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The environmental interaction is a fundamental consideration in any controlled quantum system. While an
interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects
including induced spin-spin correlations. In this Letter, we show that under quite general conditions, a dissipative
bosonic bath can induce a long-range ordered phase, without the inclusion of any additional direct spin-spin
couplings. Through a quantum-to-classical mapping and classical Monte Carlo simulation, we investigate the
T = 0 quantum phase transition of an Ising chain embedded in a bosonic bath with Ohmic dissipation. We show
that the quantum critical point is continuous, Lorentz invariant with a dynamical critical exponent z = 1.07(9),
has a correlation length exponent ν = 0.80(5), and anomalous exponent η = 1.02(6), thus the universality class
is distinct from the previously studied limiting cases. The implications of our results on experiments in ultracold
atomic mixtures and qubit chains in dissipative environments are discussed.
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Decoherence of a quantum two-level system, due to its
coupling to the environment, is a key issue in the experi-
mental attempts to improve the stability of qubits for scalable
quantum computation [1–6]. Originating with studies of the
spin-boson model [7–12], the nature of decoherence in open
quantum systems with bosonic dissipation has been the sub-
ject of many important experimental endeavors including
ultracold atomic gases and ions [13–16]. When multiple
qubits are coupled to the same bath, the dissipation can
also induce interactions between distant qubits. This ef-
fect is reminiscent of the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction induced by Friedel oscillations in a Fermi
gas [17–19], although the microscopic mechanism in the
presence of a bosonic bath is clearly different. These boson-
induced interactions can allow coherent quantum states to
form in a variety of different systems as demonstrated in
trapped ions [20], superconducting qubits in a microwave
cavity [21,22], and ultracold Bose-Fermi mixtures [23–25].

A direct solution of dissipation-induced interactions in
qubit arrays that includes both their retarded dynamics and
long-range nature has remained out of reach. Instead, theo-
retical progress has focused on more simplified settings that
either ignore the intersite dissipation-induced interactions or
leave out the dynamical fluctuations of the bosonic medium.
It has not been possible to assess the accuracy of such approx-
imate descriptions as the full solution to the problem has been
lacking. A model in which intersite interactions play a domi-
nant role is a one-dimensional (1D) spin chain immersed in a
bosonic bath. This system, shown in Fig. 1(a), can be realized
using either a Bose-Fermi or a Bose-Bose mixture, by placing
one atomic species into a deep optical lattice that is embed-
ded in a Bose-Einstein condensate (BEC) [26]. When the

coherence length of the BEC (also known as the heal-
ing length) is short, each spin is effectively coupled to
its own independent bath. This approximation describes ar-
rays of Josephson qubits leading to locally critical floating
phases [27,28], as well as novel universality classes [29,30]
when the intersite interactions are time averaged and restricted
to nearest neighbors. In the opposite limit of a very long
healing length, the bath couples to the total value of spin Sz =∑

i sz
i , resulting in effectively infinite-range bath-induced in-

teractions and a (1D) Berezinskii-Kosterlitz-Thouless (BKT)
transition [31–34].

In the general case, when the full spatial dependence
of the bath interactions must be considered, interesting
phenomena such as entanglement [35–37], and coherent dy-
namics [38–43] emerge. Novel effects are also seen in the
multiple-spin case of the closely related Kondo systems, for
example, leading to enhanced pairing [44] and gapless dis-
sipative phases [26,29,45]. Clearly, the spatial variation of
the bath-induced interactions produces nontrivial correlations
between coupled spins. However, to elucidate their effect on
ordering and criticality in a spin chain, it is essential to go
to the thermodynamic limit, which has proven to be a very
challenging problem. As we will show, the full solution to this
problem yields qualitatively different results than the solutions
to the approximate descriptions possess, demonstrating the
importance and necessity of such a nonperturbative result.

