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Anouar Moustaj , Lumen Eek, and Cristiane Morais Smith
Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands

(Received 2 August 2021; revised 25 April 2022; accepted 26 April 2022; published 5 May 2022)

Non-Hermitian systems have provided a rich platform to study unconventional topological phases. These
phases are usually robust against external perturbations that respect certain symmetries of the system. In this
Letter, we provide a different method to analytically study the effect of disorder, using tools from quantum
field theory applied to discrete models around the phase-transition points. We investigate two different one-
dimensional models, the paradigmatic non-Hermitian Su-Schrieffer-Heeger model and an s-wave superconductor
with imbalanced pairing. These analytic results are compared to numerical simulations in the discrete models. It
is found that the systems are driven from a topological to a trivial phase in the same way.
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Introduction. Systems described by non-Hermitian Hamil-
tonians have attracted great interest in the last few years.
Usually, any observable has to be represented by a Hermitian
operator, such that its eigenvalues are real. However, when one
considers more complicated systems, an effective description
using non-Hermitian Hamiltonians might be useful. A typi-
cal example arises when studying transport phenomena [1,2].
In this case, the effective description of an open system re-
sults in a non-Hermitian Hamiltonian, giving rise to states
with finite lifetimes and complex energies. More generally,
while an isolated system provides an ideal platform to un-
derstand its main characteristics, a more realistic description
should include coupling to its environment. Many realizations
of non-Hermitian models find places in mechanical, atomic,
and optical systems, in which gain and loss can be con-
trolled [3–6]. This provides a solid experimental ground to
theoretical studies, on which the predictions can be tested.

The recent spark of interest for non-Hermitian Hamil-
tonians arose when it was realized that a class of models
allowed for an extension of the topological classification
based on protecting symmetries, which exists in the Hermi-
tian case [7–13]. There exist several differences between the
Hermitian and non-Hermitian classifications. For example,
the bulk-boundary correspondence usually breaks down for
non-Hermitian topological phases, and has to be replaced by
a more appropriate measure of boundary phenomena, such
as biorthogonal polarization [14], or through a non-Bloch
bulk-boundary correspondence [15–17]. Furthermore, many
models exhibit the non-Hermitian skin effect [18,19]. In ad-
dition, a recent study of the critical behavior of topological
phase transitions in non-Hermitian models has revealed un-
conventional scaling exponents, suggesting that these systems
lie in different universality classes than their Hermitian coun-
terparts [20].

In this Letter, we provide a method to study the effect of
disorder on the strictly non-Hermitian topological characteri-
zations of these systems. Our framework is valid for systems
that exhibit a band closing that changes the topology from

a line gap to a point gap. We develop a systematic method
to implement disorder by extending the discrete system to its
continuous description around the band-closing point charac-
terizing the topological phase transitions. We start our study
by considering a general, discrete two-band model around the
critical point, and write its continuous version. This provides
us with a (1 + 1)-dimensional field theory, which only be-
haves properly after selecting a single frequency component
of the temporal part, as proposed by Kawabata et al. [21]. The
effective (1 + 0)-dimensional theory turns out to be topologi-
cal when coupled to a gauge field. We then introduce disorder
and investigate it perturbatively. The procedure is applied to
the non-Hermitian Su-Schrieffer-Heeger (SSH) model and a
non-Hermitian s-wave superconductor. The results are com-
pared with numerical calculations of the discrete models. We
find that strong disorder drives the system from a topological
to a trivial phase in the same way.

Topological field theory of two-band models. We consider
Hamiltonians of the form

Ĥ (k) =
∑

k

ĉ†
k [f (k) · σ]ĉk, (1)

where σ = (σ1, σ2, σ3) is a vector of Pauli matrices, and the
complex-valued function f (k) depends on the microscopic
properties of the system. The annihilation operators ck =
(ck,A, ck,B) are bipartite, and reflect the two-band structure of
the system. An important assumption about the Hamiltonian
in Eq. (1) is that it has at least one line-gap closing that
changes the gap topology from a line gap to a point gap [see
the Supplemental Material (SM) for an example of such gap
closings [22]]. The resulting continuum Hamiltonian is given
in momentum space by

