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Chiral anomaly in noncentrosymmetric systems induced by spin-orbit coupling
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The chiral anomaly may be realized in condensed matter systems with pairs of Weyl points. Here we show that
the chiral anomaly can be realized in diverse noncentrosymmetric systems even without Weyl point pairs when
spin-orbit coupling (SOC) induces nonzero Berry curvature flux through Fermi surfaces (FS). This motivates
the condensed matter chiral anomaly to be interpreted as a FS property rather than a Weyl point property. The
SOC-induced anomaly reproduces the well-known charge transport properties of the chiral anomaly such as the
negative longitudinal magnetoresistance and the planar Hall effect in Weyl semimetals. Since it is of SOC origin,
it also affects the spin transport and gives rise to anomaly induced longitudinal spin currents and the magnetic
spin Hall effect, which are absent in conventional Weyl semimetals.
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I. INTRODUCTION

Massless relativistic fermions with pairs of Weyl points
have the chiral symmetry, which may be broken by quantum
fluctuations in the presence of electric and magnetic fields E
and B, resulting in the chiral anomaly [1,2],

∂nχ

∂t
+ ∇ · Jχ = χ

e2

4π2h̄2c
(E · B), (1)

where nχ and Jχ are, respectively, the number density and the
current density of fermions with the the chiral charge or the
chirality χ (= ±1); e(< 0) is the electron charge. The chiral
anomaly was introduced originally in high-energy physics to
explain the anomalous decay of neutral pions. Recently, it
received much attention in condensed matter physics since
electron spectra in Weyl semimetals [3] resemble those of
massless relativistic fermions with pairs of Weyl points and
possess chiral symmetry. The chiral anomaly may be realized
in such condensed matter systems [4] and results in interesting
transport phenomena such as the negative longitudinal magne-
toresistance [5–8] and the planar Hall effect [9,10], which are
verified in experiments [11–16].

On the other hand, there is controversy regarding the
relation between these transport phenomena and the chiral
anomaly since these phenomena may occur in systems that
are not Weyl semimetals [17–23]. Some of such systems
have the helical symmetry, and the associated helical charge
obeys the same anomalous conservation equation [19,24] as
Eq. (1). The resulting helical charge pumping can give rise
to the aforementioned transport properties. In this Letter, we
generalize the chiral anomaly concept further that applies
to any systems with nonzero Berry curvature flux through
Fermi surfaces (FS), regardless of the energy dispersion shape
(relativistic or nonrelativistic), the number of relevant Weyl
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points (four, two, zero [19,24], or even one), or symmetries
of Hamiltonian (helical symmetry or not). As a specific ex-
ample, we demonstrate the generalized chiral anomaly for
noncentrosymmetric spin-orbit-coupled (SOC) systems with
nonrelativistic fermions and only one relevant Weyl point. In
addition to the aforementioned charge transport phenomena,
they exhibit interesting anomaly induced spin transport phe-
nomena since the anomaly arises from the SOC.

II. SOC-INDUCED CHIRAL ANOMALY

For illustration, we take a simple Hamiltonian

H = p2

2m∗ + λ

h̄
p · σ, (2)

