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The description of the dynamics of strongly correlated quantum matter is a challenge, particularly in physical
situations where a quasiparticle description is absent. In such situations, however, the many-body Kubo formula
from linear response theory, involving matrix elements of the current operator computed with many-body wave
functions, remains valid. Working directly in the many-body Hilbert space and not making any reference
to quasiparticles (or lack thereof), we address the puzzle of linear in temperature (T -linear) resistivity seen
in non-Fermi-liquid phases that occur in several strongly correlated condensed matter systems. We derive a
simple criterion for the occurrence of T -linear resistivity based on an analysis of the contributions to the
many-body Kubo formula, determined by an energy invariant “ f function” involving current matrix elements
and energy eigenvalues that describes the dc conductivity of the system in the microcanonical ensemble. Using
full diagonalization, we test this criterion for the f function in the spinless nearest-neighbor Hubbard model and
in a system of Sachdev-Ye-Kitaev dots coupled by weak single-particle hopping. We also study the f function
for the spin conductivity in the two-dimensional Heisenberg model and arrive at similar conclusions. Our work
suggests that a general principle, formulated in terms of many-body Hilbert space concepts, is at the core of the
occurrence of T -linear resistivity in a wide range of systems, and precisely translates T -linear resistivity into a
notion of energy scale invariance far beyond what is typically associated with quantum critical points.
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Introduction. How do strongly correlated materials (e.g.,
the high Tc superconducting cuprates, heavy fermions, and
more recently, twisted bilayer graphene [1–8]) conduct elec-
tricity at finite temperature? This is a fundamental question
that has existed since the realization of these materials, and
the inception of this field decades ago. Experiments have
helped build an intricate picture of the phases that occur,
both from the point of their static and dynamical properties
at finite temperature, but much remains to be accomplished in
order to have a definitive theoretical understanding of these
materials. For example, at and close to optimal doping, the
superconducting phase transitions to the “non-Fermi-liquid”
(NFL) or “strange metal” phase which is characterized by an
electrical resistivity that scales linearly with temperature (T
linear) over a wide range of T [2–7,9]. This is in sharp contrast
to Fermi-liquid (FL) theory which predicts that the electrical
resistivity of a metal scales as T 2 [10].

NFLs, in contrast to FLs, are characterized by a lack of
quasiparticles, leading to a concerted effort to find models and
mechanisms by which T -linear resistivity can occur. Promi-
nent among these is the Sachdev-Ye-Kitaev (SYK) model
and its variants [11–13] which are analytically solvable in a
large N limit and exhibit T -linear resistivity (when multiple
SYK dots are coupled) [14,15]. However, the connection of
this model to a realistic microscopic model remains to be
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established. Recent experiments with cold atoms [16] have
shown the existence of T -linear resistivity in the Hubbard
model which has been supported by dynamical mean-field
theory [17–21] and exact diagonalization [17,22] calculations.

We address the question of T -linear resistivity, circumvent-
ing the issue of quasiparticles (or lack thereof) completely.
We work directly with the full set of quantum many-body
wave functions (which contain information about the resistiv-
ity at all temperature scales), and appeal to a direct analysis
of the many-body Kubo formula [23]. This is valid within
linear response, which is sufficient given that the experimen-
tally applied electric fields are small perturbations to the full
electronic Hamiltonian. The expression for the longitudinal
conductivity (i.e., the inverse of the electrical resistivity ρα) is
given by

