unnatural many-spin
interactions. By contrast, the ones derived here originate in
electron models with local hopping and two-body interactions
only. Second, the latters’ simplicity may make them more
appealing than effective spin models for numerical techniques
such as the density matrix renormalization group.

Finally, the coupled-wire framework readily captures in-
trinsically non-mean-field states and even certain gapless
QSLs [48]. Examples of the former are charge-4e supercon-
ductors [49,50]. There is no conceptual difference compared
to the charge-2e superconducting case, and there are no
surprises [32]. The insulating phase is a Z4 QSL, and the
transition is governed by the 3D XY∗∗ universality class, i.e.,
the critical correlations of the charge-4e order parameter are
determined by the fourth power of the classical XY order
parameter. Extensions to gapless states would be an exciting
direction for future studies.
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