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Inverse Faraday effect in Mott insulators
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The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers
a promising route to ultrafast control of spin states. Here we study the IFE in Mott insulators using the Floquet
theory. We find two distinct IFE behavior governed by the inversion symmetry. In the Mott insulators with
inversion symmetry, we find that the effective magnetic field induced by the IFE couples ferromagnetically to the
neighboring spins. While for the Mott insulators without inversion symmetry, the effective magnetic field due to
IFE couples antiferromagnetically to the neighboring spins. We apply the theory to the spin-orbit coupled single-
and multiorbital Hubbard model that is relevant for the Kitaev quantum spin liquid material and demonstrate that
the magnetic interactions can be tuned by light.
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Introduction. The optical control and manipulation of the
magnetic exchange interaction in quantum materials have
always been an important centerpiece in condensed matter
physics [1,2]. The origin of such magneto-optical studies
dates back to Faraday who discovered that the plane of light
polarization rotates due to the intrinsic magnetization in a
material [3]. Almost a century later, it was predicted [4] and
subsequently observed [5] that a circularly polarized light
can also generate static magnetic moments. This opposite
phenomenon is known as the inverse Faraday effect (IFE),
which offers a natural pathway to the ultrafast manipulation
of magnetic order in quantum materials [6,7]. Over the past
few decades, IFE has remained an active area of research and
has been observed in a large class of materials ranging from
insulating magnets [6] to nonmagnetic metals [8,9].

However, despite significant experimental progress, the
microscopic origin of the IFE has remained relatively unclear
from a theoretical point of view. Most of the previous attempts
in this direction relied on semiclassical analysis [4,10–12].
Earlier theoretical work by Battiato et al. [13] provided a
detailed quantum mechanical analysis of metallic IFE, rely-
ing on the electronic orbital degrees of freedom. Recently,
IFE has been predicted in spin-orbit coupled (SOC) Rashba
metals [14], semimetals [15–17], and also for superconductors
[18,19]. While the realization of IFE using ultrafast control
of spin dynamics in rare-earth orthoferrites [ReFeO3, Re =
Dy, Ho, Er (antiferromagnetic insulator)] has been reported in
previous works [6,20–25], a detailed microscopic analysis of
the latter in the Mott insulating regime is still lacking.

In this work, we consider a periodically driven Mott
insulator in the presence of circularly polarized light
and analyze the emergent magnetic field in the Floquet
regime. We explore both single- and multiorbital models
and find that the IFE leads to both antiferromagnetic and
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ferromagnetic magnetization depending on the inversion sym-
metry. We employ the time-dependent Schrieffer-Wolff (SW)
unitary transformations to derive low-energy spin Hamilto-
nians. In this case, the transition matrix elements between
high-energy (charge excitations) and low-energy states (spin
excitations) are removed perturbatively [26–29]. We consider
d-electron systems with both direct and indirect hopping. The
indirect hopping is typically assumed to be mediated through
a ligand atom [see Fig. 1]. We show that such ligand-mediated
hopping in the presence of SOC gives rise to the IFE. In
materials with inversion symmetry, such IFE favors a fer-
romagnetic state; in contrast, the system without inversion
symmetry favors antiferromagnetism.

Symmetry considerations. Before moving on to the mi-
croscopic model calculation, here we investigate the IFE
based on symmetry considerations. In Mott insulators, the
charge degrees of freedom are gapped, and the system can
be described in terms of spin degrees of freedom. The di-
rect Zeeman coupling of the electromagnetic fields to spins
is much weaker than the orbital coupling and therefore is
neglected here; then, the SOC is an essential ingredient for
the IFE. Furthermore, the time-reversal symmetry (TRS) must
be broken. We consider a minimal hopping path shown in
Fig. 1(b) for electrons to experience the TRS breaking laser
field, where only the in-plane electric-field components cou-
ple to the electron hopping. The minimal coupling between
the laser electric field and the system’s static magnetization
has the form L = εαβγ Eα (�)Eβ (−�)Mγ , where summation
over repeated indices is implied, and � is the frequency of
the applied laser. Here εαβγ is a tensor, and the static magne-
tization is a function of two spin moments in Fig. 1(b), i.e.,
Mγ (S1, S2), whose form is dictated by the symmetries. The
whole system of laser and the Mott insulator has TRS, which
enforces εαβγ = −εβαγ .

