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We theoretically investigated the fundamental distinction between the intrinsic and extrinsic nonlinear thermal
Hall effects in the presence of disorder at the second-order response to the temperature gradient in terms of the
semiclassical Boltzmann equation. We found that, at low temperatures, the intrinsic contribution of the nonlinear
thermal Hall conductivity is proportional to the square of temperature, whereas the extrinsic contributions (side
jump and skew scattering) are independent of temperature. This distinct dependency on temperature provides an
approach to readily distinguish between the intrinsic and extrinsic contributions. Specifically, we analyzed the
nonlinear thermal Hall effect for a tilted two-dimensional massive Dirac material. In particular, we showed that
when the Fermi energy is located at the Dirac point, the signal is solely from the intrinsic mechanism; when
the Fermi energy is higher, the extrinsic contributions are dominant, which are two to three orders of magnitude
larger than the intrinsic contribution.
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Introduction. Traditionally, Hall (Nernst) effects are stud-
ied in linear-response regimes, namely, the generated trans-
verse voltage is linearly proportional to the driving forces
(electric field or temperature gradient). Broken time-reversal
symmetry due to the presence of magnetization or an external
magnetic field is required to guarantee such a Hall voltage.
Recently, a nonlinear anomalous Hall effect [1–10] (NAHE)
as a second-harmonic response to an ac electric field has
been proposed and attracted broad interests in the study of
nonlinear anomalous transport phenomena in time-reversal
invariant but inversion symmetry broken materials. The most
interesting fact is that this NAHE is owing to the emergent
Berry curvature dipole in the momentum space rather than
the Berry curvature itself. It reveals the complicated interplay
between the nontrivial topological structure of the energy
bands and the transverse Hall-like transport [1–6]. NAHE was
predicted in several noncentrosymmetric materials, such as
bilayer WTe2 [2], strained graphene [3], and the topological
crystalline insulator SnTe [11], etc., and has been successfully
observed in bilayer [12] and few-layer [13] WTe2. In addition,
it was found that NAHE has broad applications due to its
characteristics [14–19], for example, it can be used to make
strain sensors [14] and rectifiers [15].

Although the origin of the anomalous Hall effect was
thought to be from an intrinsic [20] (disorder-free) or extrinsic
(disorder-induced) contribution that includes side jumps [21]
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and skew scattering [22], it is still a challenge to identify these
contributions experimentally. So far, there are two main ap-
proaches, namely the traditional [20–30] and the new scaling
law [31–33], to distinguish between different mechanisms. In
the conventional scaling law, the skew-scattering contribution
to the anomalous Hall effect can be easily distinguished from
the intrinsic and side-jump contributions through the scaling
relations between the induced Hall resistance and the longi-
tudinal resistivity ρxx, namely ρint ∝ ρ2

xx [20], ρsj ∝ ρ2
xx [21],

ρsk ∝ ρxx [22]. However, the contribution from the intrinsic
mechanism or side jump cannot be further identified. Unlike
the traditional scaling law in which the scaling ρAH = f (ρxx )
depends only on the single-scattering-induced ρxx, the new
scaling ρAH = f (ρi, ρxx ) (where ρxx = ∑

i ρi) considers the
involved multiple competing scatterings and also depends
on the partial longitudinal resistivity ρi stemming from the
involved scattering sources [31–33], such as phonons or im-
purities. In experiments, the partial resistivity generated by
different scattering sources needs first be determined, and then
one needs to determine the contribution of each mechanism
through fitting scaling parameters. Recently, Lu et al. applied
the basic idea of the new scaling law to the nonlinear-response
regime [8] to distinguish between the intrinsic and extrinsic
contributions to the nonlinear anomalous Hall effect.

