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Half-quantized Hall effect and power law decay of edge-current distribution
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Half-quantized Hall conductance is characteristic of quantum systems with the parity anomaly. Here, we
investigate topological and transport properties of a class of parity anomalous semimetals, in which massive
Dirac fermions coexist with massless Dirac fermions in momentum space or real space, and uncover a distinct
bulk-edge correspondence in which the half-quantized Hall effect is realized via the bulk massless Dirac fermions
while the nontrivial Berry curvature is provided by the massive Dirac fermions. The spatial distribution of the
edge current decays away from the boundary according to a power law instead of an exponential law in the
integer quantum Hall effect. We further address the physical relevance of parity anomalous semimetals to three-
dimensional semimagnetic topological insulators and two-dimensional photonic crystals.
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Introduction. The two-component massless Dirac fermion
in 2+1 dimensions coupled with an electromagnetic field Aμ

is invariant under time-reversal and spatial reflection sym-
metry at the classical level but loses the symmetries when
the theory is quantized in a gauge-invariant fashion. This
phenomenon is known as the “parity anomaly” [1–5]. Upon
integrating out the fermion field in the action by means of the
Pauli-Villars regularization [3], a Chern-Simons term which
is odd under reflection and time reversal arises in the effective
Lagrangian for the gauge field: LCS[Aμ] = σH

2 εμνρAμ∂νAρ ,

with εμνρ being the Levi-Civita symbol and σH = 1
2

e2

h
M
|M|

only depending on the sign of the mass M for the regula-
tor. The Chern-Simons term predicts a half-quantized Hall
conductance [6]. Several condensed matter systems were pro-
posed to realize the parity anomaly in early pioneering works,
such as the single-layer graphite system [7], the PbTe-type
narrow gap semiconductor with a domain wall [8], and, re-
cently, the HgTe heterostructure [9]. Haldane proposed that
the half-quantized Hall conductance could be obtained if one
of the two gapped valleys on a honeycomb lattice can be
fine-tuned to be closed [10]. Recently, Haldane’s idea has
been constructed in photonic [11] and phononic [12,13] crys-
tals, as well as Floquet systems [14,15]. Another attempt to
realize the parity anomaly is based on the surface states of
three-dimensional (3D) Z2 topological insulators [6,16–20].
If the surface states are gapped by magnetic doping or the
proximity effect at one surface of the system while the surface
states at the opposite surface remain gapless, an unpaired
gapless Dirac cone can be realized in the quasi-2D system
with a lattice-regularized description [21–30]. Recently, this
“semimagnetic” heterostructure was reported experimentally
in Refs. [31,32]. As illustrated in Figs. 1(a) and 1(b), the
massive and massless Dirac cones are separated in momen-
tum space in the Haldane model and in position space in a
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semimagnetic topological insulator, which plays the role of
the Pauli-Villars regulator, making them an ideal platform
for the condensed matter realization of the “parity anomaly.”
Topological semimetals in which massive and massless Dirac
fermions coexist are named “parity anomalous semimetals”
[33,34], to emphasize the role of the massless Dirac fermions
in the parity anomaly.

Opposite to the integer quantum Hall effect and quantum
anomalous Hall effect [35,36], the half-quantized Hall effect
does not indicate the existence of well-defined chiral edge
states as the number of chiral edge states cannot be half of
an integer and also the carrier charge is not a fraction of the
elementary charge e in these noninteracting systems. In this
Research Letter, we study electronic and transport properties
of parity anomalous semimetals for the open boundary condi-
tion by means of a combination of analytical and numerical
techniques. While no well-defined edge states are present,
it is found that the accumulation of all extended bulk states
exhibits chiral nature and an edge current circulates around
the boundary as shown in Fig. 1(c). The edge current decays
according to a power law of the distance x away from the
boundary, x−3/2, which is different from the exponential decay
in the integer quantum Hall effect due to the presence of the
localized edge states [19,37,38]. The circulating electric cur-
rent generates a magnetization which leads to a half-quantized
Hall conductance according to the Streda formula [39,40].
We also demonstrate the topological charge pumping from
the collective contribution of the bulk extended states. Fur-
thermore, we explore the Hall current distribution and charge
pumping in a semimagnetic topological insulator slab, which
provides a comprehensive and distinct physical picture of the
half-quantized surface Hall effect.

