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Another exact ground state of a two-dimensional quantum antiferromagnet
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We present the exact dimer ground state of a quantum antiferromagnet on the maple-leaf lattice. A coupling
anisotropy for one of the three inequivalent nearest-neighbor bonds is sufficient to stabilize the dimer state.
Together with the Shastry-Sutherland Hamiltonian, we show that this is the only other model with an exact
dimer ground state for all two-dimensional lattices with uniform tilings.
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Introduction. For decades, quantum antiferromagnets have
been at the center of condensed matter research [1–3].
Frustrated magnetic couplings, combined with the noncom-
mutativity of quantum spin operators, make it a challenging
task to identify models which allow for an analytical under-
standing of their ground states. In particular, this applies to
spatial dimensions greater than one, where integrability is
more elusive, the Bethe ansatz, in general, does not apply, and
conformal symmetry does not generate an extensive amount
of conserved operators.

A first pivotal step in this direction was reached by Shastry
and Sutherland in 1981 [4] where, in continuation of a spin
chain model by Majumdar and Ghosh [5], the first quantum
antiferromagnet with uniform tilings was found to exhibit
an exact dimer ground state. While a significant fraction of
the research activity subsequently shifted to topologically or-
dered exact ground states of quantum antiferromagnets such
as chiral spin liquids [6,7], valence bond liquids [8,9], or
the Z2 spin liquid realized in the Kitaev model [10–12], the
Shastry-Sutherland model (SSM) has prevailed as an im-
portant crystallization point for discoveries and theoretical
developments in quantum antiferromagnets.

In this Letter, we propose a spin model defined on the
maple-leaf lattice. The maple-leaf tiling is called snub tri-
hexagonal tiling (p6 space group), where four triangles and
one hexagon surround each site of the lattice (Fig. 1). This
corresponds to a 1/7-site (1/6-bond) depleted version of the
triangular lattice with coordination number 5 [13]. We find
that the phase diagram of our model hosts an exact dimer
ground state, and show that our Hamiltonian, aside from the
SSM, is the only other such two-dimensional (2D) model with
uniform tilings.

Model. Our Hamiltonian is given by

H =
∑
〈kl〉

hkl +
∑
〈km〉

hkm + 2α
∑
〈lm〉

hlm + B
∑

i

Sz
i . (1)

Aside from a Zeeman term, there are separate summations
over the three inequivalent nearest-neighbor bonds kl , km,
and lm on the maple-leaf lattice denoted blue (dashed), red

(dotted), and green (double line), respectively (Fig. 1). hi j rep-
resents the XXZ-type spin exchange interaction (Jz, J⊥ > 0)

hi j = JzS
z
i Sz

j + J⊥
(
Sx

i Sx
j + Sy

i Sy
j

)
(2)

between the sites i and j, where Sμ
i denotes the μ = x, y, z

component of the su(2) spin operator acting on the spin-S
representation on site i. We label (1) as the maple-leaf model
(MLM). The Heisenberg model on the maple-leaf lattice has
been studied previously [14–17], where the exact dimer state
is argued to be an eigenstate [14] and some numerical in-
dication of a pronounced dimerization propensity has been
found [16].

Ground state analysis. To achieve an exact solution of the
MLM, we first rewrite the bond summations in (1) as the sum
over interacting spins on triangles

(3)

For this, we have split the interaction 2αhlm on the double
green bonds in Fig. 1 to construct two adjacent triangles
sharing this bond. These triangles are formed by pairwise
differently colored bond interactions

h� = hkl + hkm + αhlm + B

2

(
Sz

l + Sz
m

)
. (4)

From the triangular decomposition, (1) turns out to be a
frustration-free model [4,5,18,19], in the sense that the ground
state minimizes the energy of each h� individually. Note that
if there are N sites for the maple-leaf lattice, there are N such
tricolored triangles and therefore N/2 green bonds.

For large α, the ground state of a single tricolored triangle
is a singlet of the spins forming the green bond, which is
strongest among the three types of nearest-neighbor bonds,
denoted by |[lm]〉. Moreover, (hkl + hkm)|[lm]〉 = 0, leading
to the first two terms in (4) not to contribute to the energy of
the triangle. We construct the tensor product state

|ψ〉 =
⊗
〈lm〉

|[lm]〉, (5)
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FIG. 1. Maple-leaf lattice (left) and the dimer eigenstate of the
Hamiltonian in (1) (right). According to (1) there are three inequiva-
lent nearest-neighbor couplings denoted red (dotted), blue (dashed),
and green (double line). The singlets (yellow ellipses) reside on the
green bonds. As the red and blue couplings do not contribute to the
energy, it is an eigenstate of (1).

which covers the entire spin lattice (see Fig. 1). The first two
terms of (1) do not renormalize |ψ〉, thus making (5) an exact
eigenstate of the MLM. The corresponding energy density,
which is solely determined by the interactions on the green
bonds, is given by