Ĥ (k) =
∫

dk

2π
�̂

†
(k)[(α · σ )k + β · σ]�̂(k), (2)

where α and β result from the linear expansion of
f (k) around the line-gap closing and the field opera-
tor �(x) = [ψA(x), ψB(x)]T obeys anticommutation relations
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{ψA(xi ), ψB(x j )} = δABδ(xi − x j ). The action associated to
this Hamiltonian is given by

S =
∫

dtdx�†(x)[i∂t + i(α · σ)∂x − β · σ]�(x),

where we have set h̄ = 1.
Following Kawabata et al. [21], we consider a field theory

in (1 + 1) dimensions and discard the temporal degree of free-
dom, which makes the theory ill defined. The corresponding
action is

S(E ) = ∫
dx�†

E (x)[E + i(α · σ )∂x − β · σ]�E (x),

where the index E denotes a fixed energy. The non-Hermitian
topological character of the system naturally arises by cou-
pling the matter fields to a background U (1) gauge field A by
virtue of minimal substitution: ∂x → ∂x − iA,

S(E )[A] =
∫

dx�†
E (x)

[
G−1

0,E + (α · σ)A
]
�E (x),

where we introduced the (inverse) bare Green’s function G−1
0,E .

The vacuum-to-vacuum transition amplitude is then given by

ZE [A] =
∫

D�†
ED�E eiS(E ) = Det

[−iG−1
0,E − i(α · σ)A

]
.

Here, Det[· · · ] denotes a determinant over both coordinate
and spinor spaces, while det[· · · ] only accounts for spinor
space. The same convention holds for taking traces. We now
shift our attention to the effective action, defined through
exp iSeff = ZE [A]/ZE [0]. The gauge field A is assumed to be
small in magnitude, such that we can probe the system in
linear response. At this order, the effective action is given by

Seff = −i Tr[G0,E (α · σ)A]

=
∫

dk

2π i
tr[G0,E (k)(α · σ )]

∫
dxA(x)

≡ W (E )
∫

dxA(x), (3)

where in the second line the trace over coordinate space
was explicitly taken and in the third line we introduced
the “energy vorticity” W (E ) (more details are given in the
SM [22]). The energy vorticity captures the response of the
system to the applied gauge field. It turns out that it is ex-
actly equal to the winding of the complex energy spectrum
around the point E , making it a topological invariant. Fur-
thermore, W (E ) appears as the current that results from the
coupling to the gauge field [21]. This generically gives a
proper physical interpretation of this purely non-Hermitian
winding number, and in the case of open boundary conditions,
is an indicator of the appearance of the non-Hermitian skin
effect [8,11,16,18,19,23,24].

Effect of disorder. We now introduce an averaged disorder
to the model to see how it affects the non-Hermitian topo-
logical phases. From Eq. (3), we see that this means that
a modification will take place in the bare Green’s function
through the introduction of disorder in the single-particle
Hamiltonian H = H0 + V , where H0 is an unperturbed
Hamiltonian, and V incorporates disorder into the system.
Here, we will consider the disorder to be a deviation from
a zero-average configuration. We replace V (x) with δV (x) =

V (x) − V (x), with V (x) a disorder potential, assumed to be of
the form V (x) = ∑Nimp

i=1 U (x − xi ), where Nimp is the number
of impurities and U (x) is an arbitrary function capturing the
nature of the disorder. Thus, the spatial averaged disorder
V (x) is defined as an average procedure over all x j . The
(spatial) action in the presence of disorder then reads

S(E ) =
∫

dx�†
E (x)[E − H0 − δV ]�E (x).

The Green’s function can be expressed as a functional integral
over fermionic fields

GE (x, y) = − 1

ZE

∫
D�†

ED�E�E (x)�†
E (y)eiS(E )

. (4)

The disorder contribution in the exponential of Eq. (4) is
expanded, and then a disorder average is taken [25]. This pro-
cedure eliminates all terms odd in δV (x), and the result is the
Dyson equation for the disorder averaged Green’s function,

GE (x, y) = G0,E (x, y)

+
∫

dx′dx′′G0,E (x, x′)�E (x′, x′′)GE (x′′, y)

(5)

where the “self-energy,” at a Born approximation level, is
given by

�E (x, y) = −G0,E (x, y)δV (x)δV (y). (6)