In this Letter, we apply a quantum-to-classical mapping
that transforms this 1D quantum problem into a frus-
trated long-range interacting Ising model in two dimensions,
which we simulate using classical Monte Carlo. Our results
demonstrate that a chain of free qubits develops long-
range ferromagnetic (FM) order at finite temperature for a
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FIG. 1. (a) Local confining potentials trap particles in a two-state
superposition, which maps to a chain of Ising pseudospins interacting
with bath bosons. (b) Bath-induced interactions K (r, τ ) given by
Eq. (5) in the limit ωc → ∞ (λ → 0), with the color indicating the
parity of the interaction. (c) Bosonic RKKY interactions for the cases
of exponential and hard cutoffs, Eqs. (6) and (7), obtained by taking
the static (ω = 0) limit of K (r, τ ), here with Q = 1

sufficiently strong coupling to the bath. We further show that a
zero-temperature second-order quantum critical point (QCP)
with emergent Lorentz symmetry separates a quantum para-
magnet (QPM) from the FM phase. The critical exponents
of this transition are distinct from previously studied models
with direct spin-spin interactions and related dissipative spin
models [29–32,46]. We emphasize that the long-range order
arises purely from the spin-spin interactions induced by the
dissipative bath, and that the universality class of the QCP is
fundamentally determined by the long-range character of the
bath-induced interactions. This finding provides proof of the
existence of the bosonic analog of the RKKY effect and the
possibility of boson-induced long-range order.

Bosonic RKKY effect. The shared bath results in the long-
range temporal (retarded) and spatial interaction between the
spins, which we refer to as the bosonic RKKY effect by
analogy to the RKKY interaction between spins mediated by
a Fermi gas. The analog of the 2kF wave vector familiar from
the fermionic RKKY effect is instead played by the ultraviolet
(UV) scale that determines the truncation of the bath density
of states, as shown below.

The model we consider is realized by a chain of spin- 1
2

local moments (i.e., qubits) embedded in a shared bath of
free bosons. The Hamiltonian, which we term the dissipative
transverse field Ising model (DTFIM), is

H = −�
∑

i

σ̂ x
i +

∑
k

ωkb̂†
kb̂k +

∑
i,k

σ̂ z
i eikri gkb̂†

k + H.c. (1)

Here, � is an applied transverse magnetic field, ωk is the dis-
persion of bath modes, and gk is the strength of the coupling
between local moments and the bath bosons [26,29]. In the
cold-atom implementation, for example, � originates from
Raman laser-induced transitions, while gk is proportional to
the scattering length of the atomic species [26]. The Pauli
matrices σ̂ x

i and σ̂ z
i act on the qubit at position ri, while b̂†

k

and b̂k create and annihilate, respectively, the bath bosons

with momentum k. We stress that in the limit of gk = 0 the
local moments are only coupled to the transverse field, which
ensures that any induced long-range order is solely due to the
dissipative bosonic bath. The bath bosons (phonons, in the
case of a BEC bath [26]) are assumed to be in the acoustic
regime, with linear dispersion ωk = v|k|, where v is the sound
velocity of the condensate.

By integrating out the bosons and performing a quantum-
to-classical mapping [47] (see Supplemental Material [48]),
we arrive at the partition function of a 1 + 1-dimensional (1 +
1D) classical Ising model [49],

Z = Z0

∑
{s(r,τ )}

e−Sc ,

Sc = −	
∑
i,n

s(i, n)s(i, n + 1)

−τ 2
0

∑
i, j

∑
m,n

K (ri − r j, τm − τn)s(i, m)s( j, n). (2)

The classical Ising variables s( j, n) correspond to the eigen-
values of σ̂ z

j at position r j ≡ ja along the chain and imaginary
time τn ≡ nτ0. Here, Z0 = ∏

k (1 − e−βωk )−1 is the free bo-
son partition function. The nearest-neighbor imaginary-time
coupling 	 = − 1

2 ln[tanh(�τ0)] arises from the quantum-
to-classical mapping [47,48]. In the absence of dissipation
(gk = 0), this term sets the corresponding imaginary-time
correlation length ξτ ∼ �−1. This local coupling simply
renormalizes the finite ξτ when gk �= 0 and does not change
the universal properties, so we can set � = 1 without loss of
generality [29]. The spatial and imaginary-time dimensions
of the system have lengths L and β = Nτ0, respectively, with
lattice constant a = 1.

