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Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological
phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian
phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary,
which underlies the breakdown of the bulk-edge correspondence. Here we develop a generic phenomenological
approach to describing magnetic dissipation within a lattice model and we introduce an “effective area law” to
investigate the emergence of the skin effect in magnetic systems. As a testbed of our approach, we focus on
a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions,
finding that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the
interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key
role in the accumulation of bulk states at the boundaries.
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Introduction For decades the application of topology in
condensed matter has relied on the principle of the bulk-edge
correspondence, according to which the edge states of a sys-
tem, which appear under open boundary conditions, can be
characterized by a topological invariant calculated on a Bril-
louin zone defined under periodic boundary conditions [1].
In some non-Hermitian systems, however, this fundamental
correspondence has been found to be broken [2–15]. As a
result, bulk modes can no longer be described by Bloch’s
theorem as delocalized plane waves. Instead, a macroscopic
number of bulk states localize at a boundary of the system,
i.e., a phenomenon dubbed as the non-Hermitian skin effect.

The skin effect has been extensively investigated in one-
dimensional (1d) asymmetric Su-Schrieffer-Heeger (SSH)
models [4,7,16–20], in which the pile-up of bulk modes
at one system’s edge can be understood in terms of the
imbalance hopping in the left and right directions. Experimen-
tally, the skin effect has been uncovered in photonic systems
and metamaterials with judiciously engineered non-Hermitian
interactions, while its observation in a naturally occurring
solid-state system has not yet been reported [17,21–24].

Magnons, i.e., the collective excitations of magnetic
systems, are bosonic quasiparticles whose number is not con-
served and whose dynamics is intrinsically non-Hermitian
[25–30]. Their fundamental properties, including their life-
time, can be easily tuned via external fields and drives,
making them promising solid-state candidates for the explo-
ration of non-Hermitian topological phenomena [31–34]. In
this Letter, we investigate the emergence of the skin effect in
insulating two-dimensional (2d) magnetic systems, in which
non-Hermitian terms that violate the bulk-edge correspon-
dence arise from intrinsic spin nonconserving interactions.
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The physics of dissipative interactions in magnetic systems
are very complex and the effective magnon lifetime stems
from a variety of spin-wave decay mechanisms, e.g., magnon-
magnon, magnon-electron, and magnon-phonon interactions,
and magnon scattering on extrinsic impurities. Several theo-
retical papers have addressed [35–42] the dissipation due to
one of the aforementioned mechanisms and have provided ap-
proximate expressions for the magnon relaxation time. These
expressions are, however, often given in the continuum limit
and can not be readily incorporated in a lattice model, which
is an essential starting point for the investigation of the skin
effect. Since a comprehensive microscopic description of the
magnetic dissipative dynamics within a lattice model is a
particularly challenging (and yet untackled) task, here we pro-
pose a generic phenomenological approach that can be tested
against ab initio or experimental data. Our approach serves
as a general recipe of constructing an effective non-Hermitian
Hamiltonian from bands broadening data. Inspired by the area
law proposed by Ref. [43], here we introduce an “effective
area law” that is complimentary to our phenomenological
approach to magnetic dissipation and can serve as a criteria for
the emergence of the skin effect in any 2d magnetic system.

As a concrete example of our approach, we focus on a
ferromagnetic spin-orbit-coupled insulating vdW monolayer.
Recent ab initio studies have addressed the phonon-driven
dissipation of the eigenmodes of a vdW magnetic system
and calculated its behavior over a large portion of the first
Brillouin zone [44]. Here, we develop a phenomenological
model for the dissipative terms that is consistent with the
aforementioned ab initio results, while respecting the sym-
metries of the honeycomb lattice. We find that, away from
the long-wavelength limit (but below the magnetic ordering
temperature), the magnetic skin effect appears, i.e., a macro-
scopic number of the bulk spin-wave modes accumulate at the
armchair terminations of a nanoribbon. Our results show that
the localization of the bulk states relies on the interference
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between the Dzyaloshinskii-Moriya interactions and nonlocal
dissipative terms.

