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We consider a bulk system supporting parity and time reversal (PT ) symmetry, and investigate how the PT
phase transition of edge states is influenced by different truncations of the system. As an example, we study
a two-dimensional PT -symmetric Su–Schrieffer–Heeger lattice with non-Hermitian onsite potentials. We find
that when the truncation preserves certain symmetries of the bulk lattice, the edge states can remain in the
PT -unbroken phase when the non-Hermitian onsite potentials are less than a nonzero critical value. On the other
hand, when the truncation removes such symmetries, edge states with complex eigen-energies are observed for
infinitesimal non-Hermitian onsite potentials. We develop an analytic theory to account for such behaviors. Our
results are important in the manipulation of the gain and loss behaviors of edge states in non-Hermitian systems,
with potential applications in the study of topological lasers, quantum sensors, and unidirectional invisibility.
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A finite-sized physical system may support edge states
localized at the boundaries of its bulk. These states play an
important role in determining the physical properties of finite-
sized physical systems [1–3]. In the field of photonics, edge
states can be found in a wide variety of systems, including
photonic crystals, metamaterials, and plasmonic structures
[4–7]. These states find applications for the guiding of light
in information and sensing applications [8,9].

Recently, physical systems with parity and time reversal
(PT ) symmetries have generated significant interest [10–14].
In particular, bulk periodic systems with PT symmetries have
been extensively studied [15–23], and it was noted that these
systems can feature a PT phase transition between a PT -
unbroken phase with a real eigen-spectrum, and a PT -broken
phase with a complex eigen-spectrum [15,16,18–20,23,24].
Since these systems, when truncated, may support edge states,
it should be of interest to explore the possible PT phase tran-
sitions for the edge states, and to contrast the phase-transition
behaviors between the bulk and the edge states. Thus, there
have been many results on edge (and interface) states in one-
dimensional PT -symmetric systems [25–43]. Edge states in
two-dimensional (2D) PT -symmetric systems have also been
explored, and both PT -broken and PT -unbroken phases have
been observed in different systems [44–49]. In two dimen-
sions, different truncations of the same periodic system can
lead to different boundary geometries. However, there has not
been an investigation of how the PT phase transition behav-
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iors of edge states in 2D systems are influenced by different
truncations.

In this Letter, we show that different PT phase-transition
behaviors of edge states can be achieved by varying the trun-
cation of a 2D periodic system. As an illustration, we study
a 2D PT -symmetric Su–Schrieffer–Heeger (SSH) lattice with
non-Hermitian onsite potentials, and we truncate the lattice
in different orientations. These truncations usually lead to lo-
calized edge states. We find that when the truncation features
certain symmetries, the associated edge states can be in the
PT -unbroken phase when the strength of the non-Hermitian
onsite potential is small. On the other hand, for a trunca-
tion without such symmetries, the edge states always have
complex eigen-energies for any infinitesimal strength of the
non-Hermitian onsite potential. Our result provides an under-
standing of the interplay between boundary geometries and
eigenstate properties in non-Hermitian systems, and may be
useful in the design and engineering of edge states in various
photonic applications such as the design of topological lasers
[50–52].

We start our theoretical analysis by considering a
non-Hermitian 2D SSH lattice, as shown in Fig. 1(a).
The lattice is periodic along both x and y directions,
and a primitive cell contains four inequivalent lattice
sites, which are indicated with coordinates (xa, ya),
[(x + 1/2)a, ya], [xa, (y + 1/2)a], and [(x + 1/2)a,

(y + 1/2)a], respectively (x, y ∈ Z, and a is the lattice
constant). The intracell and intercell coupling strengths
are denoted by g1 and g2, respectively. Both g1 and g2 are
assumed to be real. Gain and loss with the same magnitude

2469-9950/2022/105(20)/L201105(7) L201105-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9481-0247
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L201105&domain=pdf&date_stamp=2022-05-06
https://doi.org/10.1103/PhysRevB.105.L201105


CHENG, PENG, XIAO, CHEN, YUAN, AND FAN PHYSICAL REVIEW B 105, L201105 (2022)

FIG. 1. Two-dimensional SSH lattices and different truncation
configurations. (a) A primitive cell of the 2D SSH lattice, as shaded
in gray. Intracell (intercell) couplings are shown in red (blue),
and gains (losses) are shown by plus (minus) signs. (b)–(d) 2D
SSH lattices with the (b) (10), (c) (11), and (d) (21) truncation
configurations.