The thermal Hall effect refers to a generation of transverse
heat current as a response to a longitudinal temperature gra-
dient, which can be carried not only by electrons [34–36],
but also by magnons [37,38], phonons [39–41], and photons
[42]. Recently, the thermal Hall effect has been extended to
the nonlinear regime and an intrinsic nonlinear thermal Hall
effect originated from the Berry curvature was reported in
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FIG. 1. (a) Schematic illustration of the nonlinear thermal Hall
effect (NTHE) as a second-order response to the temperature gradi-
ent where the nonlinear thermal Hall current (NTHC) is jnl ∝ (∇T )2.
The generation of NTHE stems from (b) an intrinsic contribution,
(c) side jumps, and (d) skew scattering. The black ball in (c) and
(d) represents disorder.

clean systems with time-reversal symmetry [43], in which a
transverse heat current is generated vertically to the temper-
ature gradient and scales quadratically with the temperature
gradient. Usually, defects and impurities are inevitable in
authentic materials. In this Letter, we investigate an electron-
carried nonlinear thermal Hall effect (NTHE) in the presence
of disorder by taking into account both intrinsic and extrinsic
contributions in time-reversal invariant and noncentrosym-
metric materials (Fig. 1). We focus that the temperature
dependence of the induced nonlinear thermal Hall conduc-
tivity (NTHC) κyxx is κ in

yxx ∝ T 2, κ
sj
yxx ∝ T 0, κsk

yxx ∝ T 0 at low
temperatures, which also provides another approach to dis-
tinguish between the intrinsic contribution (∝T 2) from the
extrinsic contribution (∝T 0) that can be easily tested exper-
imentally.

General theory. Within the framework of semiclassical
theory, the total thermal Hall currents in the absence of elec-
tric field as a response to the temperature gradient in the
presence of a nontrivial Berry curvature �(k) and disorder
[see details in the Supplemental Material (SM) [44]] is found
to be

jT
Q =

∑
n

∫
[dk][En(k) − μ] fl

(
v + vs j

l

)

+ ∇T

T
× 1

h̄

∑
n

∫
[dk][En(k) − μ]�n(k)

× {[En(k) − μ] fl + kBT log(1 + e−β[En (k)−μ] )}, (1)

where l = (n, k) is a combined index with the energy band n
and momentum k, En(k) denotes the energy dispersion, v rep-
resents the group velocity, μ indicates the chemical potential
(Fermi energy), vs j

l = ∑
l ′ �ll ′δrl ′l is the side-jump velocity

originating from a disorder-induced coordinate shift δrl ′l [45],
and the nonequilibrium distribution function fl can be ex-
pressed as fl = f in

l + δ f sk
l in the presence of a temperature

gradient and disorder, where δ f sk
l is the skew-scattering-

induced modification. The total heat current jT
Q in Eq. (1) thus

can be decomposed into four parts as jT
Q = jN

Q + jin
Q + jsj

Q + jsk
Q

corresponding to the conventional, intrinsic, side-jump, and
skew-scattering contributions to the heat current, respectively

[44]. It has been shown that the standard conventional heat
current jN

Q comes from the conventional velocity in time-
reversal invariant materials [44].

The linear thermal Hall current as a first-order response
to the temperature gradient will disappear in time-reversal
invariant materials. That is because the linear thermal conduc-
tivity is a symmetric tensor by Onsager’s reciprocity relations
in the presence of time-reversal symmetry [46]. The linear
heat current is aligned to the direction of the temperature
gradient, leading to the vanishing of linear thermal Hall cur-
rent. Therefore, only the nonlinear heat current possibly flows
vertically to the temperature gradient in the presence of time-
reversal symmetry. Through solving the Boltzmann equation,
the nonequilibrium distribution function fl to the second-
order correction to the temperature gradient can be determined
[44]. Accompanying the formulas of jin