where m∗ is an effective electron mass, λ is the SOC param-
eter, and σ is the Pauli matrix vector for electron spin. We
take both m∗ and λ to be positive for concreteness but these
constraints may be lifted. Figure 1(a) shows the energy dis-
persion of H. Although the twofold spin degeneracy is lifted
by the SOC, which is a relativistic effect, H basically has
massive nonrelativistic dispersion and there is only one Weyl
point at the time-reversal-invariant point k = 0. Thus H does
not have the chiral symmetry. It can be verified that H does
not have the helical symmetry either [19,24]. One remark is
in order. Due to the Fermion doubling theorem [26,27], there
should exist another Weyl point somewhere, either far away
in the k-space or far away in the energy range where H does
not hold. Such systems with distant Weyl points are termed
Kramers-Weyl fermion [28]. But properties (such as location
and dispersion) of the other Weyl point do not affect the results
presented below and in this sense, H describes a situation
where only the Weyl point is relevant. H with the Weyl-type
SOC structure p · σ can be realized in the noncentrosymmetric
point groups T and O [29] such as K2Sn2O3, β-RhSi, CoSi,
and AlPt [25,28,30–33].
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FIG. 1. (a) The energy dispersion for a Weyl SOC system with-
out the B field. The red (blue) line represents states connected to the
outer (inner) FS with the chirality χ = +1 (−1). On the other hand,
the solid (dashed) line represents the upper (lower) band with the
helicity band index ς = +1 (−1). The gray horizontal dashed line
denotes the Fermi energy EF. Black and green arrows represent the
CP scattering and the CV scattering processes, respectively. (b) The
red (blue) sphere represents the FS χ = +1 (−1). When an electric
field E is applied, the ground-state FS (transparent ones) are shifted.
(c) LL dispersion for a Weyl SOC system with B = 1 T along
the z axis. (d) Schematic illustration of the χ = +1 (χ = −1) FS
expansion (shrinkage) due to the chiral anomaly induced pumping.
Parameters are m∗ = 1.4me, and λ = 0.7 eV·Å, which are relevant
to K2Sn2O3 [25].

We check the chiral anomaly of H in three ways: Via
the Berry curvature flux, semiclassical analysis, and quantum
analysis. For the first analysis, we recall Ref. [5], which re-
ports that the nonvanishing Berry curvature flux through a
FS is an indicator of the chiral anomaly. Although Ref. [5]
appears to assume Weyl semimetal-type systems implicitly
[6], its result is intriguing since the Berry curvature flux can be
calculated regardless of the presence of the chiral symmetry.
Interestingly, H has two FS [Fig. 1(b)] and the Berry curvature
flux kι through the outer (ι = +1)/inner (ι = −1) FS,

kι = 1

2π h̄

∮
F.S.ι

dSp · �ςp (3)

is +1/−1 for the Fermi energy EF > 0 and +1/+1 for EF <

0. For conventional Weyl semimetals with a pair of Weyl
points, the sum of kι’s for the two FS is zero, which contrasts
with the result for H with EF < 0. In Eq. (3), the integra-
tion runs over the momentum space area on the FSι with
the momentum space area element dSp pointing outward;
�ςp = ih̄〈∇puςp| × |∇puςp〉 is the Berry curvature [34] at
the momentum p for the upper (ς = +1) or lower (ς = −1)
energy band that lies on the FSι. To understand the impli-
cation of the nonzero Berry curvature flux through the FS,
we attempt to derive the “FS” version of the chiral anomaly
by assigning the chiral index χ for each eigenstate of H as
follows: χ = +1 (−1) for each eigenstate of H if the state is
“connected” to the outer (inner) FS. To clarify what is meant
by connected, states with χ = +1 (−1) are marked red (blue)
in Fig. 1(a). Note that we now use χ as a FS index rather than

the Weyl point index. This allows nχ and Jχ to be defined
unambiguously for χ = +1 and −1 even though H has only
one Weyl point. Using the semiclassical equations of motion
in the presence of E and B,

ṙ = vςp + ṗ × �ςp, (4)

ṗ = eE + e

c
ṙ × B, (5)

one can verify after tedious calculation [35] that nχ and Jχ

defined this way satisfy Eq. (1) except that the index χ on the
right-hand side of Eq. (1) is replaced by Cχ ,

Cχ = 1

2π h̄

∮
F.S.χ

dSςp · �ςp, (6)

which is +1/−1 for χ = +1/−1 regardless of EF. Cχ differs
from kχ [Eq. (3)] in that the momentum space area element
dSςp is pointing along the group velocity direction, which is
inward for the inner FS with EF < 0, and outward otherwise.
Thus this semiclassical analysis supports the chiral anomaly
for H, provided that the chirality index χ is redefined as
the FS index. In Eqs. (4) and (5), vςp is the group veloc-
ity. Due to the B field, the orbital magnetic moment mςp =
−i(e/2c)〈∇puςp| × [H − Eςp]|∇puςp〉 modifies the energy as
Eςp → Ẽςp = Eςp − mςp · B and vςp should be calculated
from the modified energy Ẽςp as vςp = ∂ Ẽς (p)/∂p.