U � 0 in their strength are introduced on (xa, ya) sites
and on [(x + 1/2)a, (y + 1/2)a] sites, respectively. The
Hamiltonian of such system is H = H0 + V , where

H0 =
∑
x,y

[g1(b†
x+1/2,y + b†

x,y+1/2)(bx,y + bx+1/2,y+1/2)

+ g2(b†
x+1/2,y+1 + b†

x+1,y+1/2)(bx+1,y+1+bx+1/2,y+1/2)

+ h.c.],

V = iU
∑
x,y

(b†
x,ybx,y − b†

x+1/2,y+1/2bx+1/2,y+1/2), (1)

where b (b†) is the bosonic annihilation (creation) oper-
ator at the corresponding lattice site. Here H0 (V ) gives
the Hermitian (anti-Hermitian) part of the Hamiltonian—
i.e., H0 = H0

† and V = − V †. The full Hamiltonian is PT
symmetric—i.e., (PT )−1H (PT ) = H—where the parity op-
erator P is defined as the inversion operation around the point
[(x + 1/4)a, (y + 1/4)a], and T is the standard time-reversal
operation. The corresponding band structure of this Hamilto-
nian is

E (kx, ky) = ±
√

|g1 + g2 exp (ikxa)|2 − U 2

4

±
√

|g1 + g2 exp (ikya)|2 − U 2

4
, (2)

where kx (ky) is the wave vector along the x (y) axis. The
band structure for U = 0, g1 = g, and g2 = 5g is plotted in
Fig. 2(a). Four bands are observed because each primitive
cell contains four sites. The two middle bands are degenerate
at zero energy when kx = ±ky, and they are gapped from
the other two bands. As seen in Eq. (2), there is a phase
transition occurring at a critical value of U bulk

C = 2|g1 − g2|.
When U � 2|g1 − g2|, the energy spectrum is real throughout
the entire reciprocal space. When U > 2|g1 − g2|, the energy
spectrum becomes complex for at least some of the wave

FIG. 2. Band structures of periodic and truncated 2D SSH lat-
tices when g1 = g, g2 = 5g. (a) Band structure of periodic (bulk)
2D SSH lattice. (b)–(d) Projected band structures of a 2D SSH
lattice with a (11) truncation when (b) U = 0, (c) U = 3g, and
(d) U = 5.7g. (e) and (f) Projected band structures of a 2D SSH
lattice with a (10) truncation when (e) U = 0 and (f) U = 10−3g.
(g) and (h) Projected band structures of a 2D SSH lattice with a (21)
truncation when (g) U = 0 and (h) U = 10−3g. In (b)–(h), N = 21
layers of primitive cells along the y direction are used for numerical
calculations, instead of the semi-infinite lattices in Fig. 1(b)–1(d).
Eigen-energies with nonzero imaginary parts are in red.

vectors, and the system undergoes a phase transition entering
the PT -broken phase.

A one-dimensional SSH lattice is well known as one of
the simplest topological models [53]. With certain choices of
parameters, the periodic lattice exhibits a nonzero Zak phase
[54], which guarantees localized edge states when the lattice
is truncated. For the 2D case considered here, there is also
a nonzero Zak phase along any direction inside the Brillouin
zone when g2 > g1. Here, the vectorized Zak phase for the 2D
Hermitian SSH model is defined as [55,56]

θ = − 1

2π

∫
BZ

d2k
∑

n

i〈un(k)|∇k|un(k)〉, (3)

where |un(k)〉 is the periodic part of the Bloch wavefunction
of the nth band in the reciprocal space [55]. The summation
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is taken over all bands. The jth component of the vectorized
Zak phase is