σα (ω, T ) = π
1 − e−βω

ωZ

∑
n,m

|Iα
nm|2

eβEn
δ(En + ω − Em), (1)

where ω is the energy of interest (the dc limit corresponds
to ω → 0), En, Em are eigenenergies of the nth and mth
eigenstates, respectively, Z is the partition function, α is a
label for the spatial direction (x or y in two dimensions) and
Iα
nm ≡ 〈n|Iα|m〉 are matrix elements of the current operator,

and β is the inverse temperature.
At extremely high T (higher than the many-body band-

width), Ref. [24] stated a straightforward reason for T -linear
resistivity. In this limit, the thermal factors exp(−βEn), oc-
curring in the numerator and the partition function in the
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denominator, all become one. At high temperature and van-
ishing frequency, β → 0 and ω → 0, the factor of [1 −
exp(−βω)]/ω → β, which yields the linear in β conduc-
tivity and hence T -linear resistivity. Though mathematically
appealing, this argument alone does not explain why T -linear
resistivity remarkably survives to lower T . Studies of the high
T limit by Refs. [25–27] also suggested that many aspects of
T -linear behavior can be understood from high-temperature
expansions.

Our key contribution is to establish a criterion for T -linear
resistivity at finite temperature and to test its general validity.
We note that the Kubo formula can be rewritten as

σα (ω, T ) =
(

1 − e−βω

ω

)(∑
n e−βEn fα (En, |n〉, ω)∑

n e−βEn

)
, (2)

where we have introduced the f function, defined as

fα (En, |n〉, ω) ≡ π
∑

m

|Iα
nm|2δ(En + ω − Em) (3a)

≡ limη→0

∑
m

η|Iα
nm|2

η2 + (En + ω − Em)2
, (3b)

where η is a broadening parameter whose use is necessitated
by the discreteness of the many-body spectrum in numerical
computations on a finite-sized system. Once again for ω → 0,
the prefactor outside the summation yields the desired factor
of β. This means that the remaining terms must conspire
to perfectly cancel out to have no temperature dependence.
This can happen for an arbitrary range of T , if f (En, |n〉) ≡
f (En, |n〉, ω → 0) is constant, i.e., independent of the en-
ergy of the eigenstate and the eigenstate itself. Since there
is a continuum of many-body energies and eigenstates in the
thermodynamic limit, it is meaningful to coarse grain the f
function by simple averaging within a narrow energy window,
as long as the energy window over which the averaging is done
is significantly smaller than the lowest-temperature scale of
interest,

fα (E ) ≡ 1

g(E )

∑
n

δ(En − E ) fα (En, |n〉), (4)

where g(E ) ≡ ∑
n δ(En − E ) is the many-body density of

states [ fα (En, |n〉) = fα (En) follows from the eigenstate ther-
malization hypothesis (ETH) [28], but the coarse-grained
function is well defined even in situations where ETH does
not hold]. The definition in Eq. (4) is also equivalent to the
structure factor of the total current operator at ω = 0 in the
microcanonical ensemble.

For this averaged fα (E ), we show [28] that its energy
invariance is the only generic possibility for T -linear resis-
tivity at arbitrary temperature. This condition must hold in
situations where the slope dρα/dT has been found to be
invariant with temperature [29]. Furthermore, for resistivity
scaling as other powers of T , there does not appear to be any
such generic invariant that is defined in the microcanonical
ensemble, which indicates that exact T -linear resistivity is
somehow “special.”

The f function recasts the complex finite-temperature
problem into an analysis of the quantum mechanical energies
and matrix elements of the current operator. In realistic mod-
els, we may expect only approximate T -linear resistivity, in

which case the conditions on the f function can be somewhat
relaxed: We then expect f (E ) to be constant only in energy
regimes corresponding to temperatures where the T -linear
contribution to the resistivity dominates. At low energies
we may expect to see physics associated with antiferromag-
netism, superconductivity, or FL behavior, and the f function
cannot be constant in these regimes.

To test our assertions, we carry out a systematic numerical
investigation of the f function in the spinless Hubbard and
SYK models. We also pose and answer an analogous question
about spin conductivity in the two-dimensional (2D) spin- 1

2
square lattice Heisenberg model.