Hermitian spin model. We consider a vdW ferromagnetic
monolayer whose Hermitian spin dynamics is described by
the Hamiltonian

H = − J
∑
〈i, j〉

Si · S j − J2

∑
〈〈i, j〉〉

Si · S j

− B
∑

i

Sz
i + D

∑
〈〈i, j〉〉

νi j ẑ · (Si×S j ), (1)

where J > 0 is the nearest-neighbor (NN) Heisenberg ex-
change, J2 > 0 the next-to-nearest-neighbor (NNN) exchange
coupling, B � 0 the out-of-plane magnetic field, D the NNN
DMI strength, and νi j = −ν ji = ±1 reflects the nonreciproc-
ity of the DM interactions. Far below the magnetic ordering
temperature Tc, i.e., for T � Tc, and for D � (J + 4J2)/

√
3,

we can access the magnon spectrum by introducing the lin-
earized Holstein-Primakoff transformation with respect to an
uniform ground state, i.e.,

S+
i = Sx

i + iSy
i ≈

√
2Sdi, Sz

i = S − d†
i di, (2)

where S is the classical spin (in units of h̄) and di (d†
i )

the magnon annihilation (creation) operator at the ith site,
which obeys the bosonic commutation relation [di, d†

j ] = δi j .
Plugging Eq. (2) into Eq. (1) and truncating the Hamiltonian
beyond quadratic terms in the Holstein-Primakoff bosons, we
find

H = (3JS + 6J2S + B)
∑

i

d†
i di − JS

∑
〈i, j〉

(d†
i d j + H.c.)

− J2S
∑
〈〈i, j〉〉

(d†
i d j + H.c.) − DS

∑
〈〈i, j〉〉

(iνi jd
†
i d j + H.c.).

(3)

Performing a Fourier transformation while introducing the
spinor �k = (ak, bk), where ak (bk) is the Fourier transform
of the magnon annihilation operator on the A (B) sublattice,
Eq. (3) becomes

H =
∑

i=0,x,y,z

∑
k

�
†
k (hiσi )�k, (4)

with

h0 =3JS + 6J2S + B − 4J2S
∑

n

cos k · βn,

hx = − JS
∑

n

cos k · αn,

hy =JS
∑

n

sin k · αn, hz = 2DS
∑

n

sin k · βn, (5)

where the αn and βn (with n = 1, 2, 3) are, respectively, the
NN and NNN bond vectors depicted in Fig. 1(a). Here and in
what follows, we omit the explicit dependence of the function
hi (for i = x, y, z) on the wavevector k.

Non-Hermitian dissipative terms. The magnon number
is not conserved due to ubiquitous spin nonconserving in-
teractions of magnons with the crystalline lattice [35–41].
Several ab initio studies have investigated the dissipation of
magnetic eigenmodes driven by magnon-phonon interactions,

FIG. 1. (a) Ferromagnetic honeycomb lattice. αn and βn are the
NN and NNN bond vectors, respectively. νi j = 1 and νi j′ = −1 la-
bel the sign of counterclockwise and clockwise DMI, respectively.
(b) Spin-wave dispersions with broadening along a representative
path (� − K − M) in the first Brillouin zone. The blue and red lines
indicate the real spectra of the acoustic (AC) and optical (OP) mode,
respectively. The light-blue and light-red shadows represent the band
broadenings �Eac and �Eopt, respectively. Here a = √

3d is the
distance between A-A (B-B) sublattices, where d is the NN A-B
distance.

modeled via finite-temperature random phonon fluctuations
that modify the distance between neighboring spins [44–46].
The linewidth broadening of the acoustic �Eac and optical
�Eop eigenmodes of a magnetic honeycomb lattice have been
found to scale, respectively, as �Eac ∝ k2 (with k = |k|) and
�Eop ∝ constant over a large portion of the first Brillouin
zone [44]. While the broadening of the optical eigenmode
is a constant that can be readily incorporated in the lattice
Hamiltonian, we cannot include the relaxation associated with
the acoustic mode in the present form ∝ k2 as it explicitly
breaks the translational symmetry of our model [47].

In order to construct an effective non-Hermitian
Hamiltonian that reproduces the observed band broadening,
here we adopt a phenomenological approach, i.e., we include
non-Hermitian terms allowed by symmetry. Specifically, we
use a Fourier series (i.e., a complete basis) to describe a
generic non-Hermitian contribution �E to the energy, i.e.,
�E = −i