Haldane model with parity anomaly. To demonstrate the
distinct bulk-edge correspondence, we consider the Hal-
dane model with armchair-type termination as illustrated in
Fig. 2(a). To meet the boundary condition of the armchair
termination, we must admix states of different valleys [41].
Effectively, the presence of the gapped valley behaves as a
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FIG. 1. Illustration of parity anomalous semimetals: (a) the Hal-
dane model where massive and massless Dirac cones are separated in
momentum space and (b) the semimagnetic 3D topological insulator
(TI) in which massive and massless Dirac cones are separated in
position space. (c) The distribution of a set of low-energy states
and the power-law-decaying edge current in the parity anomalous
semimetal with the half-quantized Hall conductance σH = 1

2
e2

h for
the open boundary condition. The up- and down-propagating states
are indicated by red and blue colors, respectively.

boundary condition for the envelope function of the gap-
less valley [42]. If we consider a low-energy scale which
is much smaller than the gap of the massive valley, the
confinement can be approximated as the hard-wall bound-
ary condition, which was extensively discussed in previous
studies [43–47]. In this approach, the energy eigenvalues are

FIG. 2. (a) Structure of honeycomb lattice nanoribbons with
armchair edges. a is the lattice distance. (b) The local density of
states at the left edge (labeled by the star). Yellow color indicates
higher values, and blue indicates lower values. (c) The distribution
of current jz and magnetization Mz with the Fermi level μ = 0.2t .
The circles and curves represent numerical and analytical results,
respectively. (d) The edge current (blue curve) Jedge = ∫ L/2

0 dx jy(x)
and its derivative with respect to μ (yellow curve) as a function of
μ. (e) The charge pumping �Q as a function of ribbon width L for
a fixed μ. The circles and curve represent numerical and analytical
[Eq. (3)] results, respectively.

analytically solvable εn(ky) = h̄vF

√
k2

y + [π
L (n + 1

2 )]2 (n =
0, 1, 2, 3, . . .), with vF being the Fermi velocity and L being
the length of the ribbon. Due to the presence of factor 1/2,
there exists a finite energy gap inversely proportional to the
ribbon width L, � = 2h̄vF π/L. The numerical eigenvalues
for the eigenenergy show good agreement with this analytic
expression in the low-energy scale. The corresponding wave
function with conserved momentum ky can be written as

n(x, y) = eikyy|nky〉, which are all extended states. However,
we can calculate the average displacement relative to the cen-
ter of the ribbon for each of the states 〈nky|( x

L − 1
2 )|nky〉 =

− h̄vF ky

εn (ky )
2

π2(2n+1)2 , which is proportional to the propagation ve-
locity. This result means that the down-propagating states
located in the left half portion of the ribbon and the states
located in the opposite portion flow in opposite directions
[shown by the red and blue curves with filling color in
Fig. 1(c), respectively]. To indicate this chiral nature, we cal-
culate the local density of states at the boundary in Fig. 2(b).
There is a remarkable asymmetry in the spectral weight be-
tween the left- and right-moving modes. As a consequence,
there must be an equilibrium circulating current [48] in the
sample for finite chemical potential. The transverse current
density is given by jy(x) = e

∑εn(ky )<μ

ky
〈nky| 1

h̄
∂H
∂ky

|nky〉 for the
occupied states [42]

jy(x) = e

h

μ

2

∑
s=±

s
J1(2kF |x − Rs|)

|x − Rs| , (1)

where μ is the chemical potential, kF = μ/(h̄vF ) is the Fermi
wave vector, Jn(x) is the first kind of Bessel function, and
Rs=+ = 0 or Rs=− = L for the two edges s = ±. By using
the asymptotic form of J1(x) at a large argument x, we find
that the edge current js

y(x) ∝ x−3/2 cos(2kF x − 3π
4 ) is max-

imized at the boundary and decays to zero according to a
power law ∼x−3/2 when moving away from the boundary
with the oscillation length 1/(2kF ). This analytic result fits
well with the numerical calculation as shown in Fig. 2(c).
As μ increases, the oscillation length of js

y(x) decreases. In
a quantum anomalous Hall insulator or integer quantum Hall
insulator, the localized edge states give an exponential decay
behavior with the decaying length proportional to the inverse
of the energy gap. This power law behavior of the equilibrium
circulating current with the decay exponent −3/2 provides a
fingerprint to identify the parity anomalous semimetal. The
magnetization M induces a magnetization current density j =
∇ × M. Inversely, the equilibrium current js