θ j = 2
∫ π/a

−π/a
dk j

∂

∂k j
arg(g1 + g2eik j a), j = x, y. (4)

The quantity f (k j ) = g1 + g2eik j a lies in a complex plane.
For g2 < g1, the origin of the complex plane is outside the
circle defined by f (k j ) as k j varies across the Brillouin Zone
from −π/a to π/a, and θ j is zero, while for g2 > g1, the
origin is inside the circle, giving rise to a nonzero θ j . Thus,
there are also localized edge states with a topological ori-
gin. In particular, for the lattice that we consider, when the
Zak phase is nonzero, all the edge states inside the gap in
our model have a topological origin. Moreover, there is an
additional richness in the edge state behaviors since we can
choose different orientations for the truncation of the lattice.
In Fig. 1(b)–1(d), we provide an illustration of three truncation
configurations as examples. The truncations are set to be (10)
surface [Fig. 1(b), parallel to the x̂ direction], (11) surface
[Fig. 1(c), parallel to the x̂ + ŷ direction], and (21) surface
[Fig. 1(d), parallel to the 2x̂ + ŷ direction]. In all of the three
truncations, the four-site primitive cell structure is preserved
on the boundaries of lattices.

Throughout the Letter, we present a theoretical analysis
for semi-infinite structures with a single truncation. In the
numerical analysis, however, we present results on large finite
stripes, which are shown in Fig. 2. The Hamiltonian that
we analyze in this Letter does not have a nontrivial point
gap topology, and hence does not exhibit non-Hermitian skin
effects [57–60]. Therefore, the results from a large finite
stripe are rather similar to those from the corresponding semi-
infinite system. In the finite stripe, we have pairs of edge states
residing on either end of the stripe, and the spectrum of each
member of the pair is essentially identical to that of the edge
state in the semi-infinite system.

The truncated SSH lattices in Fig. 1(b)–1(d) has trans-
lational symmetry only in one direction, and the associated
projected band structures are shown in Fig. 2(b)–2(h) in the
topologically nontrivial phase (g1 = g, g2 = 5g). Projected
band structures of Hermitian systems (U = 0) are plotted in
Fig. 2(b), 2(e), and 2(g) with different truncation configura-
tions. There, kp is the wave vector parallel to the truncation. In
these projected band structures, the bulk states can be obtained
by projecting the 2D band structure as shown in Fig. 2(a) onto
appropriate lines in the reciprocal space and by performing
band folding if necessary. In such projections, kp = kx for the
(10) truncation, kp = (kx + ky)/

√
2 for the (11) truncation,

and kp = (2kx + ky)/
√

5 for the (21) truncation. These bulk
states are separated by band gaps. Moreover, isolated edge
states are observed inside the band gaps. Both the (10) and
(11) truncations have two edge states, while the (21) trunca-
tion features four; thus, the number of edge states is dependent
on the lattice truncation [61].

Next, we move on to the non-Hermitian case (U > 0).
Earlier we showed that the bulk band structure undergoes
a PT phase transition at U bulk

C = 2|g1 − g2|. Here we show
that the edge states also undergo a phase transition, but the
transition behaviors are distinctly different from the bulk and
are dependent critically on the orientations of the truncations.

Figure 2(f) and 2(h) gives the projected band structures of
non-Hermitian lattices for the (10) and (21) truncations, re-
spectively, with U = 10−3g. One sees that the energies of
edge states exhibit nonzero imaginary parts across the entire
k-space. The eigen-energies of the bulk states, on the other
hand, remain real valued. In other words, for the edge states
associated with the (10) and (21) truncations, the phase tran-
sition occurs at an infinitesimal strength of non-Hermiticity,
and the critical values are U (10)

C = U (21)
C = 0. This result of

the (10) truncation is consistent with previous literature [48].
The projected band structures of the (11) truncation are

shown in Fig. 2(c) and 2(d) with different values of the
non-Hermiticity strength U . In contrast to the (10) and (21)
truncations, here the eigen-energies of all edge states are still
real when U = 3g. As the non-Hermiticity strength is further
increased and reaches U (11)