In inversion symmetric systems, the atomic SOC is re-
sponsible for the IFE. We consider that the system is also
symmetric with respect to the mirror plane of the ions (we
call it the xy plane with the z axis perpendicular to it). This
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FIG. 1. (a) A schematic of the lattice with edge-sharing octa-
hedral geometry where both the direct (tdd ) and the indirect (tpd )
hopping amplitudes get modified under the influence of applied cir-
cularly polarized light. (b) The four-site cluster [highlighted in panel
(a)] including two d orbitals and two ligand atoms, respectively, gen-
erates an effective static magnetic field in the presence of circularly
polarized light with energy h̄� (IFE).

restricts εαβγ �= 0 only when γ = z. The inversion symmetry
requires that M = ẑ · (S1 + S2) with ẑ a unit vector normal
to the hopping plane. In this case, the IFE can be written
as L ∝ [E(�) × E∗(�)] · (S1 + S2) [here E∗(�) = E(−�)],
which is the same as IFE for the isotropic medium [4].

The SOC can also arise due to inversion symmetry break-
ing, which can be described by vector α. The direction of
α is constrained by other symmetries such as rotation and
mirror [30]. We consider symmetry transformations, such as
inversion and mirror operation, that include the transforma-
tion of α, which leaves the L invariant. The simplest form
that is invariant under these transformations is the scalar
Mz = α · (S1 − S2). Here Mz must be proportional to S1 − S2,
because α is odd under the inversion transformation 1 ↔ 2.
The IFE favors the antiferromagnetic arrangement of S1 and
S2, in contrast with a ferromagnetic arrangement in the inver-
sion symmetric case. This is rather surprising given that the
wavelength of light is usually much longer than the atomic
lattice parameter. The symmetry analysis is supported by the
calculations of the microscopic model below.

Model. We start with a strongly correlated electronic
model for transition metal (TM) compounds forming an
edge-sharing octahedral geometry [as shown by black cir-
cles in Fig. 1(a)]. In this class of materials, the d orbital
forms an octahedral geometry with the p-block (ligand) el-
ements [chalcogenic or halogenic atoms; see green circles
in Fig. 1(b)]. Depending on the electronic configuration of
the d-block elements, such compounds can be modeled by
either the single- or the multiorbital Hubbard model [31].
A circularly polarized light [see Fig. 1(a)] is applied which
modifies the hopping between different orbitals. For a typi-
cal single-orbital model, the Hamiltonian can be written as
H(t ) = H0 + H1(t ), where

H0 = U
∑

i

nd
i↑nd

i↓ + �
∑
i,σ

p†
iσ piσ , (1a)

H1(t ) =
∑
〈i j〉

[
t i j
pd (t )d†

iσ p jσ + t i j
σσ ′ (t )d†

iσ d jσ ′
] + H.c., (1b)

where U denotes the onsite Coulomb repulsion of the d orbital
and � parameterizes the ligand charge transfer energy. Note
that we consider only one d orbital along with the ligand p
orbital. Here we assume the sum over repeated spin indices
σ , and t i j

pd (t ) and t i j
σσ ′ (t ) are the time-dependent hopping am-

plitudes between p and d and two d orbitals, respectively. In
the presence of circularly polarized light with electric-field
component E(t ) = E0(−x̂ cos �t + ŷ sin �t ), the hopping de-
pends on Peierls phase as (we work in the unit of e, h̄, c = 1)

t i j
pd (t ) = tpd eiθi j (t ), θi j (t ) = −rpd · A(t ), (2a)

t i j
σσ ′ (t ) = [tddI2 + iαi j · τ]σσ ′eiφi j (t ), (2b)

φi j (t ) = −rdd · A(t ), (2c)

where the vector potential A(t ) = E0
�

(x̂ sin �t + ŷ cos �t ), τ

denotes the vector of Pauli matrices, αi j = (α1
i j, α

2
i j, α

3
i j ) is a

real vector corresponding to the strength of the SOC in the
d-d bond, and rpd and rdd are the nearest-neighbor vectors
between p and d and two d orbitals, respectively. The specific
form of the SOC in Eq. (2b) dictates that the Hamiltonian in
Eq. (1b) is not invariant under inversion, i.e., IH1(t )I−1 �=
H1(t ). Here I is the inversion operator which swaps the
indices i and j. We consider the insulating regime at half
filling with U,� � tpd , tdd , |α|. Our analysis does not require
the energy hierarchy between U and � and therefore is valid
both for the Mott and for the charge-transfer type insulator.
We broadly term the insulator as the Mott insulator in the fol-
lowing discussions. The presence of αi j violates the inversion
symmetry but preserves the TRS when the laser is off A = 0.