y(x) corresponds
to a spatially varied magnetization

Ms
z (x) = −

∫ x

R+
dx′ js

y(x′) = − e

h

μ

2
F[2kF (x − R+)], (2)

with F (x) = J ′
1(x) + πx

2 [J1(x)H0(x) − J0(x)H1(x)], where
Hn(x) are the Struve functions. F (x) has the asymptotic
behaviors F (x) = x/2 for a tiny x → 0 and F (x) = 1
for x → +∞. The magnetic field Bz = μ0Mz through the
sample as a function of position should be measurable
by magnetic flux detectors such as a superconducting
quantum interference device (SQUID) [49]. After scanning
the magnetic field with a SQUID, the position-dependent
current is visualized. Our main result that parity anomalous
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semimetals host a power-law-decaying edge current thus
can be experimentally measured by a SQUID. We plot
the magnetization field Mz = ∑

s=± Ms
z versus position x

in an armchair ribbon by setting the origin at one edge
shown as the yellow curve in Fig. 2(c). As we move from
the edge, the magnetization Mz increases from 0 and then
saturates to the bulk value with oscillation. Due to finite-size
confinement along the x direction, the magnetization is not
half quantized (in units of eμ/h) when the ribbon is narrow.
However, the bulk value of Mz converges quickly into the
half-quantized value as kF L increases owing to the asymptotic
behavior of F (x). The total equilibrium out-of-plane
magnetization can be calculated thermodynamically,
Mz = −∂B�(μ, B), where B is the magnetic field and �

is the grand-canonical thermodynamic potential of electrons
at chemical potential μ. From the Maxwell relation, we
have ∂μMz = −∂μ(∂B�) = ∂B(−∂μ�) = ∂Bρ, with ρ being
the carrier density. In the thermodynamic limit kF L → ∞,
the Hall response σH = e∂μMz = e2

2h is half quantized
according the Streda formula [39] σH = e∂Bρ|μ. The bulk
magnetization can be obtained from the edge current
Mbulk

z = Jedge = ∫ L/2
0 dx jy(x). As shown in Fig. 2(d), we

plot the edge current Jedge as a function of the chemical
potential in the armchair ribbon (blue curve). When the
chemical potential is around the band-crossing point, the edge
current displays a linear dependence of μ with a slope of
∼e/2h.

Charge pumping. We consider a cylinder with a circum-
ference W along the y direction and with length L along
the x direction, which is pierced by magnetic flux �. With
changing magnetic field, an electric field along the circum-
ferential direction can be induced according to Faraday’s law,
E (t ) = 1

W ∂t�. Due to the boundary confinement effect along
the x direction, the energy spectrum for such a geometry be-
comes a series of discrete one-dimensional subbands εn. In the
presence of the electric field, the acceleration of the electron is
given by h̄k̇ = eE . The magnetic flux is switched on adiabati-
cally, which means that the rate of change of the flux is much
smaller than the energy spacing between two bands h̄vF π/L,
such that no particles are excited into the next subbands. Then
the number of electrons with positive velocity increases, the
number of electrons with negative velocity decreases, and the
total number of electrons for each branch n is conserved. Over
the interval time �t , the change in the wave vector is e

h̄ E�t .
If the flux changes by one quantum flux �0 = h/e over time
�t , we have EW �t = �0. The spatial imbalance for each
state is �ρn(kx ) = 〈nky|[(x) − 1

2 ]|nky〉 = h̄vF ky

εn(ky )
sin[π (n+1/2)]

2π (n+1/2) ,
where (x) is the step function. Thus the charge transfer from
one side to the other can be expressed as the spatial imbalance
difference between the two states with opposite velocity at the
Fermi level �Q = e

2

∑
n[�ρn(k f +

n ) − �ρn(k f −
n )] [42], where

we have assumed that the chemical potential μ lies in the
gap of the gapped valley and intersects only with the gapless
one and k f ±

n are the two Fermi wave vectors for branch n.
The summation over n is performed over all the branches
intersecting the Fermi level and can be done analytically,