For this approximation to be valid, we require the disorder
potential to be weak with respect to the eigenvalues of the
unperturbed system. This will then be used as the starting
point in the iterative calculation of the self-consistent Born
approximation (SCBA)—see SM. Note that disorder averag-
ing reinstates translational invariance, �E (x, y) = �E (x − y).
Solving the Dyson equation in momentum space yields the
modified Green’s function

GE (k) = [1 − �E (k)]−1G0,E (k). (7)

In the presence of weak disorder Eqs. (3) and (7) can be
combined such that the disorder averaged winding number
takes the form

W (E ) =
∫

dk

2π i
tr{[1 − �E (k)]−1G0,E (k)(α · σ )}. (8)

We consider a delta-function disorder U (x − x j ) = U0δ(x −
x j ), where U0 represents the disorder strength (scaled with
units of length). This results in δV (x)δV (y) ≈ U 2

0 niδ(x − y),
where the impurity density ni = Nimp/L was introduced, with
L the size of the system (see SM [22]). Combining this with
Eq. (6) yields the self-energy for the delta-function disorder
averaged system in momentum space

�E (k) = −U 2
0 ni

∫
dq

2π
G0(q). (9)

From Eq. (9), we observe that the self-energy is momentum
independent, which makes it possible to evaluate the energy
vorticity analytically.

Non-Hermitian SSH model. A paradigmatic model to study
non-Hermitian topological matter in one dimension is the non-
Hermitian SSH model for fermions. The SSH model describes

L180503-2



FIELD THEORETICAL STUDY OF DISORDER IN … PHYSICAL REVIEW B 105, L180503 (2022)

a bipartite one-dimensional chain with A and B sites obeying
a sublattice symmetry (see Fig. S1 of the SM [22]). Here, we
consider the non-Hermitian SSH model with nonreciprocal
intracell hopping. The corresponding Hamiltonian reads

Ĥ = (v − g)
N∑

j=1

c†
A, jcB, j + (v + g)

N∑
j=1

c†
B, jcA, j

+w

N∑
j=1

(c†
B, jcA, j+1 + c†

A, j+1cB, j ),

where the intra- and intercell hopping are denoted by v and
w, respectively. Moreover, the parameter g introduces nonre-
ciprocity in the intracell hopping. N denotes the number of
unit cells. The dispersion relation follows from diagonalizing
the Hamiltonian in momentum space, yielding

E±(k) = ±
√

w2 + v2 − g2 + 2wv cos k − 2iwg sin k.

It supports line-gap closings at momenta k = 0, π . Expand-
ing the Hamiltonian around these points then gives α =
(0,±w, 0) and β = (v ± w,−ig, 0), where the ± denotes the
expansions around k = 0 and k = π , respectively. Evaluating
the energy vorticity for the non-Hermitian SSH model yields

W±(E ) = ∓ 1
2 [sgn(γ − η) + sgn(γ + η)], (10)

with γ = g/w, η = Re
√

M2± − E2, M± = (v ± w)/w, and
E = E/w. The full model is described by the combination
of these two Dirac models. The components W±(E ) relate to
the full invariant as W (E ) = W+(E ) + W−(E ). We remark
that the vorticity is equal to the difference of the two half-
integer windings around the exceptional points [11], W (0) =
ν1 − ν2. These windings are defined through

ν j =
∫

dk

2π

d

dk
arctan

[
Re f2 − (−1) j Im f1

Re f1 + (−1) j Im f2

]
,

where the functions f1,2 are introduced in Eq. (1). Note that
W (E ) is evaluated at E = 0 because the non-Hermitian SSH
model possesses sublattice symmetry. Figure 1 shows the
phase diagram of the non-Hermitian SSH model. This invari-
ant renders all phases that are adiabatically connected to the
Hermitian model (g = 0) indistinguishable from each other,
which is a result of the purely non-Hermitian nature of the
energy vorticity W±(E ).