We next attempt quantum analysis motivated by the obser-
vation that the semiclassical analysis cannot capture quantum
fluctuations. For quantum analysis, we replace H in Eq. (2)
with HL,

HL = 1

2m∗ �2 + λ

h̄
� · σ − μ∗

BB · σ, (7)

where � = p − eA/c is the kinematic momentum operator in
the presence of the vector potential A that is related to E =
−(1/c)∂A/∂t and B = ∇ × A. The last term of HL denotes
the Zeeman coupling with the Bohr magneton μ∗

B. Then, we
define the chirality operator Ĉ as follows,

Ĉ = −sgn[{�eff · v,�eff · σ}+], (8)

where �eff = � + (h̄/λ)(eh̄/2m∗c − μ∗
B)B is the effective

kinetic momentum operator, v is the velocity operator, and
{, }+ denotes anticommutator. We note that Eq. (8) differs
from the helicity � · σ [24,36]. If the helicity is identified
with the chirality [36], the E · B term in Eq. (1) vanishes when
EF < 0. Hereafter, we choose μ∗

B = eh̄/2m∗c for simplicity,
but this choice is not crucial. To demonstrate the physical
meaning of Ĉ, we first consider the case A = 0 (E = B =
0). It is trivial to verify that Ĉ has eigenvalues ±1 for the
red-/blue-colored states in Fig. 1(a). Thus Ĉ amounts to the
chiral number operator (or quantum generalization of the FS
index χ introduced in the above semiclassical analysis). This
allows nχ and Jχ in Eq. (1) to be defined unambiguously in
this quantum analysis. Since Ĉ and HL share the complete
set of common eigenstates, [Ĉ,HL] = 0, which verifies the
chiral number conservation for E = B = 0. Interestingly, the
commutator [Ĉ,HL] vanishes even for nonzero A �= 0. If A is
time-independent (E = 0), the vanishing commutator implies
the chiral number conservation even for B �= 0. If A is time-
dependent (E �= 0), on the other hand, one obtains d Ĉ/dt =
[Ĉ,HL]/ih̄ + ∂ Ĉ/∂t , where [Ĉ,HL] = 0 and ∂ Ĉ/∂t �= 0. That
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is, the vanishing commutator does not necessarily imply the
chiral number conservation. The above operator analysis thus
implies that nonvanishing E is a necessary condition for pos-
sible violation of the chiral number conservation.

However, nonvanishing E is not a sufficient condition. To
examine possible violation of the chiral number conservation,
we calculate the E-induced Ĉ change, δ〈Ĉ〉 (B = 0), by using
the Kubo formula, which takes into account both the inter- and
intraband contributions. The interband contribution δ〈Ĉ〉inter is
proportional to 〈uςp|Ĉ|uς ′p〉〈uς ′p|v|uςp〉 (ς ′ �= ς ), which van-
ishes since 〈uςp|Ĉ|uς ′p〉 = 0 due to [Ĉ,HL] = 0. Thus δ〈Ĉ〉
is determined by the interband contribution δ〈Ĉ〉intra, which
describes the FS shift. As shown in Fig. 1(b), in the presence
of the E field, there is no change of Ĉ due to the F.S. shift by
E. In other words, Ĉ is preserved at each FS even though the
E field is applied to the system.