Q , jsj
Q, and jsk

Q in the
SM [44], the nonlinear thermal Hall current jnl (where the
superscript “nl” refers to nonlinear) in the a direction, as the
response to the second order in the temperature gradient, is
found to be [44]

jnl
a ≡ −κabd∂bT ∂d T, (2)

where κabd is a coefficient characterizing the nonlinear ther-
mal Hall effect and its formulas from three mechanisms are
given in the SM [44]. Analogous to the nonlinear anomalous
Hall effect [1] and the nonlinear anomalous Nernst effect [47]
induced by the Berry curvature dipole, it is found that only
the states near the Fermi surface make contributions to the
intrinsic NTHE, which is in contrast to the extrinsic contribu-
tion. Through the Sommerfeld expansion [44], the coefficients
kabb due to the intrinsic, side-jump, and skew-scattering
mechanisms at low temperature are found, respectively,
to be

κ in
abb = −7τπ4k4

B

15h̄2 T 2G′
0(μ) + O[(kBT )4], (3)

κ
sj
abb = −1

3
τ 2π2k2

BF0(μ) + O[(kBT )2], (4)

κsk
abb = τ 3π2k2

B

3h̄
g0(μ) + O[(kBT )2]. (5)

where G0(μ), F0(μ), and g0(μ) (given in the SM [44])
are Fermi-energy-dependent parameters and independent of
temperature. According to Eqs. (3)–(5), one finds that the
leading order of NTHC from these three contributions has the
following temperature T dependence: κ in

abb ∝ T 2, κ
sj
abb ∝ T 0,

κ in
abb ∝ T 0. Through this temperature dependence, the intrinsic

contribution (∝T 2) can be easily distinguished from the ex-
trinsic contribution (∝T 0), which provides another approach
to identify the intrinsic and extrinsic mechanisms in exper-
iments. This scheme is different from the previous scaling
law in which the dependence of anomalous Hall resistiv-
ity on the longitudinal resistivity is applied to distinguish
between the intrinsic and extrinsic contributions. We found
that the use of temperature dependence in NTHE to distin-
guish between intrinsic and extrinsic mechanisms is exclusive.
We investigate three mechanisms in the linear and nonlin-
ear order of the anomalous Hall effect, anomalous Nernst
effect, and anomalous thermal Hall effect, respectively, and
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showed that only in NTHE can we distinguish between intrin-
sic and extrinsic mechanisms using temperature dependence
[44].

Model. By exploiting the symmetry analysis, the nonvan-
ishing NTHC can exist in time-reversal invariant and inversion
symmetry broken materials. We note that the NTHC ten-
sor has the same symmetry dependence as the nonlinear
anomalous Hall conductivity (NAHC) tensor. Specifically,
this consistency is reflected in the intrinsic (or side-jump,
or skew-scattering) contribution of the NTHC tensor and the
NAHC tensor has the same matrix form under the same point
group [10]. The noncentrosymmetric monolayer transition-
metal dichalcogenides (TMDCs) is one of the candidates to
observe the nonlinear thermal Hall effect, and the low-energy
structure of TMDCs can be described by a simple tilted two-
dimensional (2D) massive Dirac model [8], namely

Ĥ0 = tkx + v(kxσx + kyσy) + mσz, (6)

where σx,y,z are the Pauli matrices, and t , v, and m are re-
lated model parameters. t is a band tilting parameter which
tilts the Dirac cone along the x direction, and 2m is the
gap. As the time reversal of the model contributes equally
to the nonlinear thermal Hall current, it is sufficient to study
this model only. This Hamiltonian considers only one Dirac
cone. Indeed, there is another inequivalent Dirac cone (the
time-reversal counterpart of this model) which, however, con-
tributes equally to the nonlinear thermal Hall current. Ĥ0 is
invariant under the mirror operation Mx about the x-y plane.
The energy eigenvalue is En(k) = tkx + nE0(k) with E0(k) =√

v2k2 + m2 where n = ±1 in En(k) represents the band in-
dex. The Berry curvature is �n

k = −n mv2

2(E0(k))3 . In fact, in the
x-y plane, the Berry curvature is a pseudovector, and only the
z component �n

