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Quantum states are usually fragile, making quantum computation less stable than classical computation.
Quantum correction codes can protect quantum states but need many physical qubits to encode a single logical
qubit. Alternatively, protecting quantum states at the hardware level has been recently developed to maintain
the coherence of the quantum information by using symmetry. However, it generally has to pay the expense
of increasing the complexity of the quantum devices. In this work, we propose to approach the protection of
quantum states at the hardware level without increasing the complexity of the devices. The interplay between the
spin-orbit coupling and the Zeeman splitting in the semiconductor allows us to tune the Josephson coupling
in terms of the spin degree of freedom of Cooper pairs, the hallmark of the superconducting spintronics.
This leads to the implementation of the parity-protected 0-π superconducting qubit with only one highly
transparent superconductor-semiconductor Josephson junction, which makes our proposal immune from the
various fabrication imperfections.
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Superconducting circuits provide a promising platform for
quantum computing [1–4]. They utilize the Josephson effect
[5,6], the coherent tunneling of Cooper pairs, to obtain the
necessary anharmonicity to form superconducting qubits [7].
Therefore, the Josephson junction is the core unit of supercon-
ducting quantum computation. At present, a superconducting
qubit based on the transmon [8] has achieved high fidelity in
both single-qubit and two-qubit gates [9–12]. However, since
its junction is composed of an insulator, the manipulation
of the Josephson junction is limited to only one degree of
freedom after fabrication, the Josephson coupling energy. This
makes it difficult to balance the contradictory requirements
for enhancing the anharmonicity and reducing the charge
noise. For transmon-like qubits, a small anharmonicity is an
inevitable compromise to suppress the charge noise, although
it will result in unwanted excitation to high-level states. The
recently developed 0-π qubit [13,14] has a great potential to
solve this contradiction while protecting the quantum coher-
ence at the hardware level [15–18]. As the implementation of
0-π qubit requires an additional controllable degree of free-
dom [19–22], for the transmon-like qubit, the price paid is to
increase the complexity of the circuit [23]. On the other hand,
the Josephson effect has achieved tremendous progress over
the past two decades, which is mainly due to the replacement
of junction materials with semiconductors [24–29], ferro-
magnets [30–35], topological insulators [36–45], etc. These
studies not only improve the tunability of the Josephson cou-
pling energy but also enable the multidimensional control of
the Josephson junction [46–53]. The former has given birth to
gatemon qubits [54–62], which is based on the same principle
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as the transmon but with fully electrical control, and is leading
to more transmon variants. The latter not only has spawned the
field of superconducting spintronics [63] but also is benefiting
many other fields such as topological quantum computing
[64,65].

In this work, we propose to implement the 0-π qubit
with only one Josephson junction [Fig. 1(a)], utilizing the
Cooper pairs’ spin degrees of freedom. The spin splitting
in the semiconductor region provides two Fermi surfaces,
which effectively form two Josephson junctions with almost
identical Josephson coupling energy. This identity is robust
against various fabrication and control imperfections such as
gate voltage fluctuations and disorders. The interplay among
the spin-orbit coupling, Zeeman effect, and superconductivity
induces the spin-singlet and spin-triplet Cooper pairs’ transi-
tion through the quantum interference between the two Fermi
surfaces. This interplay can suppress the single Cooper pair
tunneling and realize the degenerated 0-π qubit states when
the junction region only supports a few transverse modes. A
gatemon-like qubit is an ideal platform to realize this pro-
posal. Finally, with the practical experimental parameters, we
show that the qubit relaxation time T1 and coherent time T2

can be dramatically increased, exhibiting the advantages in
superconductor-semiconductor (SC-Sm) based qubits.