Starting from the Hamiltonian in Eqs. (1a) and (1b), we
go to the rotated frame as Hrot (t ) = eiS(t )[H(t ) − i∂t ]e−iS(t ),
where S (t ) is a Hermitian operator. Writing S (t ) = S (1)(t ) +
S (2)(t ) + · · · and expanding Hrot (t ) in Taylor series, we
obtain order-by-order low-energy effective spin-exchange
Hamiltonians. For the subsequent analysis, we consider a sim-
plified four-site cluster model [see Fig. 1(b)] containing two d
orbitals and two ligand atoms. In the large frequency approxi-
mation (� � tpd , tdd , αi j), we obtain an effective low-energy
spin Hamiltonian up to third order in perturbation theory as
(see Supplemental Material (SM) [32])

Heff =
∑
〈i j〉

[
Siμ�μ,νS jν + heff

i j · (Si − S j )
]
. (3)

The results for the exchange couplings �μ,ν (μ, ν = x, y, z)
are provided in the SM [32]. In the absence of the
SOC and the ligand atoms, we recover the well-known
Floquet Hamiltonian Heff = ∑

〈i j〉 Ji jSi · S j , where Ji j =
4

∑
n J 2

n (A0)t2
dd/(U − n�), Jn(x) is the Bessel function of

the first kind and A0 = rdd E0/� [29,33,34].
The magnetic-field term heff

i j is evaluated as

heff
i j =

∑8Jn(A0)Jm(A)Jl (A)t2
pdαi j

3[� + l�][U − n�]
sin ψml

0 , (4)

where
∑

signifies summation over the indices n, m, l with the
constraint n + m + l = 0, A0 = rdd E0/�, A = rpd E0/�, and
ψml

0 = (m − l )ψ0. Here ψ0 is the angle between p-d- and d-d-
orbital bonds [see Fig. 1(b)]. Note that the effective magnetic-
field heff

i j proportional to the SOC αi j is a consequence of the
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FIG. 2. A schematic of the proposed distorted lattice structure
where two consecutive (neighboring) four-site clusters of atoms are
rotated relatively along the x axis. The circularly polarized light is
shined normal to the unrotated x-y plane. Big red atoms signify the
d orbital and the smaller blue atoms correspond to the ligand site.
The spin arrangement (big arrows) on a perfectly aligned (in the xy
plane) cluster is oriented along the z axis, whereas the neighboring
cluster tilted along the z axis leads to a tilted spin arrangement
which has a smaller z component (smaller arrow). The IFE favors
an antiferromagnetic order along the chain.

broken time-reversal symmetry due to the applied circularly
polarized light. Since the effective magnetic field couples to
(Si − S j), it favors an antiferromagnetic static magnetization,
which is consistent with the symmetry analysis.

For a weak laser drive and low frequency, the static mag-
netic field due to IFE is proportional to square of the electric
field and inversely proportional to the frequency. Its [see
Eq. (4)] asymptotic form is given by

heff
i j ≈ 4t2

pdαi j

3�

E2
0 rpd sin ψ0

U�2
(2rpd cos ψ0 + rdd ), (5)

which matches qualitatively with our phenomenological
ansatz. However, as heff

i j couples antiferromagnetically to the
localized spins on the d-orbital sites, the net magnetization
would vanish if all the consecutive four-site clusters are
aligned parallel to the xy plane, whereas if the neighboring
clusters are tilted along the z axis, the emergent Zeeman mag-
netic field would point in two different directions as illustrated
in Fig. 2. In this case, the net magnetization on a particular
site (d orbital) would not be zero and this antiferromagnetic
order induced by the IFE can be realized in broken inver-
sion symmetric systems. The variation of heff , at the laser
frequency � = 10 eV, is illustrated in Fig. 3(a) for a set of
generic parameters.

(b)(a)

FIG. 3. Dependence solid line, perturbation calculations; sym-
bols, exact diagonalization results (see SM [32]) of the IFE magnetic
field due to the circularly polarized light for (a) the single-orbital case
[Eq. (4)] and (b) the multiorbital case [Eq. (9)]. For the single-orbital
case, we use generic material parameters as U = 8 eV, � = 16 eV,
tdd = 1.0 eV, tpd = 1.5 eV, and α3

i j = 0.05 eV, whereas we adopt
the material parameters for α-RuCl3 [47,48] in panel (b). Here we
assume g-factor g = 2 and plot the amplitude of heff

i j .