Coupling to the bath is captured by the spectral den-
sity [9,10] J (ω) = π

∑
k |gk|2δ(ω − ωk ). For the case of

acoustic phonons in the BEC, the couplings gk in Eq. (1) scale
as gk ∼ k1/2 [26], and the resulting spectral density is Ohmic,
i.e., linear in frequency,

J (ω) = 2παω f (ω/ωc). (3)

Here, α is a dimensionless parameter characterizing the dis-
sipation strength of the bath. The cutoff function f (ω/ωc)
depends on the physical setting and must decay to zero as ω

exceeds the cutoff frequency ωc [10]. This cutoff function is
often taken to be smooth or abrupt,

f (ω/ωc) = e−ω/ωc , “exponential” cutoff,

f (ω/ωc) = �(1 − ω/ωc), “hard” cutoff, (4)

where � is the Heaviside step function.
The bath-induced interactions K (r, τ ) take the form

K (r, τ ) = 1

π

∫ ∞

0
J (ω) cos

( rω

v

)eω(β−|τ |) + eω|τ |

eβω − 1
dω, (5)

whose nontrivial dependence on space and imaginary time
is shown in Fig. 1(b). Notably, K (r, τ ) can be written in
a Lorentz-invariant form by introducing the complex co-
ordinate z = τ + ir

v
. This reveals that the structure of the

long-range interactions scales equivalently in the spatial- and
imaginary-time directions, leading to the observed “collective
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decoherence” in contrast with the local criticality [27] and
anomalous dynamical scaling [29] found in related mod-
els. The static limit of the bath interactions K (r, ω = 0) =∫ β

0 K (r, τ )dτ then defines the bosonic RKKY effect. Depend-
ing on the cutoff f (ω/ωc), the bosonic RKKY interactions are
ferromagnetic,

K (r, ω = 0) = 4αωc

1 + (Qr)2
, exponential cutoff, (6)

or oscillating,

K (r, ω = 0) = 4αωc
sin(Qr)

Qr
, hard cutoff. (7)

These two distance dependencies are shown in Fig. 1(c).
The characteristic momentum Q ≡ ωc

v
arises from the high-

frequency cutoff and is analogous to 2kF in the fermionic
RKKY effect. In a BEC bath, this momentum can be identified
with the inverse healing length Q = ξ−1

h . Then, the spatial ex-
tent of the bath interactions is described by the dimensionless
parameter λ = (Qa)−1 = ξh/a, where a is the lattice spacing.
We focus on the exponential cutoff in Eq. (6) and leave the
hard cutoff to future work [50].

Several limiting cases can be understood from the static
interactions in Eq. (6). At high temperatures kBT � �, the
DTFIM maps onto a classical 1

r2 -Ising chain, which famously
exhibits a BKT phase transition [51,52] to a long-range or-
dered ferromagnetic phase as α is increased [50]. At T = 0,
two limits lend themselves to analytical understanding: (i) The
limit λ → ∞ corresponds to the BEC healing length ξh � a
much longer than the lattice spacing, where all spins in the
chain couple to each other equally and form one large “su-
perspin” which behaves as the spin-boson model displaying a
BKT transition [31,32]. In the opposite limit (ii) λ → 0, the
DTFIM maps onto a model where each spin couples to an
independent bath [29,49]. In this work, we explore the most
nontrivial case of finite λ ∼ 1, and show that the resulting
QCP has distinct critical exponents from the aforementioned
limiting cases.

Methods. We study the DTFIM by performing classical
Monte Carlo simulations on the 2D classical Ising model
defined by the partition function in Eq. (2). In order to coun-
teract the long autocorrelation times [53] due to frustrated
interactions, the simulations were performed with a combi-
nation of Metropolis updates, modified Wolff cluster updates,
and parallel tempering updates [49,54] (see Supplemental
Material [48] and additional references therein [55–59]). The
cluster updates are based on the long-range Wolff algo-
rithm [60], however the mixed-sign interactions [see Fig. 1(b)]
necessitate a modification where the acceptance probability
for adding a given spin to the cluster is calculated from the
absolute value of the interaction strength [48,49,61]. Par-
allel tempering [48,54,62] in the dissipation strength α is
also employed, to aid in the convergence of the magnetiza-
tion measurements and reduce the effects of critical slowing
down. In the following, we study the total magnetization
m = [(NL)−1 ∑

i,n s(i, n)] that we use to compute the Binder
cumulant

U4 = 1 − 〈m4〉
3〈m2〉2

(8)