Upon including disorder in the non-Hermitian SSH model,
the self-energy, defined through Eq. (9), reads

�E (k) = −U 2
0 ni

2w

(
0 −sgn(γ + M±)

sgn(γ − M±) 0

)
,

from which the corrected Green’s function readily follows
through Eq. (7). Evaluating Eq. (3) using the corrected
Green’s function then yields the energy vorticity for the dis-
order averaged non-Hermitian SSH model within the Born
approximation (see SM for a full derivation [22]),

W±(0) = W±(0)

1 + (U 2
0 ni

2w

)2
sgn(γ − M±)sgn(γ + M±)

. (11)

Starting from this expression, we can initiate the calculation of
the SCBA. Several iterations of the SCBA, corresponding to

FIG. 1. Phase diagram for the non-Hermitian SSH model, ob-
tained from the non-Hermitian winding numbers [W+(0),W−(0)].
The invariants come in pairs, where the first one is calculated around
the gap closing point k = 0 and the second one around the point
k = π/a.

different regions in Fig. 1, are plotted in Fig. 2, indicating that
the curve converges to a sharper transition as the number of
iterations grows. We observe that W+(0) [W−(0)] is driven
from minus (plus) one to zero [Fig. 2(a)]. For phases where
either W±(0) is already zero in the unperturbed system, they
remain zero [Figs. 2(b) and 2(c)], as can be inferred from
Eq. (11). The disorder implementations in the continuum and
discrete models are different in nature. It is therefore sensible
to make a comparison between the models based on the spatial
two-point correlations of the disorder potential. In the con-
tinuous model, it takes the form δV (x)δV (y) = U 2

0 niδ(x − y),
while in the discrete model, it is ViVj = (V 2

0 /3)δi j . The im-
purity density ni influences the location and sharpness of the
transition. We use ni = 0.025 to compare the transitions in
Fig. 2, and show how the energy vorticity depends on the
impurity density ni in the SM [22]. Note that the impurity
strengths have different dimensions in both models.

Non-Hermitian s-wave superconducting chain. Now, con-
sider a spinful (S = 1/2) superconducting chain given by the
following Hamiltonian,

H = w
∑

j,s

(c†
j,sc j+1,s + H.c.) − μ

∑
j,s

(c†
jsc js − 1)

+�
∑

j

(c†
j,↑c†

j+1,↓+ H.c.) + g
∑

j

(c†
j,↑c†

j,↓ − c j,↓c j,↑),

where s =↑,↓ represents spin, w is the hopping parameter, μ

the chemical potential, � the nearest-neighbor superconduct-
ing pairing strength, and the non-Hermiticity is introduced
through the parameter g, representing an imbalance in the
on-site superconducting pairing. The Hermitian model ex-
hibits nontrivial topological phases, manifested through the
presence of Majorana modes at the boundaries of the open
system [26]. Here, we include a non-Hermitian term to extend
the topological phase diagram and study its purely non-
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FIG. 2. Disorder-driven topological to trivial phase transition in the non-Hermitian SSH model. (a)–(c) Average energy vorticity W+(0)
and W−(0) as a function of U0 starting from the clean phase, with parameters (a) (v,w, g, ni ) = (0.5, 1, 2, 0.025), (b) (v,w, g, ni ) =
(1, 1, 1, 0.025), and (c) (v,w, g, ni ) = (−1, 1, 1, 0.025), corresponding to three non-Hermitian topologically distinct phases. A transition
from the topological to the trivial phase is clearly observed. The dashed line corresponds to the Born approximation calculation, while the
consecutive lines correspond to the multiple iterations of the SCBA. Note that the energy vorticity shows noninteger values around the critical
point because it is an averaged quantity. (d) Numerically calculated average energy vorticity for the discrete non-Hermitian SSH model upon
inclusion of on-site disorder. The calculations are done for N = 100 cells, (v,w, g) = (1, 1, 1), and averages were taken over 100 disorder
realizations.

Hermitian part. For simplicity, we set � = w. Diagonalizing
the Hamiltonian in momentum space results in two bands
E±(k),

E±(k) = ±
√

w2 + μ2 − g2 − 2wμ cos k − 2iwg sin k,

for which a line-gap closing occur at k = 0, π . The field the-
ory around those points is then readily obtained from the co-
efficients in Eq. (2), α = (0,∓w, 0) and β = (0,−ig,±w −
μ). The winding number takes exactly the same form as
for the SSH model. It is given by Eq. (10), but with M± ≡
(±w − μ)/w. The inclusion of disorder gives a similar result
as obtained for the SSH model.

