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Anticollinear order and degeneracy lifting in square lattice antiferromagnet LaSrCrO4
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We report the static and dynamic magnetic properties of LaSrCrO4, a seemingly canonical spin-3/2 square-
lattice antiferromagnet that exhibits frustration between magnetic layers—owing to their AB stacking—and
offers a rare testbed to investigate accidental-degeneracy lifting in magnetism. Neutron diffraction experiments
on single-crystal samples uncover a remarkable anticollinear magnetic order below TN = 170 K characterized
by a Néel arrangement of the spins within each layer and an orthogonal arrangement between adjacent layers.
To understand the origin of this unusual magnetic structure, we analyze the spin-wave excitation spectrum by
means of inelastic neutron scattering and bulk measurements. A spectral gap of 0.5 meV, along with a spin-flop
transition at 3.2 T, reflect the energy scale associated with the degeneracy-lifting. A minimal model to explain
these observations requires both a positive biquadratic interlayer exchange and dipolar interactions, both of which
are on the order of 10−4 meV, only a few parts per million of the dominant exchange interaction J1 ≈ 11 meV.
These results provide direct evidence for the selection of a noncollinear magnetic structure by the combined
effect of two distinct degeneracy lifting interactions.

DOI: 10.1103/PhysRevB.105.L180411

I. INTRODUCTION

The emergence of accidental ground-state degeneracy and
its lifting are central to our understanding of frustrated mag-
netism [1–3]. The interplay between exchange interactions
and lattice geometry often result in a family of accidentally
degenerate ground states that are unrelated by symmetry.
The degeneracy is then lifted either by subleading interac-
tions, e.g., magnetic dipolar interaction [4–8], magnetoelastic
coupling [9,10], etc. or by fluctuations that normally work
against ordering, e.g., quenched disorder, thermal or quantum
fluctuations, through the “order by disorder (ObD)” mech-
anism [11–17]. The diverse degeneracy lifting mechanisms
can stabilize a host of magnetic orders in materials with sim-
ilar structures and chemical compositions [18,19], and their
competition offers flexible tunablity in and out of equilibrium
[20,21]. Yet experimentally revealing the degeneracy lifting
mechanism is a challenging task due to the minuscule energy
scales, sometimes in one part per million of the dominant
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exchange interaction associated with these subleading inter-
actions and/or the ObD effects [22].

The quasi-two-dimensional (2D) square lattice Heisenberg
antiferromagnet with AB stacking is a prominent model sys-
tem to illustrate the diverse degeneracy lifting mechanisms
and the wealth of resulting magnetic orders[15,23–25]. The
antiferromagnetic intralayer exchange interaction stabilizes
a 2D Néel order in each layer. However, the interlayer ex-
change interactions are frustrated due to the AB stacking.
Consequently, the Néel vectors in two adjacent layers re-
main decoupled at the mean-field level, thereby giving rise
to a continuous manifold of accidentally degenerate ground
states, which can then be selected by various mechanisms. In
particular, the thermal and quantum fluctuations stabilize the
collinear arrangement of Néel vectors through the ObD mech-
anism, whereas the quenched disorder favors anticollinear
orders where the Néel vectors are orthogonal [15].

Experimentally, such interlayer frustration exists in a
large family of transition metal oxides with a layered per-
ovskite structure of the K2NiF4 type [space group I4/mmm,
Fig. 2(a)] and easy-plane single-ion anisotropy. Focusing
on simple systems without secondary magnetic lattices or
electron/hole doping, including La2MO4 (M = Cu [26], Ni
[27,28], Co [29–31]), LaSrFeO4 [32], and Sr2CuO2Cl2 [33],
all of these compounds exhibit collinear orders without ex-
ception [Figs. 1(b) and 1(c)]. In La2MO4 (M = Cu, Ni, Co),

2469-9950/2022/105(18)/L180411(7) L180411-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4324-0410
https://orcid.org/0000-0002-8994-0175
https://orcid.org/0000-0002-5970-4980
https://orcid.org/0000-0001-7477-4648
https://orcid.org/0000-0001-7884-9715
https://orcid.org/0000-0002-4969-1960
https://orcid.org/0000-0002-3974-626X
https://orcid.org/0000-0003-2772-8440
https://orcid.org/0000-0001-6653-3051
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L180411&domain=pdf&date_stamp=2022-05-23
https://doi.org/10.1103/PhysRevB.105.L180411


JING ZHOU et al. PHYSICAL REVIEW B 105, L180411 (2022)

