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Giant microwave sensitivity of a magnetic array by long-range chiral interaction driven skin effect
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A non-Hermitian skin effect was observed in one-dimensional systems with short-range chiral interactions. A
long-range chiral interaction mediated by traveling waves also favors the accumulation of energy, but has not yet
exhibited non-Hermitian topology. Here, we find that the strong interference brought by the wave propagation
is detrimental for accumulation. By the suppression of interference via the damping of traveling waves, we
predict the non-Hermitian skin effect of magnetic excitation in a periodic array of magnetic nanowires that are
coupled chirally via spin waves of a thin magnetic substrate. The local excitation of a wire at one edge by weak
microwaves of magnitude ∼μT leads to a considerable spin-wave amplitude at the other edge, i.e., a remarkable
functionality useful for the sensitive, nonlocal, and nonreciprocal detection of microwaves.
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Introduction. A chiral interaction, also known as nonrecip-
rocal coupling, refers to the asymmetric coupling amplitude
between the left and right objects [1], such as the asymmetric
hopping amplitude between two nearest sites in the Hatano-
Nelson model [2]. It has been successfully implemented to
realize the non-Hermitian skin effect in one-dimensional sys-
tems, featured by a macroscopic number of eigenstates piling
up at one end [3–9]. These states turn out to be topologically
exceptional, showing an anomalous bulk-boundary correspon-
dence that may be characterized by a generalized Brillouin
zone [4,6], and are promising for applications such as the
topological funneling of light [8].

Chirality is a common ingredient in topological magnetic
orders [10–12], but in terms of which the realization of
non-Hermitian topology is rarely addressed [13,14]. A chiral
interaction between the Kittel magnons of a magnetic wire (or
sphere) has been recently discovered when they couple with
the traveling modes such as the spin waves in films [15–18],
waveguide microwaves [19,20], and surface acoustic waves
[21–23], to name a few, in that the Kittel modes prefer to
couple with the traveling waves propagating in one direction.
We have argued that these traveling waves can mediate a
long-range chiral interaction between two magnetic wires if
their damping is not large [17,18]. It could be thereby specu-
lated that these long-range chiral interactions might lead to a
non-Hermitian skin effect similar to that by the chiral short-
range interaction in the Hatano-Nelson model [2] since the
energy tends to accumulate at one end. However, a theoretical
study showed that these systems do not favor the coalescence
of bulk modes [19] but only hold a weak skin tendency for
those modes with large decay rates, nor were the edge modes
ever observed by experiments [18,24–26]. The interference
brought by the propagation of the traveling waves is detrimen-
tal for the accumulation.
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In this Letter, we propose the realization of a non-
Hermitian topological phase in one-dimensional long-range
coupled magnets by figuring out the collective role of the
chirality and suppression of propagation interference via the
damping of the interaction mediator. To be specific, we model
an array of magnetic wires saturated along the wire direction
on top of a thin magnetic film that are coupled via the dipolar
interaction, as depicted in Fig. 1. When the film magneti-
zation is along the wire direction, the coupling between the
Kittel mode and the film spin waves is chiral in that the former
only couples to the latter propagating in one direction [16], the
chirality being tunable by the direction of the magnetization of
the film [27]. The spin waves in the film then mediate a chiral
interaction with an asymmetric coupling strength between the
left and right wires. We find that when the damping of the
spin waves of the film is sufficiently strong (while assum-
ing the wire has a small damping), all the collective modes
of the array of wires are localized at one edge, showing a
non-Hermitian skin effect. This skin effect, however, vanishes
when the damping tends to zero or the chirality is absent.
We analytically approach the generalized Brillouin zone that
characterizes a nontrivial winding of the eigenfrequency only
when there exist both chirality and strong damping of the
film spin waves. The non-Hermitian skin effect can act as a
nonlocal and nonreciprocal information processor since the
excitation of the wire at one edge leads to a large amplitude at
the other edge. It is extremely sensitive, which allows for the
detection of microwaves as small as μT, a functionality that
may be implemented in classical information processing and
future quantum technology.