Josephson potential. The Josephson potential generally
takes the form [66]

VJ (φ̂) =
∑

m

E (m)
Jα cos(mφ̂) + E (m)

Jβ sin(mφ̂), (1)

with φ̂ the superconducting phase operator. The sin(mφ̂)
term in Eq. (1) is allowed when the system breaks
both time-reversal and inversion symmetries. In the
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FIG. 1. (a) The setup of a SC/Sm/SC Josephson junction with a
few transverse channels. The red and blue circles indicate the Fermi
surfaces with opposite chirality due to the Rashba SOC. δQ0 is the
shift for ky = 0 channel. (b) The momenta of electron and hole at
the Fermi surface with only SOC (line above) and with both SOC
and magnetic field (line below). k1 f and k2 f are the Fermi wave
vectors with only SOC. Solid and hollow circles represent electron
and hole; red and blue represent inner and outer Fermi surfaces
as in (a). (c) The shift of the Fermi surfaces (normalized by δQ0)
as a function of the momentum ky with the ratio β/α =
0, 0.1, 0.2, 0.3.

superconductor/insulator/superconductor junction, the
Josephson effect is completely dominated by the single
Cooper pair tunneling, corresponding to the Josephson
potential E (1)

Jα cos φ̂. Replacing the insulator with semicon-
ductors or metals increases the transparency of the Josephson
junction that enhances the tunneling of multiple Cooper pairs,
corresponding to m > 1 Josephson potentials [57]. Here,
we consider the normal region as the semiconductor whose
Hamiltonian takes

Hsm = h̄2k2

2m∗ σ0 + h(k) · σ + M(x)σy,

with m∗ the effective mass, h the spin-orbit coupling (SOC)
field, M = gμBB the Zeeman field strength, g the effective g-
factor, μB the Bohr magneton, and B the magnetic field along
y direction. The SOC Hamiltonian in a semiconductor such as
InSb two-dimensional electron gas takes the form

h(k) · σ = (α + β )kxσy − (α − β )kyσx, (2)

with α (β) the Rashba (Dresselhaus) SOC strength and kx par-
allel with the [110] direction of InSb [67]. Without magnetic
field and only taking the Rashba SOC, the electrons split into
two Fermi surfaces as

E± = h̄2k2

2m∗ ± αk, (3)

where + (−) corresponds to the smaller (larger) Fermi surface
with Fermi wave vector k2 f (k1 f ) [Fig. 1(a)]. Each Fermi

surface can independently support Cooper pairs with zero
center-of-mass momentum. Adding an external magnetic field
along the y direction, the two Fermi surfaces are shifted
oppositely in the x direction [Figs. 1(a) and 1(b)], resulting
in opposite center-of-mass momentum of the Cooper pairs
supported by each Fermi surface [68–70]. In the limit of M �
|h(k f )| � E f and β = 0 with k f = (k1 f + k2 f )/2, the center-
of-mass momentum satisfies |δQ| ≈ 2M/h̄v f in almost all ky

channels. When the Cooper pairs enter the normal region,
they will be split into two Fermi surfaces and gain oppo-
site center-of-mass momentum as eiδQ·x|↑↓〉 and e−iδQ·x|↓↑〉
[Fig. 1(a)]. Superposing the Cooper pairs with the opposite
center-of-mass momentum leads to the oscillation of the spin
singlet and spin triplet,

cos(δQ · x)(|↑↓〉 − |↓↑〉) + i sin(δQ · x)(|↑↓〉 + |↓↑〉)

= cos(δQ · x)|S = 0〉 + i sin(δQ · x)|S = 1, Sz = 0〉, (4)

where S and Sz are the total spin angular momentum and its
z component. With δQ · L = π/2, if the spin-singlet Cooper
pair is injected at the SC/Sm interface (x = 0), it will be fully
converted to spin-triplet pairs at the Sm/SC interface (x = L)
as shown in Fig. 1(a). As the s-wave superconductor only
allows spin-singlet Cooper pairs to enter, single-Cooper-pair
tunneling is forbidden. But the product of two spin-triplet
Cooper pairs has the component of total spin angular mo-
mentum Stot = 0 that can enter the s-wave superconductor.
In general, even number spin-triplet Cooper pairs have the
component of total spin angular momentum Stot = 0 but odd
number spin-triplet Cooper pairs do not [71,72]. Therefore,
with δQ · L = π/2, the SC/Sm/SC junction only allows the
tunneling of even number Cooper pairs, which should elim-
inate all the Josephson potential terms with odd times φ̂.
To confirm this result, we build a tight-binding (TB) model
Bogoliubov–de Gennes Hamiltonian of the SC/Sm/SC junc-
tion [71]. In the following calculation, We take g = 26 [73]
and α̃k f � gμBB with k f the Fermi wave vector in the
semiconductor region and �/h = 45 GHz [74] with � the
superconducting gap. We obtain the Josephson potentials
through three steps: We first calculate the eigenenergies of
this TB Hamiltonian as a function of superconducting phase
difference φ and B; we then sum all negative eigenenergies
to get the zero temperature free energy, F (φ, B), of the junc-
tion; last, we perform the Fourier transform of cos(mφ) and
sin(mφ) with m up to 20 to obtain the corresponding Em