�Q = − e

2
F (kF L). (3)

F (x) = 1 for x → +∞. In Fig. 2(e), we plot the analytical
expression [Eq. (3)] and the numerical results for the cylinder
geometry as a comparison. Thus there is half charge pumping
from the one edge to the other in the thermodynamic limit.
The final expression for charge transfer (3) is a collective
consequence of all the bands intersecting the Fermi level. It
is in sharp contrast with a quantum anomalous Hall insulator,
where the charge transfer is attributed from the two chiral
edge states at the two sides [50–53]. Assuming that we have
a system with the Hall conductance σH , we obtain the charge
transferred as �Q = σH�0. From Eq. (3), the Hall conduc-
tance is given by σH = − e2

2hF (kF L), which is identical to the
expression derived from the magnetization (2) by setting x at
the center of the ribbon. It indicates that the half charge pump-
ing shares the same topological origin with the half-quantized
quantum Hall effect.

For the zigzag boundary condition there exist localized
states along the boundary, and this will slightly revise the
picture [41]. For the extended states, the zigzag boundary con-
dition will not admix two valleys. We can solve the enveloped
functions for each valley separately and find that the spatial
imbalance vanishes, �ρn(k f ±

n ) = 0, for all extended states. As
for the localized edge states which connect two valleys, the
boundary condition will strongly admix valley states. The lo-
calized states’ solutions depend on the wave number and only
exist in the lowest-energy branch n = 0. The positive Fermi
vector corresponds to a localized state with �ρn=0(k f +

n=0) = 1,
while the negative Fermi vector corresponds to an extended
state with �ρn=0(k f −

n=0) = 0. Consequently, we have �Q =
e
2�ρn=0(k f +

n=0) = e
2 [42].

3D semimagnetic topological insulator. Another potential
candidate for a parity anomalous semimetal is a 3D topolog-
ical insulator coated on top by an insulating ferromagnetic
material as shown in Fig. 3(a), now named a semimagnetic
topological insulator [32]. The topological insulator hosts
massless Dirac fermions around its surface. The states lo-
cated at the interface between the topological insulator and
the ferromagnet open an energy gap due to the proximity
effect. Thus the massless Dirac fermions and massive Dirac
fermions are separated in space but still have to coexist to
form a semimetal as a whole because massive Dirac fermions
alone are prohibited to exist independently. To illustrate the
topological properties of the system, we can imagine un-
folding the surfaces states into a flat 2D plane [54]: The
gapless central region |x| < L/2 is sandwiched between the
two gapped outer regions |x| > L/2. We plot the numeri-
cal results of the energy spectrum for the 3D semimagnetic
topological insulator (colored dots) as a comparison with the
analytical expression (black curves) in Fig. 3(b). We denote
the bulk band gap by m and the surface band gap induced
by the Zeeman field by B with |B| < |m|. Here, we only
consider the physics in the energy window in which the
chemical potential is located within the surface band gap |B|.
The numerical and analytical results are in good agreement
with each other in this low-energy region. Since the top and
bottom surface Dirac cones are located at the same point in
momentum space, their spectra and physical properties are
an analog to the critical Haldane model with the armchair
termination.
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FIG. 3. (a) A slab of a three-dimensional topological insulator
coated by an insulating ferromagnetic material (yellow region) on the
top. When the voltage bias U is applied by the leads attached on the x
terminals, net current I presents on the hinge. (b) Comparison of the
numerical results of the spectrum of a 3D semimagnetic topological
insulator for quasi-1D geometry (dots) and the analytic expression

εn(k) = h̄vF

√
k2 + [ π

L (n + 1
2 )]2 (curves). The color represents the

center of mass 〈x/L〉 for each state. (c) The local density of states
at the top hinge at the position labeled with a star in (a). (d) The
surface current distribution on the perimeter of the semimagnetic
topological insulator bar for a fixed chemical potential μ = 0.15m
and several different Zeeman fields B = −0.2m, −0.3m, and −0.4m
induced by the coated ferromagnetic material. The inset shows the
log( jy )-x plot in the gapped region. The red curves are the analytic
current distributions according to Eq. (1). We have chosen the bulk
band gap m as the energy unit and h̄vF = 0.7am, with a being the
lattice constant.