Chiral interaction between objects. We consider a one-
dimensional model with a periodic array of N magnetic
nanowires of thickness d on a thin magnetic film of thickness
s (Fig. 1) [18,24–26]. The distance between the neighboring
wires L0 is much larger than the wire width w such that
the direct dipolar interaction between wires is negligible.
The lth wire is centered at rl = Rl ŷ = lL0ŷ. The saturated
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FIG. 1. A periodic array of magnetic nanowires on top of a thin
magnetic film. The direction of the saturated magnetization of the
wire is pinned along the ẑ direction, while the saturated magnetiza-
tion of the film is tunable by the applied magnetic field in the film
plane. The geometric parameters are given in the text.

magnetization M̃s of the wire is pinned along the wire ẑ
direction by shape anisotropy, while the film saturated mag-
netization Ms along ẑ′ is tunable by the applied magnetic field
Happ with an angle φ with respect to the wire direction.

The interlayer exchange interaction between the wire and
film is suppressed by an insulating spacer [18,24]. The mag-
netization M̃l in the lth magnetic wire couples with the stray
field h from M in the film via the dipolar interaction Ĥint =
−μ0

∫ d
0 dxdρM̃l,α (x, ρ)hα (x, ρ), in the summation conven-

tion over repeated Cartesian indices α = {x, y, z}, with μ0

being the vacuum permeability. Focusing on the linear regime,
the magnetization in the magnetic wires and film is expanded
by the magnon operator [28,29],

M̂x(r) =
√

2Msγ h̄
∑

k

[
m(k)

x (x)eikyâk + H.c.
]
,

M̂y(r) = cos φ
√

2Msγ h̄
∑

k

[
im(k)

x (x)eikyâk + H.c.
]
,

ˆ̃Mα={x,y},l (r) =
√

2M̃sγ h̄
[
m̃K

l,α (r)b̂l + H.c.
]
, (1)

where γ is the modulus of the gyromagnetic ratio, m(k)
x (x)

and m̃K
l,α (r) represent the amplitude of the spin waves

and Kittel modes, and âk and b̂l denote the magnon op-
erators in the film and wire. For simplicity, k denotes
ky. The total Hamiltonian Ĥ/h̄ = ∑

l ωKb̂†
l b̂l + ∑

k ωkâ†
k âk +∑

l

∑
k (gke−ikRl b̂l â

†
k + gkeikRl b̂†

l âk ) is expressed by the cou-
pled harmonic oscillators [27,30]. Here, ωK is the frequency
of the Kittel mode of the wires, and ωk = μ0γ Happ +
αexμ0γ Msk2 is the dispersion of the spin waves of the
film with the slope governed by the exchange stiffness αex.
The coupling constant gk = D(k)m(k)∗

x (|k| + k cos φ)[m̃K
x +

i sgn(k)m̃K
y ] depends on the propagation direction of the spin

waves, the relative direction of the magnetization in the film
and nanowire, and the geometry of the wire and film via
the form factor D(k) = −2μ0γ

√
MsM̃s/�(1 − e−|k|d )(1 −

e−|k|s) sin(kw/2)/k3. Here, � is the length of the magnetic
wire. The spin waves in the film are circularly polarized when
their wavelength is sufficiently short [18,24,27]. Thereby
when φ = 0 (φ = π ), i.e., the magnetization of the wire and
film is parallel (antiparallel), the wire Kittel mode only cou-
ples with the right-going (left-going) spin waves with g−|k| =
0 (g|k| = 0) [27].

These directional spin waves mediate a chiral interaction
between two wires, approached by the Langevin equation.
When the magnetic quality of the wire is higher than that

of the film, we are allowed to use the Markov approximation
[31,32]. Integrating out the film degree of freedom yields the
Langevin equation for wires,

db̂l

dt
= −iωKb̂l − κ

2
b̂l − Gl (ω)b̂l −

∑
l �=l ′

Gll ′ (ω)b̂l ′. (2)

It describes an effective interaction between the Kittel
magnons at any instant by several coupling parameters. Here,
κ = 2α̃GωK and κk = 2αGωk are the Gilbert damping of
the wire Kittel modes and film spin waves, respectively,
parametrized by the Gilbert coefficient α̃G and αG. Additional
damping is induced by pumping the spin waves that lose en-
ergy with rates Gl (ω) → (|gkω

|2 + |g−kω
|2)/[2v(kω )], where

v(k) = 2αexμ0γ Msk is the group velocity of the traveling
waves and kω = √

(ω − μ0γ Happ)/(αexμ0γ Ms) is the positive
root of ωk = ω. The spin waves mediate an effective interac-
tion Gll ′ (ω) of finite range when taking into account the finite
damping of spin waves. With the root qω = kω(1 + iαG/2) of
ω − ωk + iκk/2 = 0,

Gll ′ (ω) = �

v(kω )
eiqω |l−l ′|L0

{ |gkω
|2, Rl > Rl ′ ,

|g−kω
|2, Rl < Rl ′ .