Jα (B)
and Em

Jβ (B).
Due to the high transparency of the SC/Sm/SC junction,

we only need several transverse channels in the normal re-
gion to have strong enough Josephson potential strength. For
simplicity, we first consider one channel with the chemical
potential indicated by the blue dashed lines in Fig. 2(a). The
magnitudes of the leading Josephson potential E (m=1,2,3)

Jα (B)
and E (m=1)

Jβ (B) are plotted in Fig. 2(b), which come from the
Fourier components of the free energy as discussed in the last
paragraph. We found that E (m)

Jβ ≈ 0 in all considered magnetic
field ranges and all the E (2m+1)

α vanish simultaneously at a
certain B [blue dashed lines in the inset of Fig. 2(b), which
is consistent to our spin angular momentum analysis of the
Cooper pairs.
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FIG. 2. (a) Energy band with periodic condition in the x direc-
tion. (b) Several leading terms of the Josephson potential vary with
the magnetic field. The inset is around the 0-π transition. (c) Four
lowest eigenenergies vary with the magnetic field around the 0-π
transition. (d) Free energies’ shape as a function of φ with three
magnetic field magnitudes, corresponding to three vertical lines in
(c). The inset is the ABS at 0-π point. (e) Charge distribution and
(f) phase distribution of the two lowest states. All plots are under the
condition E (2)

jα /Ec ≈ 50 and ng = 0.

With these Josephson potentials, we write the qubit Hamil-
tonian in the Cooper pair number basis [75,76],

H =
∑
nn′m

(
4Ec(n − ng)2δn,n′ + Em

J δn,n′+m
)|n〉〈n′|

+ H.c., (5)

with Ec the charging energy, n and n′ the Cooper pair num-
bers, ng the offset charge, and Em

J = (E (m)
Jα + iE (m)

Jβ )/2 the mth
nearest hopping due to the m Cooper pairs tunneling simul-
taneously. Figure 2(c) shows the lowest four eigenenergies
with finite Ec and ng = 0 as a function of magnetization.
When the lowest two energies become almost degenerate
[blue dashed lines in Fig. 2(c)], the Josephson junction is at the
0- to π -junction transition point, reflected in the degenerated
double-well potential of the free energy and the π -periodic
Andreev levels [Fig. 2(d)]. Notice that, at the transition point,
the two lowest energy states do not completely degenerate but
have a finite energy gap proportional to Ec [inset of Fig. 2(c)].
We plot the probability distribution of these two states in both
Cooper pair number (n̂) basis [Fig. 2(e)] and phase (φ̂) basis
[Fig. 2(f)]. In the n̂ axis, the two wave functions |ψ0〉 and |ψ1〉
are the eigenstates of the Cooper pair parity operator P̂ = ein̂π

with eigenvalues +1 and −1, respectively. In the φ basis, each

FIG. 3. Two channels with Dresselhaus SOC β = 0.2α. (a) Sev-
eral leading terms of the Josephson potential. (b) The energy levels
vary with the magnetic field around the 0-π transition point. (c) Free
energy at the 0-π transition point. (d) Cooper pair parity expectation
values of the lowest four states. (e) The lowest energy state distribu-
tion on an even site and an odd site as a function of E (1)

Jβ /E (2)
Jα with

the condition ng = 0, and E (2)
Jα /Ec ≈ 50; the inset is the logarithmic

plot of the matrix element 〈ψ0|E (1)
Jβ sin φ̂|ψ1〉/E01.

eigenstate is mainly distributed around φ = 0 and φ = π with
the property

|ψ0(1)〉 = |φ ≈ 0〉 + (−)|φ ≈ π〉√
2

, (6)

where |φ ≈ 0〉 and |φ ≈ π〉 refer to the state solely local-
ized at the potential wells φ = 0 and φ = π [Fig. 2(d)],
respectively. Therefore, we obtain a nearly degenerated qubit
[Fig. 2(c)], which has an energy splitting around Ec and
is isolated from other states by an energy gap around√

32E (2)
jα Ec [8].