If the B field is also present, δ〈Ĉ〉intra can be nonzero as
we demonstrate below. When an external uniform B field
along the z direction is turned on, the Landau levels (LL)
develop: For ν � 1, Eν,ς=±(pz ) = p2

z/2m∗ + ν h̄ωc ± �ν (pz )
and for ν = 0, Eν=0(pz ) = p2

z/2m∗ + λpz/h̄. Here �ν (pz ) =√
2νλ2/l2

B + λ2 p2
z/h̄2, lB = √

h̄c/eB, and ωc = eB/m∗c. The
LL energy dispersion is shown in Fig. 1(c), where states with
Ĉ eigenvalue +1(−1) are colored in red (blue). Note that the
zeroth LL (ν = 0) states have Ĉ = −1 for pz/h̄ � −m∗λ/h̄2

and Ĉ = +1 for pz/h̄ � −m∗λ/h̄2, where m∗λ/h̄2 
 0.13
Å−1 [see vertical dashed line in Fig. 1(c)]. Thus the state shift
by the z component of E can induce nonzero δ〈Ĉ〉intra. For
other LLs (ν � 1), the state shift does not induce nonzero
δ〈Ĉ〉intra since the Ĉ change at pz/h̄ 
 −m∗λ/h̄2 is counter-
balanced by the Ĉ change at pz/h̄ 
 m∗λ/h̄2. Thus when
E is applied along the z axis, we obtain nonzero δ〈Ĉ〉 =
τcve2E · B/2π2h̄2c due to the unbalance caused by the ze-
roth LL. Here τcv is the chirality-violating (CV) scattering
time [Fig. 1(a)]; δ〈Ĉ〉 agrees with the result of Eq. (1) for
the chiral number density in the homogeneous system at
steady state, ∂n5/∂t = e2E · B/4π2 h̄2c − δn5/τcv = 0 with
n5 = (n+1 − n−1)/2. This confirms the chiral anomaly for HL.

III. CHARGE TRANSPORT

It has been reported [6–10] that the charge transport in
Weyl semimetals acquires corrections to the Drude conduc-
tivity σD due to the chiral anomaly. Here we examine if the
SOC-induced chiral anomaly affects the charge transport in a
similar way. For this, we use the semiclassical expression for
the charge current density J ,

J = e
∑

ς

∫
d3p

(2π h̄)3
Gςpṙς fςp, (9)

which is valid when the LL quantization is not important.
Here Gςp = 1 + eB · �ςp/c is the Berry phase correction to
the density of states [34] and the electron occupation function
fςp is given by

fςp = f 0
ςp − τcp(ṗ · ∇p) f 0

ςp + O
(
τ 2

cp

)
. (10)

Here f 0
ςp is the equilibrium Fermi-Dirac distribution and τcp

is the momentum relaxation time for the chirality-preserving
(CP) scattering [Fig. 1(a)]. Note that the difference between

fςp and f 0
ςp

depends explicitly on τcp and τcv does not appear

explicitly. The latter appears through the modification of f 0
ςp

via the shift of the chemical potential μχ for the following
reason. The chiral anomaly tends to incresease nχ by kχe2(E ·
B)/4π2 h̄2c per second. This tendency is counterbalanced by
the CV scattering, and at steady states one obtains the den-
sity of the pumped electrons δn5 = δnχ=+1 = −δnχ=−1 =
τcve2(E · B)/4π2 h̄2c. This pumping results in the chemical
potential imbalance between the two FS, μχ=+1 − μχ=−1 ≡
2μ5, where

μ5 = π2

(
λ2 + h̄2EF

m∗
)√

λ2 + 2h̄2EF
m∗

E2
F

δn5. (11)

Here EF is the Fermi energy in the absence of E and B.
Equation (11) is essentially identical to μ5 for a conventional
Weyl system [14,37].

This μ5 affects the charge current in many ways since all
f 0
ςp’s in the series expansion of fςp [Eq. (10)] are affected

by μ5 [38]. First of all, the very first term f 0
ςp in the series

expansion generates an “equilibrium” current density,

J CM = e2

2π2h̄2c
μ5B = 3μ∗2

B

4E2
F

(4π2h̄2c/e2)

τcp
δn5σDB, (12)

which is nothing but the chiral magnetic effect [36,39] il-
lustrated initially for the quark-gluon plasma with the chiral
anomaly [37]. Since μ5 (δn5) is proportional to E · B, J CM

produces the negative magnetoresistance when E and B are
parallel [6–8]. The second term −τcp(ṗ · ∇p) f 0

ςp in Eq. (10)
also affects the charge transport and generates a nonlinear
correction J D-N [35],