The interaction is of long range when αGkωL0/2 � 1. The
constant 
R = |gkω

|2/v(kω ) [
L = |g−kω
|2/v(kω )] represents

the coupling strength from the left to right (right to left) wires.
Our predicted effect is not limited strongly by the mate-

rial choice. Conventional materials such as cobalt wire may
be suitable [18,24–26], but it has a relatively large damp-
ing. CoFeB has a relatively high magnetic quality [33,34]
and large exchange stiffness [35–37]. We thus illustrate the
effective couplings by exemplifying CoFeB wires of width
w = 150 nm and thickness d = 20 nm on top of a Ni film
of thickness s = 5 nm. With μ0M̃s = 0.6 T for Ni [37]
and μ0Ms = 1.6 T [38] for CoFeB of stiffness αex = 8 ×
10−13 cm2 [35,36], we plot the direction dependence of the
coupling constants 
L,R on the applied magnetic field of
strength μ0Happ = 0.1 T in Fig. 2. With these parameters, the
frequency of the Kittel modes of CoFeB wire is ωK = 60 GHz
[27]. The coupling is perfectly chiral when the magnetizations
of the wire and film are parallel (
R �= 0 but 
L = 0) or
antiparallel (
L �= 0 but 
R = 0). The chirality vanishes at
two critical angles φc = {0.4π, 1.6π}. Thereby, the system
allows us to simulate rich physics from coupling with perfect
chirality to coupling in the absence of chirality.

Non-Hermitian skin effect. Conveniently, the effective non-
Hermitian Hamiltonian

Ĥeff =
(

ωK − iα̃GωK − i

R + 
L

2

) N∑
l=1

b̂†
l b̂l

− i
R

∑
l<l ′

eiq∗|l−l ′ |L0 b̂†
l b̂l ′ − i
L

∑
l>l ′

eiq∗|l−l ′ |L0 b̂†
l b̂l ′ ,

(3)

recovers the Langevin equation (2), in which within the on-
shell approximation 
L,R ≡ 
L,R(ωK ) and q∗ ≡ qωK . When
α̃G is small for the wire [33,34], the radiative damping (
R +

L )/2 by pumping the spin waves in the film dominates the
damping of Kittel magnons. The Hamiltonian can be ex-
pressed via a non-Hermitian matrix H̃eff via Ĥeff = �̂†H̃eff�,
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FIG. 2. Dependence of the coupling constants 
L,R on the direc-
tion φ of the applied magnetic field. The geometric parameters are
addressed in the figure, and the material parameters are given in the
text.

where �̂ = (b̂1, b̂2, . . . , b̂N )T , with matrix elements

H̃eff |ll ′ =

⎧⎪⎨
⎪⎩

ωK − iα̃GωK − i(
L + 
R)/2, l = l ′,

−i
Leiq∗(l−l ′ )L0 , l > l ′,

−i
Reiq∗(l ′−l )L0 , l < l ′.

(4)

The phase factor in the coupling constant comes from the
propagation phase of the film spin waves, thus recording the
interference of waves in the range limited by 1/|q∗|. Al-
though being a generalization of the Hatano-Nelson model,
its topological property is, however, much less known than its
short-range version. The right eigenvectors of H̃eff and H̃†

eff are
{ψζ } and {φζ } with corresponding eigenvalues {νζ } and {ν∗

ζ },
where ζ is labeled from 1 to N by increasing their decay rates.
φ

†
ζ is then a left eigenvector of H̃eff . After normalization we

have biorthonormality ψ
†
ζ φζ ′ = δζζ ′ .