In reality, the semiconductor may have multiple channels
and finite Dresselhaus SOC. We increase the chemical po-
tential to have two transverse channels at the Fermi level
[Fig. 2(a)] and add Dresselhaus SOC with β = 0.2α. Fol-
lowing the same Fourier transform procedures, we obtain the
Josephson potential magnitudes Em

Jα and Em
Jβ and plot the

leading terms in Fig. 3(a) around the transition point. We
get finite sin φ Josephson potential because the Zeeman effect
and SOCs break the time-reversal and inversion symmetries,
respectively. At ng = 0, we consider the Josephson potentials
up to m = 20 and plot the lowest four eigenenergies as a
function of the magnetic field in Fig. 3(b). At the transition
point [red dashed line in Figs. 3(a) and 3(b)], although the
finite sin φ Josephson potential changes the double-well po-
tential shape significantly [Fig. 3(c)], the minima of the two
potential wells locate around φ = 0 and φ = π and remain
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FIG. 4. Parameters are the same as in Fig. 3. (a) Qubit states’
energies vary with ng at the 0-π transition with different Ec. (b)
ω01 varies with magnetic field around the 0-π transition point with
different Ec. (c) and (d) T1 and T2 vary with Ec.

the same value. Therefore, the two lowest energy states at
the transition point are still the Cooper pair parity eigenstates
[Fig. 3(d)], reflecting on their Cooper pair parity expectation
values ±1 [Fig. 3(d)]. As a result, the qubit states with the
potential in Fig. 3(c) at ng = 0 can still be well described by
Eq. (6). The lowest energy wave function only stays in the
even number sites for E (1)

Jβ /E (2)
Jα up to 0.4 [Fig. 3(e)] and the

coupling between even and odd states through sin(φ̂) potential
is zero (inset of Fig. 3(e) [71]). Therefore our proposal is
robust against imperfect fabrications.

Coherence properties of the 0-π qubit. To obtain the re-
laxation time of our 0-π qubit, we consider three noises:
charge noise, magnetic field noise, and quasiparticle poi-
soning. Noted that our 0-π qubit relies on the charge
sweet spot [ng = 0 in Fig. 4(a)] and magnetic field sweet
spot [the minimum ω01 = (E1 − E0)/h in Fig. 4(b)]. We
thus expand the Hamiltonian up to the second order at the
sweet spot as

H = H0 + ∂H

∂λ
δλ(t ) + 1

2

∂2H

∂λ2
δλ2(t ), (7)

where H0 is the Hamiltonian at ng = 0 with the well potential
shown in Fig. 3(b), and λ represents either charge (ng) or
magnetic field (B).

According to Fermi’s golden rule [77], we can get T1 from
the inverse of the transition rate from initial state |ψi〉 to final
state |ψ f 〉:

i→ f =
∣∣∣∣
〈
ψ f

∣∣∣∣∂H

∂λ
|ψi

〉∣∣∣∣
2

Sλ(ω f i ), (8)

where Sλ(ω) is the noise power spectrum with an approx-
imate 1/ f spectrum, Sλ(ω) = 2πAλ/|ω| (ωir < ω < ωuv )
[78,79]. Here we estimate that ωir/2π = 1 Hz, ωuv/2π =
0.4 GHz which is determined by temperature (Tm < 20 mK),