QPM

FM

FM
Critical
QPM

(c)

(b)(a)

FIG. 2. The points shown (a) all belong to the second-order uni-
versality class described in this text. Extrapolating off the boundaries
to λ → ∞ and λ → 0 results in BKT transitions. The disconnected
correlation functions in the red-boxed region (a) are shown in (b) and
(c), for values of α = {0.035, 0.085, 0.09}, with power-law decay in
τ and antiferromagnetic exponential decay in r in the QPM. Long-
range ferromagnetic order dominates for α > αc.

and the disconnected correlation function

C(|i − j|, τ ) = 〈σi(τ )σ j (0)〉 (9)

as probes of the critical properties and relevant phases. The
angle brackets 〈·〉 denote a Monte Carlo average.

Quantum critical point. The quantum paramagnet [QPM;
the blue region in Fig. 2(a)] phase occurs for weak dissi-
pation. As dissipation is increased beyond the critical value
αc(λ), the spins order ferromagnetically [FM; the red region in
Fig. 2(a)]. The equal-time spatial correlations are all negative
but their absolute value can otherwise be well described by
an exponentially decaying function of the Ornstein-Zernike
form [63] for 1 + 1D. The (positive/negative) parity of the
correlations matches the form shown by the interactions along
the τ = 0 axis in Fig. 1(b). The correlation length ξ is large,
making the decay difficult to distinguish from a pure power
law, but finite everywhere below the transition line α < αc(λ)
in Fig. 2. At α = αc(L, λ) [Fig. 2(c)], the spatial correlations
approach a finite value at the boundary. This is a finite-size
effect which must be accounted for in the following analysis,
but this finite value of C(L/2, 0) decays to 0 at α = αc(L, λ)
in the limit L → ∞ as expected at the QCP. For α > αc, the
correlations approach a positive (ferromagnetic) long-range
limit [Fig. 2(c)], resulting in long-range order with 〈m〉 > 0.
The local self-correlations in imaginary time C(0, τ ) decay
as a power law even deep in the QPM phase. This is consis-
tent with the behavior in the single spin-boson model [8,29],
which has algebraic correlations due to the power law in the
interactions in Eq. (5).

The long-range interaction makes the finite-size correc-
tions to the critical dissipation αc significant, so great care is
required in extracting the critical exponents [64]; see Supple-
mental Material [48]. In the following, we use the finite-size
rounding of the transition in the limit of zero temperature to
extract a strongly L-dependent crossover location αc(L, λ),
where in the following the argument λ will be suppressed.
For fixed values of L ∈ [8, 192], we determine αc(L) by
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(a)

b

(b)

FIG. 3. (a) shows U4 for fixed λ = 1.0, L = 128, with a series of
β, giving αc(L = 128) = 0.0847(5). For a given λ, ν and αc(∞, λ)
are then found by fitting the values of αc(L, λ) to the scaling relation
L−1 ∼ [αc(L, λ) − αc(∞, λ)]ν , rearranged from Eq. (10). (b) shows
the fits for multiple λ performed simultaneously, giving ν = 0.80(5).

extracting the points where U4(α, β, L) lines cross, as shown
in Fig. 3(a). The series of β ∈ {128, 256, 384, 512, 768, 1024}
is fixed, with N adjusted according to β = Nτ0 and τ0 = ω−1

c .
The finite value of τ0 should not affect the universality [29].

From a series of αc(L), the critical dissipation in the ther-
modynamic limit αc(∞) and the correlation length exponent
ν can be determined by identifying L with the correlation
length. The scaling law ξ ∼ (α − αc)−ν implies the ansatz

αc(∞) ∼ αc(L) − bL−1/ν (10)

for some constant b. Figure 3(b) shows a fit to this scaling
ansatz for multiple values of the dimensionless bath extent
λ. This demonstrates a collapse onto a universal scaling law
relating αc(L) and L with ν = 0.80(5), independent of λ. This
indicates the entire phase boundary in Fig. 2(a) is governed by
a common quantum critical universality class with the value of
exponent ν that is distinct from both the case of Josephson
junction arrays (limit λ → 0) [29] and from the transverse
field Ising model.