With the material parameters in Fig. 2, the resonant spin
waves have a wave vector k = 2π/88.9 nm−1. When tak-
ing the Gilbert damping αG = 0.02 for Ni, the range of the
spin-wave mediated interaction is 1/Im(q∗) = 1.41 μm. The
interaction is of long range by choosing the distance of neigh-
boring wires L0 = 300 nm. The chirality is freely tunable
by changing the direction of magnetization in the film plane
as in Fig. 2. Here, we typically choose φ = {0.3π, 0.54π}
that renders 
L/
R = 0.2 and 
R/
L = 0.2 for addressing the
physics. In Fig. 3(a), all the modes are localized at the right
edge when 
R > 
L, but become localized at the left edge
when the chirality is reversed with 
L > 
R as in Fig. 3(b).
The skin effect vanishes without the chirality at the critical
angle φc = 0.416π , as shown in Fig. 3(c) where there are only
few modes that have considerable amplitudes at the two edges,
which have faster decay rates than the other modes as revealed
via our further calculation. Also, localization vanishes when
taking αG = 2 × 10−3 [Fig. 3(d)] [19]. Profoundly, the mode
amplitudes are enhanced by two orders in magnitude by the
skin effect. This is because these skin modes are in proximity
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FIG. 3. Distribution of normalized eigenmodes under different
conditions. All the modes are localized at the edge in (a) and (b) when
the coupling is chiral and film damping is strong. The skin modes
vanish either without chirality [(c)] or with weak film damping [(d)].

to the N th order exceptional points with a coalescence of all
eigenvectors [3,39] when one of 
L,R is exactly zero.

It is not trivial to find an analytical solution for the wave
function that allows us to explicitly depict the generalized
Brillouin zone, i.e., the distribution of complex momen-
tum κ , parametrized by βk ≡ eikL0 , on a complex plane
[4,6]. We construct a Bloch state for a complex momen-
tum as a traveling wave �̂κ = (1/

√
N )

∑N
l=1(βκ )l b̂l , obeying,

under Hamiltonian (3), the equation of motion d�̂κ/dt =
−iωκ�̂κ − 
Lgκ�̂q∗ + 
Rhκ�̂−q∗ [19,40,41]. The dispersion
relation

ωκ = (1 − iα̃G)ωK − i

R

2

1 + βκβq∗

1 − βκβq∗
+ i


L

2

1 + βκβ−q∗

1 − βκβ−q∗

is singular when κ = ±q∗, implying that around these points
the states have large decay rates. The traveling modes
are not the eigenstates because of the existence of two
edges in the chain that radiate energy with amplitudes gκ =
1/(1 − βκβ−q∗ ) and hκ = (βκ )N (βq∗ )N/(1 − βκβq∗ ), and re-
flect the traveling modes. Thus we may superpose two
traveling modes of the same energy with different momenta,
i.e., ωκ = ωκ ′ for a new mode. Superposition �̂ = gκ ′�̂κ −
gκ�̂κ ′ obeys

d�̂/dt = −iωκ�̂ + 
R(gκ ′hκ − gκhκ ′ )�̂−q∗ , (5)

and becomes the eigenmode when gκ ′hκ = gκhκ ′ . These are
the desired relations to find the complex momentum κ and
dispersion. Numerically diagonalizing the Hamiltonian with
eigenfrequency ωκ solves the complex momentum β (±)

κ =
(−Cκ ± √

C2
κ − 4AκBκ )/(2Aκ ), containing two roots of mo-

mentum κ and κ ′ at the same frequency, where with ω̃κ ≡
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FIG. 4. Generalized Brillouin zone under different chiralities and
dampings. |β| < 1 (|β| > 1) in (a) and (b) favors the localization
at the right and left edges, respectively, while |β| ≈ 1 in (c) and
(d) indicates the absence of the skin effect.

ωκ − ωK + iα̃GωK,

Aκ = ω̃κ − i(
R − 
L )/2, Bκ = ω̃κ + i(
R − 
L )/2,

Cκ = −
(

ω̃κ − i

R + 
L

2

)
βq∗ −

(
ω̃κ + i


R + 
L

2

)
β−q∗ .

For the eigenmodes we expand �̂ = ∑
l φ∗

ζ ,l b̂l and find the
wave function

ψζ,l = C
(
gκ ′βN−l

κ − gκβ
N−l
κ ′

)
(6)

to be normalized with a constant C. The exponent (N − l )
controls the distribution of the excited wire magnons. When
|βκ | > 1 (|βκ | < 1), the amplitude of ψζ,l decreases (in-
creases) with increasing the sites from 1 to N , implying the
localization at the left (right) edge of the chain. Figure 4 plots
the distribution of the real and imaginary parts of β±, which
form a loop in the complex plane, under different conditions.
When there is net chirality and strong damping of the film,
|β±| labeled by the red and blue dots deviate strongly from
the unit that is indicated by the green dashed line. This is the
condition for the emergence of the non-Hermitian skin effect
[4,6]. When the chirality vanishes or the damping of the film
becomes small, the distribution of β almost overlaps with the
unit circle, indicating the absence of the skin effect.