FIG. 1. (a) The quasi-2D square lattice antiferromagnet with AB
stacking comprises of two sublattices (dubbed A and B), each hosting
a 3D Néel order. The two Néel vectors are decoupled at the mean-
field level owing to the frustrated interlayer coupling. An easy-plane
single-ion anisotropy forces the Néel vectors to be in the crystallo-
graphic ab plane, which are then parametrized by their respective
azimuthal angles (φa, φb). (b) Collinear spin structure with φa =
φb = π

4 observed in La2CuO4 [26], Sr2CuO2Cl2 [33], LaSrFeO4

[32], and La2CoO4 in the orthorhombic phase [29]. (c) Collinear
spin structure with φa = φb = 3π

4 for La2NiO4 [27] and possibly
La2CoO4 in the low-temperature tetragonal phase [29,30]. (d) An-
ticollinear state with φa = 0, φb = π

2 , for LaSrCrO4 reported in this
work. (e) The other symmetry-inequivalent anticollinear order with
φa = 0, φb = − π

2 .

the orthorhombic lattice distortion lifts the degeneracy and
stabilizes the collinear order [27,29,34]. In LaSrFeO4 and
Sr2CuO2Cl2, the lattice distortion is absent; the degeneracy
lifting mechanism is less clear though thermal or quantum
fluctuations are likely responsible [15,25].

In this work, we investigate a much less characterized
member of this material family, LaSrCrO4 (LSCrO) [35–37].
Using neutron-scattering measurements on a single-crystal
sample, we reveal a striking anticollinear magnetic ground
state [Fig. 1(d)] that is distinct from all the compounds men-
tioned above. Combining theoretical analysis with various
experimental measurements, we show that the magnetic dipo-
lar interaction and the biquadratic spin-exchange interaction,
both on the order of 10−5 (10 ppm) of the main exchange
interaction J1, are responsible for lifting the degeneracy and
stabilizing the anticollinear state in this material. Our results
thus establish LSCrO as a rare example where the degener-
acy lifting interactions with minuscule energy scales can be
exposed unambiguously.

II. ANTICOLLINEAR ORDER

We grow for the first time centimeter-sized single crystals
of LSCrO via the floating zone technique [40]. X-ray and
neutron diffraction measurements confirm that it crystallizes
in the tetragonal space group I4/mmm at room temperature
with lattice constants a = b = 3.853(6) Å, c = 12.475(4) Å
[Fig. 2(a)], consistent with previous reports [35,37]. By using
Rietveld refinement of the nuclear Bragg peaks measured at
various temperatures, we found no structural phase transitions
down to 4 K. Similar to other quasi-2D systems [41], the mag-
netic ordering in LSCrO occurs in two steps. At temperatures
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FIG. 2. (a) Nuclear and magnetic unit cells (represented by
solid and dotted lines) of LSCrO. Colored spheres present dif-
ferent atoms and red/black arrows presents Cr3+ spins that are
orthogonal between adjacent layers. Spin interactions J1, J2, D, K
in Eqs. (1) and (2) are labeled for selective Cr-Cr bonds. (b) Elas-
tic neutron-scattering patterns in the (HHL) plane, measured on
SEQUOIA (Spallation Neutron Source, Oak Ridge National Labo-
ratory, Ref. [38]) at T = 240 and 5 K, respectively. Intensities are
integrated within ±0.1 reciprocal-lattice unit (r.l.u.) in the [KK̄0] di-
rection. (c) Rietveld refinement of the magnetic reflections collected
on HB3a (High Flux Isotope Reactor, ORNL, Ref. [39]) at 4 K based
on the magnetic structure shown in (a). (d) Temperature dependence
of the magnetic diffuse scattering intensity at Q = (0.5, 0.5, 0.5)
and magnetic Bragg peak intensity at Q = (0.5, 0.5, 1). The onset
temperatures and 2D and 3D magnetic ordering are indicated by the
arrows.

below 350 K, short-ranged 2D Néel order develops gradually,
evidenced by the increasing magnetic scattering intensities at
the M point of the square lattice Brillouin zone, which are
diffuse along the L direction [Figs. 2(b) and 2(d)].