E/N = −α
S(S + 1)

3
(Jz + 2J⊥). (6)

From the variational principle, if e� is the ground state energy
of the individual triangles (4), then (6) serves as an upper
bound for the ground state energy density of the system, i.e.,
E0/N � e�. The equality E0/N = e� should hold when α is
greater than a lower bound αb1, where the dimer state |ψ〉
becomes the exact ground state of the MLM. For spin- 1

2 , this

bound is given by αb1 = (B+Jz )+
√

(B+Jz )2+4J⊥(Jz+J⊥ )
2(Jz+J⊥ ) , and can

likewise be obtained for other spin-S representations [20].
Note that while (5) ceases to be the ground state of the MLM
for α < αb1 from a variational principle, it might still be the
exact ground state. In any case, (5) still is an exact eigenstate
of the MLM, bearing some similarity to the motif of scar states
in the context of many-body localization [21].

In order to allow for an exact dimer ground state in accor-
dance with the triangle decomposition explained above, any
model needs to satisfy two conditions: (i) Every bond must be
part of a triangle where at least one bond is symmetry inequiv-
alent and (ii) this bond must be shared between two triangles.
For MLM, the green bonds are not related by symmetry to
the other bonds, which satisfies (i), and are shared between
two triangles, which satisfies (ii). Note that, to meet (i), we in-
tentionally avoid a triangle decomposition involving red bond
only triangles, but arrange them in three tricolored triangles
accordingly. Further analyzing the geometric restrictions of
uniformly tiling Euclidean space [22,23], the exact dimer state
construction above confines us to the lattices with coordi-
nation number 5 made with the tiles of vertex configuration
3.3.3.3.6 or 3.3.4.3.4, where the sequence of numbers repre-
sents the number of sides of the faces around the vertex [20].
The 1-uniform tilings of the former generate the maple-leaf
lattice, while the latter yields the Shastry-Sutherland model

(SSM), where the existence of an exact dimer state was first
found [4]. These two tiles can also produce other lattices
with k-uniform tilings for k � 2, but either condition (i) or
(ii) is violated in all those cases. Thus, the MLM and SSM
exhaust the list of all uniform 2D lattices that can host an exact
dimer state (5). Except for MLM and SSM, any alternative
2D model with an exact dimer state is either defined on a
lattice with nonuniform tilings or includes further neighbor
couplings [24,25]. For the remainder part of this Letter where
we focus on the analysis of the coupling anisotropy α in
the MLM, we confine ourselves to (1) with Jz = J⊥ = 1 and
B = 0.

Classical limit. Setting S → ∞ [26,27], the MLM for α �
1 yields local 120◦ order on individual red triangles, with a
nonlocal spin canting induced by the blue and the green bonds
[15,16,28], which we denote as canted 120◦ (c120◦) order in
the following. The energy is given by

Ec/N = −1

2
+ cos(�) + α sin

(
� − π

6

)
, (7)

where � = π − cos−1( 2−α

2
√

α2−α+1
) parametrizes the canting

between spins across the blue bonds (Fig. 2).
The canting can be reconciled from the limit α = 0, where

the frustrated red triangles will assume a 120◦ order, while
blue bonds only provide antiparallel orientation of neighbor-
ing spins without introducing any additional frustration. For
α > 0, the green bonds start to contest the antiferromagnetic
ordering on the blue bonds, introducing the canting between
neighboring spins on different red triangles. In the particu-
lar case of α = 1, the MLM produces a uniform 120◦ order
akin to the Heisenberg antiferromagnet on a triangular lattice.
Similar to the exact dimer ground state analysis above, one
can understand this as one splits the green bonds, leading to
isolated triangular motifs of three tricolored triangles, where
the equality of all bond couplings establishes the uniform
120◦ order. For α > 1, aside from the trivial decoupled dimer
state limit for α → ∞, a large-N analysis [29] ceases to
give a unique ground state. There, as one effectively removes
the spin normalization constraint, we find a subextensive
degeneracy of ground states [20]. In contrast to the c120◦

FIG. 2. Canted 120◦ order: Spins on red triangles (brown) show
120◦ order, while those connected by blue bonds are canted by an
angle �(α). As a function of α, spins across blue bonds are antipar-
allel for α = 0 (orange), uniform 120◦ order appears for α = 1 (light
green), and decoupled green dimer bonds are formed for α → ∞
(light blue).
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FIG. 3. Dimer phase diagram of MLM as a function of bond
coupling α and spin S. αb1 denotes a lower bound above which the
MLM is exactly solvable. αb2 is an upper bound of α below which
c120◦ serves as a better lower bound of energy than (6). αc is the
numerically obtained critical value of α above which (5) stabilizes.

state for α < 1, this manifold cannot form a normalized spin
state. In accordance with earlier studies [16], for normalized
spins, we do not find any lower-energy state than the c120◦
state.