Multiorbital model. In this case, we consider an inversion
symmetric system and necessarily adopt a multiorbital de-
scription with atomic SOC. For subsequent analysis, we focus
on the Kitaev systems such as α-RuCl3, β-Li2IrO3 where five
electrons reside in the t2g manifold of the TM d orbital [see
Fig. 1(a)], which further splits into jeff = 1/2 and jeff = 3/2
states due to strong SOC [35–41]. For d5-electronic config-
uration, the jeff = 3/2 manifold is completely filled and a
lone electron henceforth resides on the jeff = 1/2 manifold.
The electronic model to capture the effects of SOC and the
charge transfer to the ligand p orbitals is written in terms of
the Kanamori Hamiltonian [42–44] as

H0 = U
∑

iα

nd
iα,↑nd

iα,↓ +
∑

iσσ ′α �=β

(U ′ − δσσ ′JH)nd
iασ ′nd

iβσ

+ JH

∑
iα �=β

(d†
iα↑d†

iα↓diβ↓diβ↑ + d†
iα↑d†

iβ↓diα↓diβ↑)

+ λ

2

∑
i

d†
i (L · S)di + �

∑
i′σ

np
i′σ , (6)

where U,U ′ denote the intra- and interorbital Coulomb re-
pulsions and JH stands for the Hund’s coupling between the
three t2g orbitals: dxy, dyz, and dzx. Here �, as before, denotes
the ligand charge-transfer energy and λ is the strength of the
SOC.

Assuming SOC strength λ is much smaller compared with
the other parameters as U,�,� � λ, the Kanamori Hamilto-
nian can be rewritten in terms of the irreducible representation
of the doubly occupied states in the d orbital [32,45,46] as

H0 =
∑

i

∑
�

∑
g�

U� |i; �, g�〉 〈i; �, g�| + �
∑
i′σ

np
i′σ , (7)

where � corresponds to the particular irreducible represen-
tation and g� characterizes the degeneracy of that state. The
total energy of the four different nondegenerate states is given
[46] as UA1 = U + 2JH, UE = U − JH, UT1 = U − 3JH, and
UT2 = U − JH.

Next, we evaluate the hopping Hamiltonian based on the
inherent symmetries of the octahedral geometry. The Hamil-
tonian in the presence of circularly polarized light is written
as

H1(t ) =
∑
i j,σ

eiφi j (t )[d†
ixzσ d†

iyzσ d†
ixyσ ]

⎡
⎣t1 t2 t4

t2 t1 t4
t4 t4 t3

⎤
⎦

⎡
⎣d jxzσ

d jyzσ

d jxyσ

⎤
⎦

+ tpd

∑
i jσ

[
eiθi′ j (t ) p†

i′σ d jyzσ + eiθ j′ i (t ) p†
j′σ diyzσ

+ eiθ ji′ (t )d†
jxzσ pi′σ + eiθ j j′ (t )d†

jxzσ p j′σ
] + H.c., (8)

where p†
i′σ is the creation operator at the ligand sites, sur-

rounding the TM orbitals, and φi j (t ) and θi′ j (t ) denote the
bond-angle-dependent Peierls phases. For the multiorbital
analysis, we adopt all the parameters entering Eq. (6) and
Eq. (7) from the recent ab initio [47] and photoemission
reports [48] for α-RuCl3 as U = 3.0 eV, JH = 0.45 eV, � =
5 eV, t1 = 0.036 eV, t2 = 0.191 eV, t3 = −0.062 eV, t4 =
−0.024 eV, and tpd = −0.9 eV.
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We employ a similar time-dependent SW transformation
and evaluate the low-energy effective spin model up
to third order in perturbation. In the high-frequency
approximation, the effective Hamiltonian is obtained as
Heff = ∑