Finally, the correlation functions at the critical point can
be used to determine the dynamical exponent z, and the
anomalous dimension η. At the critical point, the connected
same-time and same-site correlation functions for D = 1 + z
should follow the universal power-law relations [29]

C(r, τ = 0) − 〈m〉2 ∼ r−(z+η−1),

C(r = 0, τ ) − 〈m〉2 ∼ τ−(z+η−1)/z, (11)

where C(r, τ ) is defined in Eq. (9). These connected correla-
tion functions are plotted in Figs. 4(a) and 4(b) [65,66], and
the finite-size scaling in Figs. 4(c) and 4(d) allows us to extract
the critical exponents η = 1.02(6) and z = 1.07(9).

Discussion. The DTFIM represents a clear example of
long-range magnetic order induced by environmental bosonic
interactions. By analogy to the fermionic RKKY effect, whose
spatial dependence is governed by the UV momentum scale
2kF , a similar cutoff should appear in the bosonic RKKY
effect. The analogous momentum scale is given by the in-
verse healing length Q ∼ ξ−1

h or equivalently the UV cutoff
ωc = vQ, which enters Eqs. (6) and (7). The oscillations
implied by the term “RKKY” only appear in the case of a
hard cutoff [Eq. (7)], which most closely resembles the sharp

(a)

(b)

(c)

(d)

FIG. 4. Fits to the scaling form in Eq. (11) to determine η and
z. The fits show power-law decay in the (a) same-site and (b) same-
time correlation functions for λ = 0.5, L = 64, αc = 0.1336 (blue
triangles) and λ = 1.0, L = 128, αc = 0.084 (orange circles), with
chord(τ ) = β/π sin(πτ/β ) (See Ref. [66]). (c) and (d) show 1/L
extrapolations of z and η from the power-law fits for λ = 1.0 at the
largest value of β = 2048. The L → ∞ results are z = 1.07(9) and
η = 1.02(6).

boundary of the Fermi level in fermionic systems. However,
in the presently studied case of an exponential bath cutoff,
the same mechanism produces the long-range ferromagnetic
correlations. The value of the bath length scale λ ∼ Q−1 does
not affect the universality of the QCP, but it does provide
the length scale for the nontrivial short-range correlations
exhibited by the QPM phase.

The critical exponents found here for finite λ characterize a
different universality class, distinct from the previously stud-
ied limits of λ → ∞ [31,32] and λ → 0, which corresponds
to each spin in a chain coupled to an independent bath [49].
In either of these two asymptotic cases, the quantum criti-
cality reduces to a BKT transition of the single spin-boson
model [7–9] that does not have two-dimensional Lorentz
symmetry. With the inclusion of long-range bath-induced in-
teractions, the Lorentz invariance of K (r, τ ) in Eq. (5) that is
broken by the transverse field � emerges at the QCP as we
find z = 1, up to the uncertainty bounds in the present study.
Physically, this is manifested by the collective decoherence
found at the QCP, where the spins order spatially and in imag-
inary time simultaneously. Furthermore, the correlation length
exponent takes an anomalous value ν = 0.80(5). By contrast
to dissipative chains which include direct spin-spin interac-
tions [29,46], the DTFIM provides an example of long-range
magnetic order induced purely by a bosonic environment.

Experiments on ultracold mixtures in an optical lattice are
an ideal setting to observe the phases and to explore the
QCP we have identified. The phases and critical properties
can be ascertained by measuring correlation functions using
single-site-resolved quantum gas microscopy [67] or through
optical Bragg scattering [68]. The presence of a harmonic trap
will produce an additional length scale that will round out
the critical properties that we predict. Nonetheless, varying
the strength of potential should allow one to see the universal
scaling properties before being rounded out, but this issue can
be circumvented using a box trap [69]. This study was limited
to the Ohmic spectral density due to the assumption of the
form of spin-bath couplings gk relevant to BEC bath [26], but
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an exploration of sub- and super-Ohmic baths could also prove
interesting for future studies.
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