The particular source of frustration in the MLM plays a
pivotal role in preventing the system from achieving a global
energy minimum by simultaneously minimizing the individ-
ual local energies of the tricolored triangles, and thereby
forbids, apart from the special point α = 1, the stabilization
of a commensurate magnetic ordering. Instead, our observed
canted 120◦ order bears similarities to frustration-driven
block-spiral magnetism found in one-dimensional strongly in-
teracting itinerant fermion models away from half filling (see
Ref. [30] and references therein), with 120◦-ordered triangles
spiraling with an α-dependent pitch. To our knowledge, the
MLM is the only example where such a state is realized in
either two spatial dimensions or within a local spin model.

Dimer phase diagram. Together with αb1 from the exact
dimer ground state analysis, we complement our analysis of
the MLM through a density matrix renormalization group
(DMRG) study in order to obtain an estimate of the critical
αc, such that for α � αc, (5) is the exact ground state. The
DMRG calculations are performed on a 108-site cluster [20]
using the ITENSOR library [31]. Combined, the dimer phase
diagram of the MLM is presented in Fig. 3, where we only
show those results for different values of S where the DMRG
results are converged. As expected, αc turns out to be smaller
than αb1 which takes the values 1 for S = 1/2 and 1 + S for
S � 1. Even though this is beyond the numerical range of
investigation, we expect αc to converge asymptotically against
αb1 for increasing S. For the sake of an additional consistency
check, we evaluate αb2 below which the c120◦ state serves as
a better lower bound for the energy than the dimer state (5),
by comparing e� and the c120◦ energy given in (7) rescaled

by spin S. We find αb2 = S
2S+1 ( 1

2 +
√

3S+2
2 ) < αc. Together,

the yellow regime in Fig. 3 highlights the parameter space
in which we find a dimer ground state. Note that, for our
dimer phase diagram, we have only focused on the stability

of the nearest-neighbor dimer state (5). Furthermore, in order
to specify an ordered state out of which the dimerized regime
might evolve, the classical limit has provided us with a candi-
date c120◦ order. Our analysis does not exclude the possibility
that the MLM can host other exotic quantum disordered
phases due to its high frustration for α < αc. It highlights
the nature of the phase transition into the dimerized phase,
and possibly additional phase transitions featuring deconfined
criticality [32], as a future problem.

It is insightful to compare our dimer phase diagram Fig. 3
with the related scenario in the SSM, for which we have
already chosen the appropriate parametrization of (1) in hind-
sight. We find that the MLM is even more frustrated than
the SSM, leading to a stable dimer ground state extending
to lower α: For the isotropic case, the SSM is known to
yield αSSM

c ≈ 0.74 [33,34]. Small cluster results from exact
diagonalization and the coupled cluster method on a related
model to MLM suggest αc to be 0.725 [16]. Our larger cluster
DMRG calculations, however, indicate an even substantially
smaller value αc ≈ 0.675. The MLM thus sets a new bar of
frustration for a 2D model with uniform tilings where an exact
dimer ground state appears. In comparison to the SSM, this
is rooted in the additional frustration emanating from the red
triangles (Fig. 1).

Conclusions and outlook. We have introduced the exact
dimer ground state solution of the MLM. Aside from the SSM,
we find that it is the only other such model in two spatial
dimensions with uniform tilings exhibiting such a property. In
comparison to the SSM, we find a significantly larger region
of stability of the dimer ground state, which is a consequence
of the enhanced frustration inherent to the MLM. Magnetic
ordering phenomena in the MLM likewise promise highly ex-
otic behavior. This already becomes apparent from the c120◦
order in the classical limit, where the canting continuously
adjusts to the given bond anisotropy of interactions α.

The MLM opens up several further theoretical and exper-
imental explorations. First, the stability of the dimer state
(5) encourages further investigation within an extended pa-
rameter space involving bond and spin exchange anisotropies
in (1). Second, by allowing for finite B in (1), the MLM is
expected to show a series of magnetization plateaus and triplet
bound states, which promises a phenomenology as rich as
the SSM [35–39]. The exact dimer state has a 3-dimer unit
cell, whose minimal excitation is a single triplet. Therefore,
from this elementary estimate, 1/3 and 2/3 magnetization
plateaus will most certainly appear, complemented by further
plateaus resulting from a triplet bound state hierarchy, which
is typically located at fractions that are rational multiples of
1/3. This reasoning would already explain the early findings
from preliminary exact diagonalization studies in Ref. [16].

There are multiple material realizations of a spin sys-
tem on the maple-leaf lattice [40–44]. For the MLM,
MgMn3O7.3H2O can be a promising candidate. In general,
similar to how the SSM and its experimental realizations have
evolved in the past decades, we consider it a fruitful enter-
prise to reexamine existing maple-leaf compounds and their
derivative material families to find new compounds that could
host the MLM dimer state. This might be further facilitated
by the extremely high frustration of the MLM, as the required
minimal bond anisotropy 2α is smaller than for the SSM.
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