〈i j〉 SiμMiμ, jνS jν + ∑
〈i j〉 heff

i j · (Si + S j ), where
μ, ν = x, y, z. The magnetic interactions Miμ, jν (the
expressions are shown in the SM [32,49]) can be controlled
by laser, which imply a promising route to stabilize quantum
spin liquid by tuning the competing interactions in favor of
the quantum spin liquid [36,50–52]. Here we focus on the
photo-induced emergent magnetic-field heff

i j , which is written
in terms of the model parameters as

heff
i j =

∑8Jn(A0)Jm(A)Jl (A)t2
pd

27

sin ψml
0

� + l�

×
[

t1 − t3
U − 3JH − n�

+ t1 − t3
U − JH − n�

]
ẑ, (9)

where
∑

signifies summation over the indices n, m, l with
the constraint n + m + l = 0, A0 = rdd E0/�, A = rpd E0/�,
and ψml

0 = (m − l )ψ0. In contrast with the single-orbital case,
the effective Zeeman magnetic field couples to the symmetric
combination of the spins (Si + S j). Consequently, the applied
polarized light generates a ferromagnetic magnetization in
this case, which was also studied for α-RuCl3 in Ref. [52]
recently using numerical exact diagonalization. Here we em-
phasize that our analysis is applicable to a wider class of Mott
insulators with inversion symmetry.

For weak laser drive and low frequency, heff
i j can be ex-

panded asymptotically as

heff
i j ≈ 4t2

pd (t1 − t3)

27�

E2
0 rpd sin ψ0

�2
(2rpd cos ψ0 + rdd )

×
(

1

U − 3JH
+ 1

U − JH

)
. (10)

Since the TM atoms in the α-RuCl3 unit cell lie in the mirror
plane and have additional inversion symmetry, this result is
consistent with our phenomenological ansatz. The variation of
heff

i j with the laser drive is shown in Fig. 3(b) for � = 6.5 eV.
Discussion and conclusion. In this work we use the Floquet

theory to study the IFE in Mott insulators. The Floquet formu-
lation allows us to study the strong drive region systematically
that goes beyond the weak drive results known before, i.e., the
induced IFE Zeeman field hIFE ∝ E(�) × E∗(�). It also in-
forms the heating associated with IFE due to laser irradiation.
Our results are valid in the Floquet prethermal region, which
can be exponentially long in time before the system evolves
into the infinite temperature state if the laser frequency is
tuned away from resonances of the system [53–64]. The res-
onances in our models include the resonances in the Hubbard
gap, the charge transfer gap, the crystal-field splitting gap,
and the spin-orbit splitting gap of the jeff multiplets. The IFE
is resonantly enhanced near resonances in a short-time scale,

but heating quickly dominates, which invalidates the Floquet
description. The IFE magnetic field can be of the order of 10
Tesla even away from the resonances.

We proposed a toy model (see Fig. 2) to demonstrate the
antiferromagnetic order favored by the IFE in materials with
broken inversion symmetry. Certain distorted layered honey-
comb compounds, such as Li3Cu2SbO6 [65], can also realize
our prediction. The single-orbital model can be realized in
similar lattice geometries with a d9-electronic configuration.
The SOC can be induced by placing the thin films atop a
substrate with heavy ions. To clearly distinguish the antifer-
romagnetic order induced by IFE from the antiferromagnetic
Heisenberg exchange interaction, experiments can be per-
formed above the magnetic ordering temperature. Below
the ordering temperature a competition between the spin-
exchange couplings and the induced magnetic field heff

i j can
stabilize complex magnetic orders.

We specifically focused on a d5-electronic configuration
in edge-sharing octahedral structure for the IFE in the mul-
tiorbital systems. Throughout the analysis, we assumed a
perpendicular incidence of light polarization to the TM-
ligand-TM atom plane. Apart from the laser amplitude and
frequency, the angle between the light polarization and the
TM-ligand-TM atom plane, for an oblique incidence, provides
yet another tunability to control the spin-exchange couplings
and the overall sign of both ferro- and antiferromagnetic IFE
Zeeman field [32]. By choosing the incident angle, we can
stabilize an antiferromagnetic order using the IFE by avoiding
a complete cancellation of the IFE Zeeman field between
neighboring clusters.

To summarize, we studied the IFE in Mott insulators ir-
radiated by a circularly polarized light. Based on both the
symmetry consideration and the microscopic model calcu-
lations using the Floquet theory, we showed that the IFE
in Mott insulators without (with) inversion symmetry favor
antiferromagnetic (ferromagnetic) order. Our results suggest a
promising route to ultrafast control of magnetic order in Mott
insulators by light.

Note added. We recently became aware of an experiment
[66] where a similar antiferromagnetic coupling of response
functions (polarization) to neighboring spins is observed
in a periodically driven noncentrosymmetric Mott insulator
(MnPS3).
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