z exists.
In order to investigate the extrinsic contribution to the

NTHE induced by disorder, we consider a δ-function random
potential V̂imp(r) = ∑

i Viδ(r − Ri ) with Ri indicating the ran-
dom position of impurities and Vi representing the disorder
strength, which satisfies 〈Vi〉dis = 0, 〈V 2

i 〉dis = V 2
0 �= 0, and

〈V 3
i 〉dis = V 3

1 �= 0 [48]. To analyze the behavior of NTHE of
the tilted 2D massive Dirac model, we consider the t 	 v

limit and treat the relaxation time τ momentum independent,

namely 1
τ

= niV 2
0

4h̄
μ2+3m2

v2μ
[8], where ni represents the impurity

concentration.
After a careful derivation (see details in the SM [44]), we

found κ
in/sk/sj
xyy = 0 and κ

in/sk/sj
yxx �= 0. This suggests that only

when applying the temperature gradient in the x direction
perpendicular to the mirror line Mx (the subscript x means
that the mirror plane is perpendicular to the x direction), there
is a nonzero nonlinear thermal Hall current due to both the
intrinsic and extrinsic mechanisms in the y direction (perpen-
dicular to the temperature gradient and parallel to the Mx).
In other words, once applying the temperature gradient in the
y direction, the nonlinear thermal Hall current will disappear
as required by the mirror symmetry Mx. The nonzero κyxx to
the first order of the band tilting strength t in the intrinsic,
side-jump, and skew-scattering mechanisms for the tilted 2D
massive Dirac model in the presence of disorder at low tem-

FIG. 2. Total nonlinear thermal Hall conductivity κ tot
xxy vs tem-

perature at different Fermi energies. Here, the unit for the y axes
is k2

B Å/h̄. Parameters are taken as t = 0.1 eV Å, ν = 1 eV Å,
m = 0.1 eV, niV 2

0 = 102 eV2 Å2, and niV 3
1 = 104 eV3 Å4.

perature are derived analytically,

κ in
yxx = 7π3tmk2

B

5h̄niV 2
0

v2(μ2 − 2m2)

μ4(μ2 + 3m2)
(kBT )2,

κsj
yxx = − πtmk2

B

6h̄niV 2
0

v2(μ2 − m2)(5μ2 − 9m2)

μ2(μ2 + 3m2)
, (7)

and

κsk
yxx = πv2tmk2

B

3h̄n2
i V 6

0 /V 3
1

(μ2 − m2)(μ2 − 2m2)

μ(μ2 + 3m2)3

+ πv2tmk2
B

2h̄niV 2
0

(μ2 − m2)(3μ2 − 5m2)

μ2(μ2 + 3m2)3
, (8)

respectively. According to Eqs. (7) and (8), at low tem-
perature, the nonlinear thermal Hall coefficient from the
intrinsic and extrinsic mechanisms can be identified through
the temperature dependence of κ tot

yxx since the intrinsic κ in
yxx

displays a quadratic dependence on temperature whereas both
κ

sj
yxx and κsk

yxx are independent of temperature. The total κ tot
yxx

can be written as κ tot
yxx = αT 2 + λ where the coefficients α

and λ represent the contribution from intrinsic and extrin-
sic mechanisms, respectively, and can be measured in future
experiments.

Figure 2 displays the total NTHC κ tot
yxx as a function of

T 2 at different Fermi energies for the titled 2D massive
Dirac model. The intercept (λ) and the slope multiplied by
the square of temperature (αT 2) give the magnitudes of the
extrinsic-mechanism-induced κex

yxx = κ
sj
yxx + κsk

yxx and intrinsic-
mechanism-induced κ in

yxx, respectively. The enhanced intercept
and decreased slope at a higher Fermi energy indicate that the
extrinsic contribution is gradually dominant. The signal of κyxx

from the extrinsic contribution is almost 245 times larger than
that from the intrinsic contribution when the Fermi energy is
taken at 0.4 eV and the temperature is fixed at 50 K. However,
when the Fermi energy is near the bottom of the conduction
band (e.g., μ = 0.105 eV), the slope becomes sharper and the
intrinsic contribution is strengthened. It is observed that the
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FIG. 3. (a) Intrinsic, (b) side-jump, and (c) skew-scattering contributions to the nonlinear thermal Hall conductivity κyxx in a tilted 2D
massive Dirac model vs Fermi energy at different temperatures, respectively. Here, the unit for the y axes is k2