C ≈ 5.65g, the edge states merge
with the highest energy bulk states in the middle bands near
|kp| = ±π/

√
2a, and a phase transition occurs. In Fig. 2(d),

the projected band structure when U = 5.7g is plotted, the
eigen-energies of the edge states become complex in the wave
vector range of |kp| < 0.81π/

√
2a, and exceptional points

are found at |kp| ≈ 0.81π/
√

2a. This phase transition with a
nonzero critical value is unique to the (11) truncation; for this
system, any other (mn) boundary truncation (m �= n, m, n ∈
Z) has UC = 0.

In order to understand the different behaviors of the edge
states for different truncations, next we provide theoreti-
cal arguments from the perspective of symmetry analysis.
The semi-infinite non-Hermitian systems with (10) and (21)
truncations are not PT symmetric for any spatial symmetry
operation P. Thus, generically, the energy eigenvalues become
complex with infinitesimal non-Hermiticity strength. On the
other hand, for the system with the (11) truncation, although
the PT symmetry associated with the inversion operation in
the 2D bulk SSH lattice disappears, the system has a reflec-
tion and time reversal (RT ) symmetry, where R is the mirror
symmetry associated with the reflection operation against the
x̂ − ŷ direction.

The behavior of the edge states for the (11) truncation is
directly related to the symmetry property of the lattice. In the
lattice with the (11) truncation, when U = 0, we use |φ0〉 and
|φ1〉 to denote the edge and corresponding bulk states, respec-
tively, involved in the phase transition at a specific kp point.
Here, both |φ0〉 and |φ1〉 are eigenstates of the Hermitian part
of the Hamiltonian, as denoted by H (11)

0 , and the chosen bulk
state |φ1〉 is the state exactly at the edge of the gap. In Fig. 3,
we plot the distributions of |φi〉 at kp = ±π/

√
2a, where the

edge state |φ0〉 has odd RT symmetry and the bulk state |φ1〉
has even RT symmetry. Next, to simplify the notation, we
suppress the superscripts (11) with the understanding that the
Hamiltonian refers to that of a truncated lattice rather than the
bulk Hamiltonian in Eq. (1).

As a simple model, we describe the phase transition pro-
cess in the Hilbert space spanned by |φ0〉 and |φ1〉, with
the matrix elements of the Hamiltonian in this Hilbert space
calculated as

Hi j = 〈φi|H0 + V |φ j〉 = Ejδi j + 〈φi|V |φ j〉, i, j = 0, 1.

(5)
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FIG. 3. Eigenstate distributions with the (11) truncation with RT
symmetry. (a) The edge state at point A in Fig. 2(b). The state is
antisymmetric against the gray dashed line. (b) The bulk state at
point B in Fig. 2(b). The state is symmetric against the gray dashed
line. The eigenstate magnitudes on lattice sites are normalized with
respect to the maximum value in the whole lattice.

In Eq. (5), Ei is the eigen-energy for the state |φi〉. The last
term, Vi j = 〈φi|V |φ j〉, arises from the gain or loss added to
the lattice sites. By noticing that V † = −V , one can obtain

〈φi|V |φ j〉∗ = 〈φ j

∣∣V †
∣∣φi〉 = −〈φ j |V |φi〉. (6)

Therefore, we have V ∗
ii = −Vii, so Vii is purely imaginary.

Also, the off-diagonal elements of the coupling matrix can be
written as

V01 = (γ + iκ )U, V10 = (−γ + iκ )U, γ , κ ∈ R, (7)

where γ and κ are independent of the strength of the non-
Hermiticity U . Since the lattice with the (11) truncation has
RT symmetry, we have

(RT )−1H0(RT ) = H0, (8)

(RT )−1V (RT ) = V. (9)

Because of Eq. (8), the nondegenerate eigenstates of H0

satisfy

RT |φi〉 = ri|φi〉, ri = ±1, i = 0, 1. (10)

By combining Eqs. (9) and (10), we have

r j〈φi|V |φ j〉 = 〈φi|V RT |φ j〉 = 〈φi|RTV |φ j〉
= 〈RT φi|V |φ j〉∗ = ri〈φi|V |φ j〉∗, (11)

which indicates that Vii is real. Vii is both real and purely
imaginary, so one concludes

Vii = 0. (12)

Also, since for our system r0 = −r1, we have V10 = −V ∗
10.