Spinless nearest-neighbor Hubbard model. Consider a
nearest-neighbor (nn) spinless Hubbard model on the 2D
square lattice,

H = −t
∑
〈i, j〉

c†
i c j + H.c. + V

∑
〈i, j〉

nin j, (5)

where 〈i, j〉 refer to nn pairs, t is the nn hopping (which
we set to 1 for our calculations), V is the strength of the nn
repulsion, and c†

i and ci are the usual electron creation and
destruction operators. ni = c†

i ci is the number operator. The
current operator is defined as

Ix(y) = it√
Ns

Ns∑
j=1

(c†
j+x̂(ŷ)c j − c†

j c j+x̂(ŷ) ), (6)

where Ns is the total number of sites. We simulate an isotropic
lattice (4 × 4 torus, i.e., periodic boundary conditions in both
directions), and plot only fx (computed from Ix), since fy

(computed from Iy) is identical.
Figures 1(a) and 1(b) show plots of fx(E ), for representa-

tive values of V/t at a filling of n = 6/16. The ground state
energy in each case has been subtracted out on the energy
axis. A broadening parameter of η = 0.2t is used. Addition-
ally, the energy axis is split up into bins of size η and the
coarsened value of fx(E ) is obtained by simple averaging
over all the eigenstates with eigenenergies that lie in a given
bin, as in Eq. (4). The mean value of fx(E ) averaged over
the entire eigenspectrum is also shown as a guide to the
eye.

If one focuses on the center of the many-body spectrum,
fx(E ) does appear to be remarkably flat for all the cases
shown. To quantify the degree of flatness of the f function,
we plot the histogram of fx(Ek, |k〉) values for all eigenstates
|k〉 in the spectrum (assigning degenerate states the same fx

value) in the inset. We observe that the f value is indeed
peaked around a typical value. [In the Supplemental Material
(SM) [28] we also show the f function for other fillings,
interaction strengths, and broadening parameters.]

Figure 2 shows a representative set of resistivity curves
for V/t = 8 and different particle fillings. For small fillings
and low temperature, one has a dilute gas of well-defined
electronic quasiparticles, the f function is high at low ener-
gies, and correspondingly the resistivity shows deviation from
T -linear behavior that is present at large T . At half filling, one
has insulating behavior at low temperature, expected of the
charge density wave phase. The slope of the T -linear portion
(obtained by biasing the fit to include only high T ) is shown in

L201108-2



MANY-BODY ENERGY INVARIANT FOR T -LINEAR … PHYSICAL REVIEW B 105, L201108 (2022)

FIG. 1. (a), (b) fx (E ) for the charge conductivity, using η = 0.20t , as a function of the energy E (in units of t) for the 4 × 4 2D square
lattice nearest-neighbor spinless Hubbard model for V/t = 4, 8 and for a filling of n = 6/16. In each case, the ground state energy EGS has been
subtracted out. The insets show histograms of fx (E ) values with the bin width set to 0.01. (c) fx (E ) for the spin conductivity, using η = 0.10J ,
of the 2D spin- 1

2 nearest-neighbor Heisenberg model (mapped to a hardcore-bosonic model) on a 4 × 4 square lattice with (bosonic) filling
n = 6/16.

the inset and is approximately (but not exactly) constant with
filling.

We now demonstrate that the operative mechanism behind
f invariance in the spinless nearest-neighbor Hubbard model
stems from an incoherent quantum liquid of states that extends
across energy scales. To do this, we consider the model near
half filling, where the incoherent quantum liquid is sepa-
rated from the low-energy manifold of states |Ln〉 by a gap
in the many-body spectrum. We proceed to project out this
low-energy manifold by redefining H → H + ∞∑

n |Ln〉〈Ln|
[30] (Fig. 3). Doing so makes the incoherent quantum liquid
extend all the way down to low energies [31]. Then, in the
strongly correlated regime V/t � 1, we find that T -linear re-
sistivity extends from high T down to nearly T = 0 without
a slope change (Fig. 3), and the resistivity at low T is not
much larger than 1/t2, i.e., not bad metallic. Consequently, f

FIG. 2. Resistivity (ρxt2), using η = 0.10t , for the spinless Hub-
bard model for a representative value of interaction V/t = 8 and
various fillings. The high-temperature part of the curves (T =
30t-70t , not shown) is fit to a linear function; the corresponding slope
is shown in the inset. The low-temperature physics is characterized
by metallic or insulating phases which show clear deviations from
T -linear resistivity.

invariance now extends across the energy spectrum in the
modified model.