Comparison to numerical calculations of disorder in the
discrete case. We are interested in evaluating the robustness of
the energy vorticity when disorder is introduced in the system.
For the lattice model, we have [8,27]

W (E ) = −
∫

BZ

dk

2π i

d

dk
log{det[H (k) − E ]}. (12)

Upon taking a continuum limit, it is possible to show that
Eq. (12) is equal to Eq. (3) (see SM [22]). Introducing disorder
often leads to a loss of translational invariance. As a result, it is
no longer possible to obtain the Bloch Hamiltonian H (k), ren-
dering Eq. (12) useless. This problem is solved by introducing
a Peierls-like phase in the intercell hopping [8], yielding (for
the non-Hermitian SSH model)

H (�) = (v − g)
N∑

j=1

c†
A, jcB, j + (v + g)

N∑
j=1

c†
B, jcA, j

+w

N∑
j=1

(e+i(�/N )c†
B, jcA, j+1 + H.c.),

The Hamiltonian H (�) itself is not periodic upon increasing
the flux � by 2π , but the quantity Det[H (�)] is [8]. This

allows us to define

W (E ) = −
∫ 2π

0

d�

2π i

d

d�
log{det[H (�) − E ]}. (13)

While the two expressions for W (E ) look very similar,
it is important to realize that the latter is a function of
the real-space Hamiltonian. This has the important conse-
quence that we no longer require translational invariance
to calculate W (E ). We consider the disorder potential V =∑N

j=1 Vj (c
†
j,Ac j,A + c†

j,Bc j,B). The values of Vj are sampled
from a uniform distribution [−V0,V0], where V0 is the disorder
strength. In Fig. 2(d), we plot the results obtained by averag-
ing over 100 realizations of disorder for the same parameter
values used for the continuum model shown in Fig. 2(b). We
observe that as the disorder strength increases, the system
is driven towards a trivial state, in which the energy vortic-
ity winding number is zero, which agrees with the general
features observed from the analytic derivations. Note that
this kind of disorder breaks the sublattice symmetry of the
system and leads to an earlier onset of the phase transition.
If instead one would implement disorder in the hopping am-
plitudes in a uniform way, the symmetry would be preserved
and the phase transition would occur for higher values of V0.
However, as discussed in the SM [22], the averaging proce-
dure in the continuum model does not distinguish between
these two forms of lattice disorder, limiting the application
of the field theory description. Similar results were obtained
in the context of Anderson localization using the replica
method [28].

Conclusions. We introduced a generic field-theoretical
method to analytically study the effect of disorder in one-
dimensional two-band non-Hermitian models that feature one
or more band closing points. We have shown how the intrin-
sically non-Hermitian topological phases of these systems are
affected by disorder within the SCBA. A non-Hermitian topo-
logical invariant naturally arises when coupling the continuum
field theory to a background gauge field, and is expressed in
terms of a trace over the momentum-space Green’s function.
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The resulting change in this Green’s function can then be
tracked when we apply averaging procedures in the pertur-
bative expansion. We apply these ideas to the paradigmatic
non-Hermitian SSH model, and a model featuring non-
Hermitian s-wave superconductivity The two models exhibit
very similar dispersion relations and are therefore equally
influenced by disorder. One would expect these transitions to
be extremely sharp, as they are represented by a topological
quantity. However, the computations represent averages over
many disorder realizations, which smooths out the transitions.
This feature is even more prominent in the analytic model.
Nonetheless, the results still allow us to capture the fact that
a topological phase transition occurs upon the introduction of
sufficiently strong disorder, which is expressed by a change in
the averaged energy vorticity.

One might also wonder how disorder affects the skin
modes. This has been studied previously using numerical
approaches [8,23,29], but it would be interesting to investi-
gate whether the current framework provides analytic tools to

understand this effect. In addition, one could use the replica
method to obtain further insight on the effects of disorder, as
done in a study of disordered topological semimetals [30]. The
use of the replica method may produce a richer phenomenol-
ogy and different insights.

Finally, it would be interesting to investigate the effect
of interactions in these non-Hermitian topological models.
We can apply the same techniques to study their effects on
the winding number by simply replacing the bare Green’s
function with an interacting one. We are confident that the
methodology developed here will stimulate further research
in this direction.
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