Therefore, combining with Eq. (7), we have

V01 = V10 = iκU . (13)

Therefore, from Eqs. (5), (12), and (13), we obtain a matrix
form of the Hamiltonian

H =
[

E0 iκU

iκU E1

]
, (14)

and its eigenvalues are

E± = E0 + E1

2
±

√
(E0 − E1)2 − 4κ2U 2

2
. (15)

From Eq. (15), one finds that, when 0 < U � UC =
minkp |E0 − E1|/(2κ ), both the edge state and the bulk state
remain real-valued energies. Moreover, when the dimerization
ratio g2/g1 becomes larger, |E0 − E1| increases, and therefore
the critical value of the PT phase transition UC increases.

Our results point to a connection between a nonzero critical
value of phase transition in Eq. (15), and the existence of RT
symmetry for both H0 and V [Eqs. (8) and (9)]. In our system,
lattices with truncations other than (11) do not exhibit RT
symmetry, and hence the phase transition occurs at infinites-
mal strength of the non-Hermiticity. Such an approach based
on symmetry analysis could be applied to other non-Hermitian
2D systems as well. For example, we can numerically verify
the PT phase transition of the strained graphene lattice with
onsite gains and losses as studied in [47]. With the bearded
or zigzag truncations, the honeycomb lattice does not feature
any RT symmetry, and the lattice is in the PT -broken phase
for infinitesimal strength of the non-Hermiticity when edge
states are present. The lattice with the armchair truncation has
an additional RT symmetry and hence a nonzero critical value
UC for the phase transition. For the armchair truncation for this
system, there is no edge state; thus, the phase transition occurs
through the coalescence of two bulk states. The edge states
considered here have topological origins, but their PT phase-
transition behaviors are not directly and causally related to
the topological properties, since the topological properties are
determined by the bulk Hamiltonian, whereas the properties of
the PT phase transition are affected by the symmetries of the
truncations. The importance of symmetry consideration in PT
phase transition has been noted in a number of studies on some
one-dimensional [30] and two-dimensional [46] lattices, or
more generally on wave equations [62] and topological many-
body systems [63] with degeneracy. Our work differs in that
we use the symmetry analysis to study the dependence of the
phase transition of the edge states on the lattice truncations.

In summary, we investigate the truncation dependence of
the PT phase transition of edge states in a 2D physical
system where the bulk periodic system has PT symmetry.
Our results show that, with specific truncation configurations
[such as the (11) truncation], the truncated system preserves
certain symmetry properties of the bulk periodic system, and
consequently the critical value of the PT phase transition is
nonzero for the edge states. The edge states remain in the
PT -unbroken phase when the non-Hermiticity is within the
critical value. For other configurations where the truncation
breaks the symmetry of the bulk, the eigen-energies exhibit
nonzero imaginary parts, and edge states experience gain and
loss for infinitesimal non-Hermiticity. Our theoretical study
is applicable to a variety of experimental platforms that have
been used to construct two-dimensional periodic lattices, such
as photonic waveguide arrays, resonator arrays and cavity
arrays [64–68], cold bosonic atoms in optical lattices [69,70],
superconducting circuits [71–73], and artificial lattices with
synthetic dimensions [74–78]. The results and arguments pre-
sented in this Letter are expected to provide insights into
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research that requires the engineering of the critical values
of the PT phase transition of edge states in multidimensional
physical systems—for example, in the studies of sensing,
topological lasing, and unidirectional invisibility near a PT
phase-transition point [13,14,79,80].
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