∑∞
l=0 [

∑
n1

(ζ 1
lα cos lk · αn1 + ζ 2

lα sin lk · αn1 ) +∑
n2

(ζ 1
lβ cos lk · βn2

+ ζ 2
lβ sin lk · βn2

) + ...], where “...”
represents longer crystalline vectors in higher orders. Here
n1(n2) is the number of the crystalline vectors of the nearest
(next-to-nearest) neighbors and ζ 1(2) is the phenomenological
coefficient of each term for cosine (sine) functions in unit of
energy. For purely dissipative processes, i.e., in the absence
of gain, we require Im(�E ) � 0. For consistency, we retain
terms of the same order in reciprocal vectors as the Hermitian
Hamiltonian. Thus, in order to reproduce the observed
broadening of the eigenmodes, our ansatz for the imaginary
part of the acoustic and optical mode eigenenergies reads as

�Eac = − iχ11

(
3 −

∑
n

cos k · αn

)

− iχ12

(
3 −

∑
n

cos k · βn

)
, (6)

�Eop = − iχ2. (7)

We extract the values of the parameters χ11, χ12 and
χ2 by fitting Eqs. (6) and (7) to the ab initio results of
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Ref. [44] (see Supplemental Material [48]). The band spec-
tra and corresponding broadenings are shown in Fig. 1(b)
for χ11 = 1.41 meV, χ12 = −0.415 meV, χ2 = 3 meV, J =
1.2 meV, J2 = 0.02J , S = 3/2, B = 0.04JS = 0.93 T and
D = 0.8J/

√
3. At the � point, the acoustic mode displays

no broadening, in disagreement with ferromagnetic resonance
measurements of common magnetic materials. This discrep-
ancy most likely occurs because the analysis of Ref. [44]
neglects magnon-magnon relaxation. However, we have
verified that incorporating a constant dissipation term accord-
ing to long-wavelength Landau-Lifshitz-Gilbert (LLG) phe-
nomenology [49–52] does not affect qualitatively our results.

From Eqs. (4), (5), (6), and (7), the acoustic Eac and optical
Eop complex eigenenergies can be written as

Eac(op) =h0 ∓
√

h2
x + h2

y + h2
z + �Eac(op). (8)

The diagonal Hamiltonian Hd = diag(Eac, Eop) can be re-
lated to a non-Hermitian Hamiltonian Hnh in the basis of
the lattice operators ak and bk via the unitary transforma-
tion UHdU −1 = Hnh, where U is a matrix composed of
the eigenvectors of H, i.e., the optical and acoustic eigen-
modes of the Hermitian honeycomb lattice (see Supplemental
Material [48]). The Hamiltonian Hnh can be written explicitly
as

Hnh =
∑

i=0,x,y,z

∑
k

�
†
k (h̃iσi )�k, (9)

where h̃0 = h0 + B0 and h̃i = hi(1 + A0) for i = x, y, z, with

A0 = �Eop − �Eac

2
√

h2
x + h2

y + h2
z

, B0 = �Eop + �Eac

2
. (10)

An inverse Fourier transformation yields the real-space
non-Hermitian Hamiltonian as (see Supplemental Material
[48])

Hnh =
[

3JS + 6J2S + B − i

2
(χ2 + 3χ11 + 3χ12)

]

×
∑

i

(a†
i ai + b†

i bi )

+
(

− J2S + iχ12

4

) ∑
〈〈i, j〉〉

(a†
i a j + a†

j ai + b†
i b j + b†

jbi )

− JS
∑
〈i, j〉

[
1 − i(χ2 − 3χ11 − 2χ12)

2S
√

3(J2 + 2D2)

]
(a†

i b j + b†
jai )

− DS
∑
〈〈i, j〉〉

νi j

[
i + χ2 − 3χ11 − 2χ12

2S
√

3(J2 + 2D2)

]

×(a†
i a j − a†

j ai + b†
i b j − b†

jbi ) + ..., (11)

where +... indicates purely dissipative higher-order-nearest-
neighbor terms. By setting χ11,12,2 = 0 in Eq. (11), one
can recover the Hermitian Hamiltonian (3). As shown by
Eq. (11), the non-Hermitian terms take the form of on-
site dissipation terms and of nonlocal dissipative couplings,
which resemble the well-known dissipative nonlocal cou-
pling terms due to electron-mediated spin pumping [53,54].

Here we retain only dissipative terms that have a nondissi-
pative counterpart; however, accounting for purely dissipative
higher-order-nearest-neighbor terms does not affect qualita-
tively our results (see Supplemental Material [48]).