Ang = 10−8 e2 [8], AB = 10−17 T2 [80] for charge and mag-
netic field noise, respectively. For charge noise, we have
∂H
∂ng

|ng=0 = 8Ecn̂δng. As the two 0-π qubit states are the eigen-

states of Cooper pair parity operator P̂, the qubit ordinary
relaxation 〈0|n̂|1〉 vanishes. Therefore, the relaxation rate
for charge noise is mainly from the depolarization rate
[81–83],


ng

1 = 
ng

0→2 + 
ng

0→3 + 
ng

1→2 + 
ng

1→3, (9)

which describes the transition speed from qubit states, |0〉 and
|1〉, to higher levels |2〉 and |3〉. The magnetic field noise is
given by

∂H

∂B
=

∑
m

∂E (m)
Jα

∂B
cos(mφ) + ∂E (m)

Jβ

∂B
sin(mφ),

which cause ordinary relaxation with the transition rate B
1 =

|〈1| ∂H
∂B |0〉|2SB(ω01). The associated relaxation times T

ng

1 and
T B

1 are plotted as the black and red solid curves in Fig. 4(c)
respectively.

The quasiparticle poisoning comes from the fermionic
quasiparticle tunneling through the Josephson junction [84]
and is also a significant source of decoherence. In the tra-
ditional superconductor/insulator/superconductor junction,
the quasiparticle obtains either φ/2 or −φ/2 phase after
tunneling across the junction, which leads to the tunneling
Hamiltonian

HT = t̃
∑
η,κ,σ

i sin

(
φ̂

2

)
CL†

η,σCR
κ,σ + H.c., (10)

where CL(R)†
η,σ (CL(R)

η,σ ) are quasiparticle creation (annihilation)
operators on the left (right) lead and σ = ↑,↓ accounts for
spin; η, κ are the normal state indexes of leads. In our case,
the Fermi surface splits due to the SOC and Zeeman field and
brings the spin-dependent phase into the tunneling process.
When there is only SOC, the electron and hole components
have the same momentum due to the time-reversal symmetry
[Fig. 5(a)]. The Zeeman field further shifts the electron and
hole momenta to the opposite direction by ±δQ/2 [Fig. 5(b)].
Note that this momentum shift is also the key to having finite
center-of-mass momentum ±δQ of the Cooper pairs. When
quasiparticles tunnel across the junction, they will carry the
phase ±δQ · L/2 caused by the momentum shift in addition to
the flux phase ±φ/2. The quasiparticle tunneling Hamiltonian
takes the form

HT =
∑
η,κ,σ

[
t̃1i sin

(
φ̂

2
+ 1

2
δQ · L

)
CL†

η,↑CR
mκ,↑

+ t̃2i sin

(
φ̂

2
− 1

2
δQ · L

)
CL†

η,↓CR
κ,↓

]
+ H.c., (11)

where t̃1(2) are the tunneling amplitudes of the inner and outer
Fermi surfaces [Fig. 5(a)] [71]. Accordingly, the transition
elements due to quasiparticle poisoning take the form

0→1 =
∣∣∣∣〈1| sin

(
φ̂

2
± 1

2
δQ · L

)
|0〉

∣∣∣∣
2

Sqp(ω01). (12)
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FIG. 5. (a) One-dimensional (1D) band dispersion and momenta
at the Fermi surface with only SOC. (b) 1D band dispersion and
momenta with only SOC and Zeeman splitting. The blue solid and
red dashed lines indicate electron and hole respectively. The arrows
represent the spin direction. (c) The quasiparticle tunneling Hamil-
tonian sin( φ

2 + π

4 ) at the 0-π point. (d) The Josephson potentials
in the polar angle, which naturally present the periodic boundary
condition π = −π of the φ axis. The red and blue lines correspond
to φ = π/2 and φ = −π/2. (e) The quasiparticle tunneling Hamil-
tonian sin( φ

2 − π

4 ) at the 0-π point.