B Å/h̄, and the other parameters
are the same as in Fig. 2.

magnitude of αT 2 at 50 K is equal to 1.49λ for μ = 0.105 eV,
implying that both contributions from intrinsic and extrinsic
mechanisms to NTHE become comparable.

In addition to the temperature dependence, the Fermi en-
ergy dependence of the NTHC can be used to identify these
three scattering mechanisms (see Fig. 3). For μ = 0.1 eV,
the Fermi level is just entering into the bottom of the con-
duction band, κ

sj
yxx and κsk

yxx tend to zero, and only κ in
yxx is

finite [Figs. 3(a)–3(c)], revealing that all the heat current
flowing vertically to the temperature gradient at the Dirac
point would stem solely from the intrinsic contribution. This
band-edge case may be a supplemental identification to the
T -dependence identification. Since the Fermi level can be
tuned in the TMDCs by a gate voltage, it is instructive to
study the Fermi energy dependence further. κ in

yxx drops dra-
matically with increasing μ > 0.1 eV and changes its sign
from negative to positive (about μ = 0.14 eV). It grows into
a peak and finally decays to zero at large μ. κ

sj
yxx is almost

negative when the Fermi level enters into the conduction band,
and it develops a dip around μ = 0.28 eV and finally tends
to zero. The variation of κsk

yxx on the Fermi energy is similar

to that of κ
sj
yxx but with an opposite sign. The peak of κsk

yxx
is around μ = 0.34 eV. Combining all three components of
κyxx, the total κ tot

yxx starts at a negative value (μ = 0.1 eV,
intrinsic component), drops dramatically with increasing μ

and changes into a positive one, develops into a positive peak,
and finally decays to zero at large μ. It is seen that the positive
κ tot

yxx is basically coming from side-jump and skew-scattering
contributions but the skew scattering dominates.

We should emphasize here that our calculation has a limita-
tion on the temperature range. The present model corresponds
to some two-dimensional materials in which the Fermi level
is actually aligned into a band. Thus, these materials in fact
behave as metals rather than insulators. Therefore, heat trans-

fer is expected to be mediated basically by the conduction
electrons or holes rather than phonons [49]. The temperature
limit of our calculation is mainly limited by the method used,
i.e., the Sommerfeld expansion, leading us to Eqs. (3)–(5). It
shows that for temperatures lower than 90 K, the second-order
expansion gives a correction of less than 5%.

Conclusions. In summary, we studied the nonlinear ther-
mal Hall effect in the presence of disorder as a second-order
response of the temperature gradient. Remarkably, it is
revealed that, at low temperature, the intrinsic-mechanism-
induced nonlinear thermal Hall conductivity is proportional
to the square of temperature, while the extrinsic-mechanism-
induced nonlinear thermal Hall conductivity is independent
of temperature, which presents another approach to clarify
the intrinsic and extrinsic contributions. We also analyzed
the nonlinear thermal Hall effect for a tilted 2D Dirac
material with mirror symmetry Mx. It is found that the mir-
ror symmetry Mx has a strong limitation on the nonlinear
thermal Hall conductivity: Only when the temperature gra-
dient is applied perpendicular to the mirror line, a finite
nonlinear thermal Hall current can be generated. More-
over, it is shown that as the Fermi energy enters into the
bottom of the conduction band, the signal is solely from
the intrinsic mechanism. At high Fermi levels, the signal
from the extrinsic mechanism (mainly skew scattering) will
dominate.
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