Sensitive detection of microwaves. The wires can be excited
and detected by the local metal stripline with a comparable
width to w that is assumed to support a uniform electric
current in the cross section [18]. A thin stripline on top of the
(le)th wire generates a magnetic field hyŷ of frequency ωd that
locally excites beneath it the wire. The interaction between
the field and wire Kittel mode Ĥ ′

int = h̄(gle e
−iωd t β̂

†
le

+ H.c.)

is parametrized by gle = −μ0

√
M̃sγ /(2h̄)hydwm̃K

le,y
. At the

steady state, the excited amplitude of the magnetization in
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FIG. 5. Nonlocal excitation [(a)] and detection [(b)] of magnons
by weak microwaves. In (a) the excited magnons accumulate at the
right edge when the stripline locally excites the (le)th wire. (b) plots
the microwave transmission when one antenna excites the wire at the
left edge and the other antenna detects the signature above the jth
wire.

every wire follows 〈�̂〉 = ∑
ζ gleφ

†
ζ ,le

ψζ/(ωd − γζ ). To be
realistic, we take into account the disorder modeled by the
random shift δω ∈ [−0.01ωK, 0.01ωK] to the Kittel frequency
of every wire. The skin effect turns out to be robust to this
disorder. To efficiently excite the localized modes at one
edge, the local microwave source should locate at the other
edge, i.e., nonlocal and nonreciprocal excitation. On the other
hand, the mode amplitudes are greatly enhanced by the skin
effect as in Fig. 3, leading to the expectation of sensitive
microwave detection. Figure 5(a) is the numerical substan-
tiation of the above expectation: A small microwave field
10 μT of frequency ωd = 60 GHz leads to a deviation of the
magnetization 2μ0

√
2M̃sγ h̄nl m̃l,y = 0.09 T of CoFeB wire

with α̃G = 0.01 [33,34] at the steady state, i.e., a precession
cone angle of ∼3.3◦, nl being the excited magnon number in
the lth wire. The results converge when averaging up to 104

samples with random disorder.
For the experimental detection, the magnon density nl

in every wire can be directly measured by Brillouin light
scattering [42,43] and nitrogen-vacancy (NV) center mag-
netometry [44,45]. Here, we predict the signature for the
microwave transmission when placing one antenna above
the wire at the left edge and the other above the jth wire.
The transmission of a microwave of frequency ωd is calcu-
lated via the input-output theory [31,32] that reads S j1(ωd ) =
−iκp

∑
ζ φ

†
ζ ,1ψζ, j/(ωd − γζ ), where κp is the radiative damp-

ing induced by the antenna. When taking κp = 2π × 10 MHz
[43], the distribution of |Sj1(ωd )| in Fig. 5(b), after being
averaged with the disorder, clearly shows the localization at
the right edge.

Discussion. The array of magnetic wires over yttrium iron
garnet was widely used as a magnetic antenna to excite the
spin waves [24–26]. Recently, it became a platform for re-
alizing the long-range chiral interaction between magnon of
the wires as predicted theoretically [16,17] and measured
experimentally [18,24], which, however, only supports very
few slightly localized modes at the edge that renders the
difficulty to accumulate all the excitations [19]. We achieve
an advancement to realize the localization of all the magnon
modes at one edge, which only needs to replace the yttrium
iron garnet substrate by conventional magnetic materials
of normal damping in the mature setups [24–26]. Such a
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localization of all bulk modes comes from the non-Hermitian
skin effect with a topological origin, which thereby allows for
some unavoidable disorders.

Our method for setting up an effective Hamiltonian by
integrating out the other degree of freedom is similar to
that via the calculation of self-energy of interacting magnons
[46] or electrons [47]. Different from the obtained non-
Hermitian Weyl physics that has robust exceptional points
[46,47], our results add an important vision that a magnetic
hybridized system can support a nontrivial non-Hermitian
effect accompanied by the skin effect without any excep-
tional point, which may bring functionalities such as nonlocal
spin-wave excitation, sensitive detection of microwaves, and

achieving a nonlinear regime of magnons with a small
power. The generalization of our scenario to chiral photonics
[1,48], plasmonics [49–51], and acoustics [52,53] may pro-
mote the performance of sensors for the detection of small
signals.
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