Below TN = 170 K, the diffuse scattering quickly con-
centrates into sharp magnetic Bragg peaks at wave-vectors
Q = (H + 1

2 , K + 1
2 , L) in reciprocal space [Fig. 2(b)], pin-

pointing a 3D ordering of Cr3+ spins. Interestingly, magnetic
Bragg peaks are observed at Q with both even and odd L
[Figs. 2(b) and 2(c)]. This observation cannot be explained
by the 3D Néel order with a single ordering wave vector,
where the magnetic structure factor would be extinct at either
even or odd L [40,42]. In other words, the spins in adjacent
planes cannot be strictly collinear. A Rietveld refinement of
magnetic Bragg peak intensities collected at 4 K indicates that
the magnetic structure is best fit by a 2-k model [k1 = (1/2,
1/2, 0) and k2 = (1/2, −1/2, 0)] with the ordered moment of
2.25(2)μB/Cr3+, characterized by the magnetic space group
PC42/ncm [43]. The resulting magnetic structure is shown
in Fig. 2(a), which is identical to the anticollinear structure
shown in Fig. 1(d).
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FIG. 3. (a) Spin-wave excitations along high-symmetry direc-
tions in the 2D Brillouin zone (inset) measured on SEQUOIA using
Ei = 120 meV. Data are integrated within H, K= ±0.2 and L = ±8
r.l.u. The flat modes near 10 and 20 meV are optical phonons at high
L values. (b) Dispersion along H near the M-point of the 2D Brillouin
zone measured at Ei = 20 meV. Data integration range is H (K ) =
±0.03 and L = ±0.15 r.l.u. Dashed lines in (a) (b) represent best fit
to Eq. 1 from LSWT. (c) Dispersion along [0.5, 0.5, L] measured at
Ei = 8 meV. Data integration range is H, K = ±0.02 r.l.u. (d) Dy-
namic magnetic susceptibility at the M point, obtained by integrating
the data in (c). All data shown in this figure are collected at T = 5 K
and symmetrized according to the D4h point group symmetry of the
Cr3+ site.

III. SPIN-WAVE EXCITATIONS

We investigate the low-temperature magnetic excitation
spectrum of LSCrO using time-of-flight neutron spectroscopy
with various neutron incident energies (Ei) [40]. Figure 3(a)
shows the overall energy-momentum dependence of the
measured dynamic structure factor S(q, ω) along the high-
symmetry directions of the 2D Brillouin zone, where the
scattering intensities are integrated along the L direction. An
intense and dispersive spin-wave band emanates from the M
point. Its intensities gradually diminish when moving to the
� point. The spin-wave shows almost no dispersion from
the X point to the Y point, suggesting that further-neighbor
exchange couplings [44] and quantum anomaly effects [45]
are small.

Using a lower incident energy, Ei = 20 meV, and there-
fore better energy resolution, we identify an energy gap of
4.5(1) meV in the M-point spectrum [indicated by arrows
in Figs. 3(b) and 3(d)]. We attribute this gap to the weak,
easy-plane single-ion anisotropy of the Cr3+ moments.

Given the large spin carried by the Cr3+ ions [electron con-
figuration t3

2g, S = 3/2], we expect that the observed spectrum
can be understood in terms of the linear spin-wave theory
(LSWT). We find that the following minimal model Hamil-
tonian, which includes the first- (J1) and the second-neighbor

(J2) exchange interactions, as well as an easy-plane single-ion
anisotropy (A), can well describe the in-plane dispersion of
the spin wave within the LSWT framework,

H0 = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j + A
∑

i

(
Sz

i

)2
, (1)

where the summation 〈i j〉n runs over n-th neighbor spin pairs.
We attain the best fit [dashed black lines in Figs. 3(a) and
3(b)] with J1 = 10.6(1) meV, J2 = 0.16(6) meV, and A =
0.05(1) meV. The energy scale of the J1 exchange is com-
parable to the onset temperature for the short-ranged 2D Néel
order.

Finally, we examine the low-energy dispersion along the
L direction at the M point with the best energy resolution
obtained at Ei = 8 meV [Fig. 3(c)]. Remarkably, the spectrum
is gaped throughout. As the gaps do not show discernible L de-
pendence, we conclude that the interlayer couplings between
Cr3+ spins of adjacent layers are smaller than the instru-
ment resolution [>0.1 meV]. By integrating L in Fig. 3(c)
and avoiding regions where there is inelastic leakage from
magnetic Bragg peaks, we obtain the energy dependence of
dynamic susceptibility χ ′′(Q, ω), which clearly reveals a sec-
ond, much smaller gap � ≈ 0.5(1) meV [Fig. 3(d)].

The weak interlayer coupling is expected given the relative
low 3D ordering temperature, kBTN/[J1S(S + 1)] = 0.391. As
a crude estimate, we neglect the small easy-plane anisotropy
and utilize the published ordering temperatures of the quasi-
2D Heisenberg model as determined by quantum Monte Carlo
simulations [46,47]. We estimate the interlayer coupling is in
the range of 10−6 to 10−3 meV [40].

IV. INTERLAYER COUPLINGS

While the minimal model Eq. (1) can produce the in-plane
dispersion of the spin wave, it is silent on the origin of the 3D
magnetic structure. We now discuss the interlayer couplings
that can stabilize the anticollinear state of LSCrO.