Skin effect. To investigate the breakdown of the bulk-edge
correspondence and the emergence of the magnetic skin ef-
fect, we diagonalize the Hamiltonian (11) numerically under
the open boundary conditions (OBC). We consider a nanorib-
bon with zigzag and chair terminations along, respectively, the
x and y direction. Figures 2(a) and 2(b) show the discrepancy
between the open and periodic boundary condition (PBC)
effective spectra [55], which is symptomatic of a breakdown
of the bulk-edge correspondence. From the PBC effective
spectra, it is easy to see that the complex acoustic (blue) and
optical (orange) bands do not cross a reference line in the
complex-energy plane: thus, the system has a line gap [56,57].
It is worth mentioning that, while in 1d systems the emergence
of the skin effect is ascribed to a point-gap topology [10],
this relation does not necessarily hold in higher-dimensional
systems, in which a macroscopic accumulation of states at the
boundary has been observed in the presence of a line gap as
well [58].

Analogously to its Hermitian counterpart, the inversion-
symmetry-breaking DM interactions break the time-reversal
symmetry of the magnon Hamiltonian, yielding a Z topo-
logical order (i.e., both the Hermitian and non-Hermitian
Hamiltonian belong to symmetry class A). Using Fukui’s
algorithm [59], we find cnB

ac(opt) = ±1, where cnB is non-Bloch
Chern number introduced by Ref. [60]. The corresponding
topological magnon edge states can be clearly visualized in
the real-energy-gapped region of the OBC spectrum shown in
Fig. 2(a).

As a measure of the localization of the bulk eigenstates at
a boundary of the ribbon, we introduce the spatial distribution
|ψ (r)|2 of the density of the first N right eigenstates φn(r) of
the OBC Hamiltonian (11), i.e., [43],

|ψ (r)|2 = 1

N

N∑
n=1

|φn(r)|2. (12)

Figure 2(c) displays the spatial distribution Eq. (12) of the
eigenstates with energies up to E = 0.247 meV (correspond-
ing to T ∼ 2 K with N = 79) [61], which is delocalized
throughout the bulk. At higher energies, i.e., E = 2.655 meV
(T ∼ 30 K with N = 2771), Fig. 2(d) shows that a macro-
scopic number of bulk eigenstates localizes at the corners and
edges the ribbon. Thus, at high enough temperature (but below
the magnetic ordering temperature Tc), the skin effect appears.

The observed temperature dependence can be understood
via the relation between the skin effect and spectral shape of
the PBC spectra [43]. In correspondence of arc or line (finite
effective spectral area) in complex energy space, the mapping
from momenta to energy is 2d to 1d (2d): for a wave im-
pinging at the boundary there are infinite (finite) reflection
channels, and an open boundary eigenstate can (can not)
be described as superposition of Bloch waves, as discussed
in details in Ref. [43]. The red- and green-dashed lines in
Fig. 2(a) show the energies at which Figs. 2(c) and 2(d) are
plotted, respectively. Up to T ∼ 2 K (red line), the acoustic
spectrum is (approximately) a line. Thus, the skin effect is
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FIG. 2. [(a),(b)] PBC spectra of the acoustic (blue) and optical (orange) modes. The OBC eigenenergies of a nanoribbon with 60×60
lattice sites are shown in light-gray dots. (a) For D = 0.8J/

√
3. (b) For D = 0. [(c)–(e)] Spatial distribution of the density of the first N right

eigenstates (12), (c) For D = 0.8J/
√

3 and N = 79, which corresponds to the energy ReE = 0.247 meV. This energy is indicated by the
dashed red line in Fig. 2(a), up to which the acoustic spectrum is (approximately) a line. The skin effect is absent. (d) For D = 0.8J/

√
3 and

N = 2771, which corresponds to the energy ReE = 2.665 meV. This energy is indicated by the dashed-green line in Fig. 2(a), around which
the acoustic spectrum acquires a finite effective area. The skin effect appears. (e) For D = 0 and N = 2771 there is no skin effect as the acoustic
spectrum reduces to the arc shown in Fig. 2(b).

not observable and bulk states behave as Bloch waves. This
result is an agreement with the conventional long-wavelength
LLG treatment of magnetic dissipation [51]. Instead, at higher
energies (green line), the spectrum acquires a finite effective
area and the skin effect appears.