This projection procedure also causes the transfer of
single-particle spectral weight from the upper Hubbard bands
down to low frequencies (for a detailed discussion, see SM).
The resulting UV-IR mixing in the local single-particle spec-
tral function [32,33] therefore results in energy scale invariant
behavior with respect to the addition or removal of a single
particle. Our calculations suggest that an analogous situation
arises with the current operator; under projection it also redis-
tributes the UV spectral weight down to low energies, which
in turn extends the T -linear regime to low T .

Heisenberg model. The fermionic nature of the constituents
has no particular relevance in our Hilbert space viewpoint.
This motivates an investigation of a very different model,
the 2D spin- 1

2 Heisenberg model on a square lattice with the

FIG. 3. Resistivity (ρxt2), using η = 0.10t , for the spinless Hub-
bard model for V/t = 4.3 and filling 7/16, after the lowest-energy
manifold of 16 states is projected out of the calculation. The inset at
the bottom right shows the density of states g(E ). The inset at the top
left shows the histogram of fx values (normalized histogram) for the
remaining 11 440 − 16 = 11 424 eigenstates.
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Hamiltonian,

H = J
∑
〈i, j〉

Si · S j, (7)

from the point of view of its spin conductivity. (Si represent
the usual spin- 1

2 operators on site i.) The spin current is

defined as Ix(y)
S = iJ

∑Ns
j=1(S+

j+x(y)S
−
j − S+

j S−
j+x(y) )/

√
Ns. [34]

(We set J = 1 in our calculations.) The model maps to one
of hardcore bosons with t = −J/2 and V = J; a previous
investigation by Ref. [26] using high-temperature expansions
showed that such particles also show T -linear resistivity.

We evaluate the f function for the 4 × 4 torus in dif-
ferent magnetization sectors, equivalent to different fillings
of hardcore bosons. We find that the f function is indeed
flat when viewed at intermediate energy [see Fig. 1(c) for
a representative calculation], paralleling our observations for
the fermionic case. These findings hint at the diminished
role of particle statistics at high temperature, which we find
remarkable yet consistent with recent experiments that have
suggested the occurrence of a “bosonic strange metal” [35]
with robust T -linear resistivity. It remains to be seen if this
effect can be observed for the “spin resistivity” in insulating
magnetic materials.

SYK model. Finally, we discuss our results for the zero-
dimensional SYK model of spinless complex fermions ci

[12,13]. Its Hamiltonian is

H = 1

(2N )3/2

N∑
i, j,k,l=1

Ji jkl c
†
i c†

j ckcl , (8)

where Ji jkl are independent random complex numbers chosen
from a Gaussian distribution with standard deviation J , and
the model is defined in the limit of large N .

Owing to the high amount of frustration, the model inhibits
the formation of ordered states [11] in the limit of N → ∞
Moreover, the fully random interactions and the absence of
single-particle hopping also means that there is no Fermi
liquid or glassy phase down to zero energy (zero tempera-
ture) [12,36–38]. Thus, the SYK model is one of the simplest
known models where NFL physics persists all the way down
to T = 0.