To set the stage, we determine the symmetry-allowed cou-
plings between the Néel vectors associated with the two
sublattices. The single-ion anisotropy forces the Néel vectors
to lie in the plane. We parametrize the orientation of the Néel
vector in the sublattice A/B by the azimuthal angle φa/φb, re-
spectively [Fig. 1(a)]. The interaction energy can be expanded
as Fourier series of φa,b. Up to the fourth-order harmonics,
our symmetry analysis yields three algebraically independent
coupling terms [40]: − sin(φa + φb), − cos(4φa) − cos(4φb),
and cos(2φa − 2φb). The signs at the front are needed to ener-
getically favor the anticollinear state, i.e., φa = 0, φb = π/2
(and symmetry-related configurations). Each term admits a
physical interpretation: The first term arises from the magnetic
(pseudo) dipolar interaction; the second describes an in-plane,
fourfold symmetric single-ion anisotropy; the last comes from
the biquadratic exchange interaction.

Stabilizing the anticollinear order found in LSCrO re-
quires the combination of either (a) dipolar interaction
and biquadratic exchange or (b) dipolar interaction and
single-ion anisotropy. Note that the combination of the
biquadratic exchange and the single-ion anisotropy does
not fully lift the accidental degeneracy—it admits another,
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symmetry-inequivalent anticollinear state φa = 0, φb = −π/2
[Fig. 1(e)] in addition to the state observed in LSCrO.

Among the two possible combinations, we find the first can
produce the correct spin-flop transition observed in LSCrO
(see below). We thus arrive at the following minimal Hamil-
tonian for the interlayer coupling,

H′ =
∑
〈i j〉3

D(Si · S j − 3(Si · n̂i j )(S j · n̂i j )) + K (Si · S j )
2,

(2)

where the summation is over all third-neighbor pairs; n̂i j is the
unit vector pointing from site i to site j. D > 0 and K > 0 are
strength of the dipolar and biqudratic couplings, respectively.

V. SPIN-FLOP TRANSITIONS

We now turn to the experimental test of the model Eq. (2).
A sensitive diagnostic for the interlayer coupling is the spin-
flop transition driven by a magnetic field applied within
the ab plane. The Zeeman coupling favors the Néel vec-
tors to be perpendicular to the field in each layer. When
the field is sufficiently strong, this effect can overcome the
dipolar/biquadratic interactions and stabilize a collinear state.
The resulting evolution from an anticollinear to a collinear
magnetic structure thus offers a probe of the nature and
strength of the interlayer couplings.

Our theoretical analysis based on the model Eq. (2) reveals
distinct magnetization processes when the field is aligned
along different high-symmetry directions. Within increasing
field ‖ [110], we find the angle between the Néel vectors of
the two sublattices gradually increases from π/2 to π , at
which point the system enters the collinear state. Meanwhile,
the Néel vectors remain symmetric with respect to the field
[Fig. 4(a)]. The onset field of the collinear state is given by
gμBμ0Hc = 16

√
J1KS4. Note this process is a crossover as

opposed to a phase transition in that no symmetry is sponta-
neously broken.

By contrast, with the field ‖ [100], the Néel vectors are
initially pinned to the anticollinear state [Fig. 4(b)]. A spin-
flop transition occurs at Hc1, at which point the Néel vectors
are no longer orthogonal and evolve toward the collinear state
whereby spontaneously breaking the π -rotation symmetry
with respect to [100]. The system enters the collinear state
at Hc2 although the collinear Néel vectors are not strictly
orthogonal to the field. No symmetry breaking occurs at Hc2

and thus it constitutes a crossover. With increasing field, the
collinear Néel vectors continuously approach the limit where
they are orthogonal to the field. Hc1,c2 are determined by

(gμBμ0Hc1)2

32J1
=

√
KD, (3a)

(gμBμ0Hc2)2

32J1
=

√
K2

2
+ K

2

√
K2 + 4D2, (3b)

where K = 8KS4 and D = 12a2DS2/(2a2 + c2).
These predictions are confirmed experimentally by our dc

magnetization measurements. The differential magnetization
in [110] direction shows a maximum near 5 T, corresponding
to the crossover from noncollinear to collinear states at Hc
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FIG. 4. (a), (b) The azimuthal angle of the Néel vectors, φa and
φb, as a function of the applied magnetic field H along (a) [110]
and (b) [100] directions. Inset: Configurations of the Néel vectors at
selective fields. (c), (d) Differential magnetization at 2 and 200 K
measured with H applied along (c) [110] and (d) [100] directions.
(e) Field dependence of the magnetic Bragg peak intensities at Q
= (0.5,0.5,0) and Q = (0.5,0.5,1), measured at T = 2 K on the
CORELLI diffuse scattering spectrometer (SNS, ORNL, Ref. [48])
with magnetic field applied along the [11̄0] direction. (f) Field de-
pendence of the relative velocity variation of the transverse mode
propagating along the x axis and polarized along the y axis VLxPy,
measured at T = 2 K for H along the a axis (black curve) and along
the c axis (blue curve).