In the absence of the DM interactions, the real and imagi-
nary part of the energy are dependent, leading to the arc-like
spectrum for both OBC and PBC displayed in Fig. 2(b). In
agreement with the area law proposed by Ref. [43], the skin
effect does not appear even at high temperatures, as shown
in Fig. 2(e). Furthermore, in the absence of DMI, the Hamil-
tonian (4) becomes gapless and enters into a topologically
trivial phase. The skin effect in Fig. 2(d) appears to be of the
first-order type [43,62], i.e., a macroscopic number of modes
localizes at arbitrary edges due to the non-Hermitian topolog-
ical properties of the Hamiltonian. As shown by Fig. 2(d),
the skin modes localized at left and right (armchair) edges,
rather than at top and bottom (zigzag) terminations. This
phenomenon can be understood by calculating the point-gap
winding number [10,43] while setting periodic boundary con-
ditions only along one direction, i.e., effectively reducing the
dimensionality of the system to 1d . We find that the point-gap
winding number is vanishing for PBC along the y direction,
while it is nonzero for PBC along x direction, which implies
a localization of skin modes along the left and right edges,
in agreement with Fig. 2(d) (also see Supplemental Material
[48]).

The nonlocality of the magnon-phonon driven dissipation
(6) plays also a key role. For D �= 0 and χ12 = 0, the skin ef-

fect does not appear even if the PBC spectrum of the acoustic
eigenmode has a finite area. When χ12 = 0, the k-dependent
term introducing nonlocal dissipation (6) reduces to

�Enl
ac = χ11

∑
n

cos k · αn. (13)

By including the nonlocal dissipation (13) in Eq. (4) and
performing an inverse Fourier transformation, we find that the
non-Hermitian contribution (13) vanishes in real space due to
the symmetry of the honeycomb lattice (see Fig. S2 within the
Supplemental Material [48]). Thus, the resulting real space
Hamiltonian is equivalent to one derived by accounting only
for the constant term ∝ −iχ11 in Eq. (6), which yields a PBC
spectrum with vanishing spectral area (i.e., a line). We have
verified that in this scenario the skin effect does not appear
even in the high frequency regime. This suggests that the area
law proposed by Ref. [43] should be modified in order to
take into account only terms that survive upon inverse Fourier
transformation and lead to a spectral area that here we call
“effective”. The nonlocal contribution ∝ χ12

∑
n cos k · βn,

instead, is not wiped out by lattice symmetry and, in conjunc-
tion with the DM interactions, yields the skin effect.

At a given temperature T [63], the skin effect is maximized
by strong DM interactions, whose strength is proportional
to the effective area of the PBC acoustic spectrum. A weak
exchange coupling J leads to a reduced real-energy band-
width of the acoustic magnon spectrum, which results in an
amplified skin effect at a given frequency. The parameters
χ11 and χ2 lead to a featureless shift of the imaginary part
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of the acoustic and optical eigenenergies, respectively, while
χ12 contributes to the spectral area. Finally, it is worth to
remark that the density of right eigenstates (12) plotted in
Figs. 2(c)–2(e) might be naively interpreted as a magnon local
density of states localized at an edge, which could be easily
probed experimentally. However, the definition of the physical
observables of non-Hermitian systems with broken bulk-edge
correspondence, which are yet relatively unexplored in two
and higher dimensions, require special care since they have
to be defined on a biorthogonal basis and on the real-space
lattice [2,14,64–66]. We will address this problem in future
investigations.

Discussion and outlook. In this paper, we have explored
the emergence of the skin effect in magnetic systems.
We have proposed a phenomenological approach to derive
non-Hermitian Hamiltonian terms that are allowed by the
symmetries of the lattice model and reproduce the band broad-
ening observed in experimental data. We have shown that,
while adopting such phenomenological approach, the “area
law” proposed by Ref. [43] should be replaced by the “ef-
fective area law” as a criteria for the emergence of the skin
effect. Our phenomenological approach, combined with the
“effective area law”, can be easily applied to a wide class of

dissipative magnetic systems to identify a solid-state testbed
of the skin effect that does not require ad hoc non-Hermitian
engineering and whose properties can be controlled by tuning
temperature and external magnetic fields.

As an example of our method, we have focused on a spin-
orbit-coupled vdW magnet and we have found that the skin
effect appears in at high enough temperatures when both non-
local dissipative terms [67] and DM interactions are present.
Furthermore, we have shown that the overall temperature
trend of the skin effect can be understood through spectral
shape of the PBC complex energy spectrum of the acoustic
magnon mode. The interplay between DMI and the emergence
of the skin effect should be further investigated. Future work
should investigate the general physical properties that might
yield the emergence of the skin effect in magnetic systems,
explore experimental protocols to probe the localization of
the bulk skin modes, and address the microscopic mechanisms
underlying our phenomenological model.
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C.
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