The concept of charge transport is not well defined for a
single zero-dimensional SYK dot. However, one can weakly
couple SYK dots (labeled 1,2) with infinitesimal single-
particle hopping t (Fig. 4), and define an appropriate current
operator I = it

∑N
j=1(c†

j,1c j,2 − c†
j,2c j,1); we drop the direc-

tion label α here. Field theoretic calculations in the large N
limit, where T � NJ by definition, have revealed that the re-
sistivity ρ is linear in T [14,15], and its slope dρ/dT is nearly
invariant [29], i.e., it does not depend on the temperature scale
(with respect to J) that the system is at, even though the
temperature dependences of other physical quantities change
drastically as T is increased past J [29] (such as the compress-
ibility, which changes from ∼T 0 to ∼T −1).

We compute the f function of the two-dot system as
follows: Since the hopping t is infinitesimal, the dots are ef-
fectively decoupled, and the many-body states |n〉 = |n1〉|n2〉
are therefore (fermionic) product states of the states on the in-
dividual dots. We exactly diagonalize the Hamiltonians for the

FIG. 4. f function computed for a two-SYK-dot system (each
having N sites) using exact diagonalization for various values of N ,
averaged over 128 realizations each. The many-body bandwidth is
Emax, and the ground state energy EGS has again been subtracted out
(for each disorder realization). The dashed lines indicate f derived
from the large N results for ρ(T ) obtained in previous work [29],
where we take f ≈ ρ(T )/T [28]. The curves will end up within the
region between the dashed lines as N is made large.

two dots individually, which have uncorrelated realizations of
Ji jkl . We then have (Em, Qm ≡ Em1 , Qm1 + Em2 , Qm2 )

f (E ) = 2πt2

g(E )

∑
n1,n2

∑
m1,m2

δ(Em − E )δ(En − E )δQm,Q

× δQn,Q

∣∣∣∣∣
N∑

i=1

〈n1|ci,1|m1〉〈n2|c†
i,2|m2〉(−1)Qm1

∣∣∣∣∣
2

, (9)

where g(E ) is the many-body density of states of the two-dot
system, and the total charge on the two dots is Q.

Figure 4 shows the results of our calculations at Q = N
for N = 8-14, which were obtained after averaging over 128
realizations of Ji jkl for each N . We find that in the middle of
the spectrum, the f function tends to get flatter with increasing
N , approaching the large N result. Towards the edges, the f
values are smaller, but increase towards the large N result with
increasing N : Thus, the profile of the f function appears to
be asymptoting towards the nearly invariant large N result as
N is increased. Remarkably, the f invariance also appears to
extend to energy scales E ∼ NJ in the middle of the band,
far higher than those accessed in the large N field theory
calculations, where E � NJ by definition.

Discussion. We conclude by discussing the implications
of the energy invariance of the f function, which is a purely
microcanonical quantity. For this energy invariance to occur,
a subtle interplay between the average size of the matrix
element of the current operator and the available number of
many-body states at a given energy density is required. The
energy invariance of the f function encodes a notion of energy
scale invariance across the many-body spectrum, which is
far beyond the purview of low-energy effective field theories.
Importantly, when viewed in terms of the many-body Hilbert
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space, different models suggest a universal mechanism behind
T -linear resistivity.

Certain correlated electron materials display “perfect”
T -linear resistivity across multiple decades of temperature
[39–42], which is often associated with the presence of a
quantum critical point [43,44]. This resistivity goes from ρ �
h/e2 at low T , to a “bad metal” regime where ρ � h/e2 at
high T , in which the classical mean free path of the electrons
becomes comparable to a lattice spacing [45]. This suggests
very different physics in the two regimes [16,46], yet f invari-
ance must hold across the crossover between them, indicating
that they are still related. To probe this physics further, larger
system sizes are required: It would be interesting to construct
variational wave functions [47] or matrix product states for
excited states in models of quantum critical metals [48] that
could capture this crossover, and see how f invariance can
manifest in terms of the physical parameters used to define
these wave functions. Also, other computational strategies
based on shift-invert based algorithms that target states at a

given energy density could be used for calculation of the f
function for larger system sizes, and thus shed further light on
the problem of T -linear resistivity.
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