[Fig. 4(c)]. By contrast, in the field ‖ [100], we observe in-
flection points at 3.15(5) and 5 T [Fig. 4(d)]. We identify the
inflection near 3 T as the spin-flop transition at Hc1 and the one
near 5 T as the crossover at Hc2. This interpretation is further
supported by ultrasound velocity measurements [Fig. 4(f)]—
a sensitive technique to investigate second-order magnetic
phase transitions [49,50]. When the field is applied in the
[100] direction, the relative speed of the transverse sound
wave shows a clear minimum at 3.27 T, indicative of a phase
transition, but no anomaly is found at 5 T. Meanwhile, neutron
diffraction measurement with field ‖ [110] reveals a gradual
increase (decrease) of magnetic Bragg peak intensities with
even (odd) L values up to the highest measured magnetic field
of 4 T [Fig. 4(e)], consistent with the picture of a gradual
rotation of Néel vectors [Fig. 4(a)].

Using the experimentally measured value of Hc1 and Hc2

in the [100] direction, we estimate DS2 ≈ 1.4 × 10−4 meV
and KS4 ≈ 1.3 × 10−4 meV. Using these parameters, we de-
termine the crossover field μ0Hc ≈ 5 T in the [110] direction,
in agreement with the experiment. Meanwhile, the LSWT
predicts that all four branches of the spin waves are gapped.
The interlayer interactions open two gaps with values 0.2 and
0.6 meV. The 0.6 meV gap is consistent with the observed
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spectral gap � [Fig. 3(d)], whereas the 0.2 meV gap is beyond
the energy resolution of our measurements.

We note that the alternative model for interlayer coupling,
namely, the dipolar coupling and the fourfold symmetric
single-ion anisotropy, produces first-order spin-flop transi-
tions in the [100] directions [40], which is inconsistent with
the experiment.

VI. DISCUSSION

Having established the nature and strength of interlayer in-
teractions [Eq. (2)], we now discuss their microscopic origins.
The dipolar coupling D may originate from either the pseu-
dodipolar coupling, commonly found in systems with strong
spin-orbital coupling, or the magnetic dipolar interaction.
Given the filled t2g shell of Cr3+, we do not expect significant
spin-orbital coupling and thus rules out the former possibility.
Note that our case is very different from isostructural com-
pounds with a second, magnetic rare-earth sublattice, e.g.,
R2CuO4 (R = Ce, Pr, Nd) [42,51–53], which could mediate
the pseudodipolar coupling [54]. Instead, we find that D is
naturally attributed to the magnetic dipolar coupling. Our
magnetostatic calculation yields DS2 ≈ 2 × 10−4 meV based
on the refined moment of 2.25μB/Cr3+, consistent with the
estimate based on the spin-flop field. Dipolar coupling is
known to be crucial for rare-earth magnets with icelike frus-
tration [19,55–57] where the exchange interactions are small.
Our work demonstrates that it can also play an important
role in systems with comparatively much stronger exchange
coupling.

The positive biquadratic exchange interaction could be
generated either by higher-order virtual hopping processes in
the superexchange [58] or more likely by quenched disorder
due to the La/Sr mixing through the ObD mechanism [15,17].
We also note that the combination of dipolar interaction and
a negative biquadratic exchange, produced by the thermal or

quantum ObD, would stabilize a collinear order with the spins
in the [110] direction, which may explain the 3D ordering in
Sr2CuO2Cl2 or LaSrFeO4. This observation motivates further
investigation of quenched disorder to control magnetic order
in frustrated magnets or spintronic devices.

The experimental observation of the anticollinear order in
LSCrO uncovers a new territory in the phase diagram of the
AB-stacked square-lattice antiferromagnet. In contrast with
the collinear magnetic states displayed by all related materials,
the anticollinear order in LSCrO exhibits a rich and unique
magnetic-field evolution stemming from interlayer effects that
are merely a few parts per million of the main exchange
interaction. A systematic study of the temperature-field phase
diagram of LSCrO and its materials relatives is poised to
reveal more surprises in this canonical family of geometrically
frustrated magnets.
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