Due to the quasi-2D feature of the semimagnetic topologi-
cal insulator, it will display some unique features distinct from
the 2D system. One can also calculate the Hall conductance
explicitly as a sum of the real-space-projected layer-resolved
Hall conductance Cz(l ), σH = ∑

l Cz(l )e2/h [42,55–59]. It is
found that that nonzero Cz(l ) is mainly distributed near the
interface and the integrated Hall conductance σH = e2/2h
[31,60]. To facilitate the numerical calculation, the chemical
potential μ is set to deviate slightly from zero to avoid the
degeneracy at zero energy due to the gapless bottom surface.
Then we consider how the surface Hall conductance can be
related to measurable physical quantities. The Hall conduc-
tance is evaluated with the periodic boundary condition in
the xy plane. When we further impose the open boundary
condition in the x direction, the quantum confinement effect
forces the surface states into a series of subbands. We plot
the local density of states of the top left hinge [labeled by the
star in Fig. 3(a)] as shown in Fig. 3(c). The up-moving states
show heavier spectral weight than the down-moving modes.
Although all these modes are extended in the gapless region,
they exhibit a chiral nature and carry a circulating hinge

current from Eq. (1). As shown in Fig. 3(d), we plot the sur-
face current distribution on the perimeter of the semimagnetic
topological insulator bar for several Zeeman fields with fixed
chemical potential. In the gapless region, both the current
oscillation and asymptotic behavior ∼|x + L/2|−3/2 of the
envelope function can be well fitted by Eq. (1) (indicated by
the red curves). In the gapped region, the current decays expo-
nentially ∝ exp(− 2B

h̄vF
|x + L/2|) from the interface. Thus the

half-quantized Hall conductance can be associated with the
appearance of circulating currents (no hinge modes) around
the hinges. In the equilibrium case with a constant chemical
potential, the total current integrated over the width of the
sample is zero since the counterpropagating currents localized
on the opposite edge cancel each other. The description of an
equilibrium circulating current that changes its magnitude as
a function of the chemical potential provides a useful frame-
work for exploring the nonequilibrium phenomena. As shown
in Fig. 3(a), in the presence of the external voltage bias U be-
tween two side surfaces [61], each branch of the confinement
states generally has a different position-dependent chemical
potential and nonequilibrium carrier distribution. There is a
net drop eU in the chemical potential between two side sur-
face states. From Eq. (1), the edge current is proportional to
the chemical potential, the counterpropagating edge currents
cannot compensate, and the total current becomes finite due to
the voltage bias. The spatial distribution of the edge current on
the side surface is consistent with the layer-resolved Hall con-
ductance and thus can be viewed as its measurable physical
quantity.

Discussion. At last, we give a brief discussion of the quan-
tum anomalous Hall state and the “axion” state, which are
realized in a topological insulator thin-film slab with a mag-
netic layer that is parallel and antiparallel, respectively, to both
the top and bottom surfaces [62–66]. The former understand-
ing is based on the Chern number calculation with periodic
boundary condition and the total Hall conductance counts the
the top and bottom surface together, yielding a (1/2 + 1/2)
or (1/2 − 1/2) quantized value, respectively. However, this
picture completely ignores the crucial effect from the lateral
surface states when open boundary conditions are imposed.
The proposed surface-state-unfolding analysis can also be
applied to these two cases with both gapped top and bottom
surfaces. In this situation, the gapless side surface is sand-
wiched between the two gapped regions with the same or
opposite mass depending on the relative magnetic orientation
of the two surfaces. Therefore the side surface states for an
axion insulator share the same solutions as for a parity anoma-
lous semimetal. For the quantum anomalous Hall state, the
eigenvalues for side surface states are found to be εQAH

n (ky) =
h̄vF

√
k2

y + [π
L n]2 for n � 1 and εQAH

n (ky) = h̄vF ky for n = 0

[42]. The chiral state n = 0 is distributed uniformly in the
gapless side surface and thus can be viewed as the generalized
Jackiw-Rebbi solution for a mass domain wall [67]. Since the
chiral modes always coexist with unchiral modes for finite
chemical potential, it is found that the edge current shares the
same expression as for a parity anomalous semimetal [Eq. (1)]
except for the reverse of the current at one interface. This
result implies that the power-law-decaying edge current is a
local property at the interface between gapped and gapless
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regions in which the Hall conductances differ by one-half
quantum. As seen from analytic exact solutions, the integer
quantization for the quantum anomalous Hall state and the
zero Hall plateau for the axion state can be understood in a
unified and comprehensive way from the aspect of the parity
anomalous semimetal.
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