The quasiparticle spectral density Sqp(ω) = ω
πgK

Re[Yqp(ω)] =
ω

πgK

1
2χqpgT ( 2�

ω
)

3
2 , with gK the conductance quantum, gT the

junction conductance, � the superconducting gap and χqp the
quasiparticle density normalized to the Cooper-pair density
that we take as 10−7 [85]. Note that at the 0-π transition point,
sin( φ̂

2 ± 1
2δQ · L) = sin( φ̂

2 ± π
4 ) which is symmetric around

φ = ±π/2 [Figs. 5(c) and 5(e)]. Because the φ = π and
φ = −π correspond to the same point in the φ axis, we further
plot the Josephson potential in the polar angle coordinate in
Fig. 5(d), which clearly shows that the Josephson potential
at the 0 − π transition point is also symmetric around φ =
±π/2. Note that this results holds even in the presence of
sin φ potential. Therefore the qubit states are the even and
odd functions around φ = ±π/2 that cannot be flipped by
the tunneling Hamiltonian proportional to sin( φ̂

2 ± π
4 ). This

means the quasiparticle poisoning is suppressed in our pro-
posal. This conclusion is similar to that in the 0-π qubit
with multiple Josephson junctions [21] and the fluxonium
qubit [85] but due to a different mechanism. In reality, the
δQ · L may not be exactly π/2, limited by the magnetic field
accuracy. We take the magnetic field to deviate from the exact
transition point by 1 G so that δQ · L = π/2 + δθ with δθ ≈
2 × 10−4π . The transition matrix element takes 〈0| sin( φ̂

2 +
π
4 ± 10−4π )|1〉. To calculate this matrix element, we expand
the potential at the minima of the two potential wells

φ = 0, π ,

H ≈ 4Ecn2 − 2E (2)
Jα φ̂2, (13)

whose eigenfunction takes the form

ψl (φ) =
(

ζ

2l l!
√

π

) 1
2

e− (ζφ)2

2 Hl (ζφ), (14)

with ζ ≡ ( E (2)
Jα

2Ec
)1/4, l the energy level index, and Hl (x) the

Hermite polynomials. The wave function in the other well
π can be gained by shifting φ to φ − π so the qubit states
|0〉 (|1〉) = 1√

2
[ψl=0(φ) + (−)ψl=0(φ − π )]. We then calcu-

late the matrix element of Eq. (12) by integrating the product
of the three components and plot T qp

1 as a function of Ec [black
dashed curves in Fig. 4(c)], We find that T1 is mainly limited
by charge noise and takes T1 = 77 ms for Ec = 0.16 GHz
[Fig. 4(c)].

The dephasing time T2 is related to the decay of off-
diagonal term of the density matrix [8],

ρ01 = exp

(
− iD1

∫ t

0
δλ(t )dt − i

1

2
D2

∫ t

0
δλ(t )2dt

)
, (15)

with D1 = ∂ω01
∂λ

and D2 = ∂2ω01
∂λ2 . In our system, we take ω01 at

the charge and magnetic field sweet spots so the linear noise
susceptibility D1 = 0. After a standard calculation [78,82], we
have

T2 =
[

D2
2A2

λ ln2

(
ωuv

ωir

)
+ 2D2

2A2
λ ln2

(
1

ωirt

)]− 1
2

. (16)

The second-order derivative ∂2ω01/∂n2
g increases with in-

creasing the charge energy Ec [Fig. 4(a)]. Meanwhile, The
second-order derivative ∂2ω01/∂B2 decreases with increasing
charge energy Ec [Fig. 4(b)] [71]. Therefore, increasing Ec,
we get smaller T

ng

2 but larger T B
2 as shown in Fig. 4(d). We

estimate the dephasing time to be about T2 = 55 ms at the
crossing point Ec ≈ 0.16 GHz [Fig 4(d)]. The control [14,20]
and readout [20,21,23,66] of the 0-π qubit have been devel-
oped and can be applied to our proposal.

Conclusions. We propose to implement the 0-π qubit with
one SC/Sm/SC Josephson junction. The internal spin de-
gree of freedom of electrons in semiconductors naturally
provides the two interference paths of Cooper pairs with
similar transport parameters such as transmission amplitude.
The qubit states are the eigenstates of the Cooper pair par-
ity operator and are nearly degenerate. These properties are
robust against various deviations from the ideal model and
dramatically increase the qubit relaxation time T1 and co-
herent time T2. The multidimensionally tunable SC/Sm/SC
junction is a promising platform to realize a parity-protected
0-π qubit.
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