J D-N = − h̄4/m∗2

λ2 + h̄2EF/m∗
λ

2EF
δn5σDE, (13)

which is quadratic in E (note that δn5 is also linear in E)
and makes the electric response nonreciprocal [40]. A similar
quadratic-in-E correction is reported [41] in noncentrosym-
metric Weyl semimetals with four Weyl points where it is
crucial for two Weyl points to be shifted in energy from the
other Weyl points for such a nonlinear correction to arise. In
contrast, H has only one Weyl point. We briefly mention that
the energy correction due to B is ignored for J CM and J D−N

since its effect is of higher order, O(B3).
The charge pumping affects not only the longitudinal

current but also the Hall current, generating corrections
to the Lorentz force-induced Hall current, which we do
not specify, and the orbital magnetic moment-induced Hall
current [42] J OH = (e3/24π2 h̄2c)LFB × E, where LF =
λ2/(EF

√
λ2 + 2h̄2EF/m∗). Actually, the equilibrium current

density J CM already contains such a correction. Since
J CM ∝ (E · B)B generates the planar Hall effect when B
is not parallel to E but not perpendicular either [Fig. 2(a)]
as demonstrated previously for Weyl semimetals [9,10].
There is another Hall current contribution arising from f 0

ςp

since the energy Ẽςp in the presence of B contains the
correction −mςp · B. Then, the resulting occupation cor-
rection f 0

ςp(Ẽςp) − f 0(Eςp) = −mςp · B∂ f 0
ςp/∂Eςp + O(B2)
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FIG. 2. Schematic illustrations of (a) charge currents and (b) spin
currents in the presence of both E and B fields.

generates the Hall current correction J OH-N [35],

J OH-N = ξ
eμ∗2

B λ

16E4
F

(4π2h̄2c/e2)

τcp
δn5σDB × E, (14)

where the coefficient ξ = 1 + λ2(λ2 + 3h̄2EF/m∗)/[(λ2 +
h̄2EF/m∗)(λ2 + 2h̄2EF/m∗)] approaches 1 as EF → 0. In
Fig. 2(a), the blue arrow represents J OH-N. The factor δn5 in
J OH-N indicates that J OH-N arises from the chiral anomaly
and thus differs from the nonlinear Hall effect demonstrated
for a tilted Weyl semimetal [43] and a multi-Weyl semimetal
[44], which are not due to the anomaly induced pumping δn5.

IV. SPIN TRANSPORT

Electron spin is an essential ingredient of the SOC-induced
chiral anomaly. It is thus natural to expect that the chiral
anomaly affects spin transport as well. In contrast, the spin is
not essential in conventional realization of the chiral anomaly
in Dirac and Weyl semimetals, and thus the chiral anomaly
effect on the spin transport has not been examined except for
Ref. [45] which examines the spin current injection effect.
Here we examine the chiral anomaly effect on the spin trans-
port in the linear response regime.

First of all, we introduce the spin current operator Ĵ S j

i =
1
2 {∂H/∂ pi, σ j} [46], where the curly bracket denotes an an-
ticommutator. In the linear response regime, its expectation
value J S j

i is proportional to E, J S j

i = σ
S j

ik Ek , where the spin

conductivity σ
S j

ik may depend on B. Since we are interested
in the chiral anomaly effect, we assume for simplicity that
E and B are parallel to each other, both applied along the z
axis. Then the relevant spin conductivity matrix σ

S j

iz has the
following structure,

σ
S j

iz =

⎛
⎜⎝

σ Sx
xz σ

Sy
xz 0

σ Sx
yz σ

Sy
yz 0

0 0 σ
Sz
zz

⎞
⎟⎠, (15)

where σ
Sz
xz = σ

Sz
yz = σ Sx

zz = σ
Sy
zz = 0 due to the rotation symme-

try of H. The same symmetry also guarantees σ Sx
xz = σ

Sy
yz and

σ
Sy
xz = −σ Sx

yz [47]. In Fig. 2(b), gray and blue arrows represent
the spin current. In Eq. (15), the off-diagonal components
σ

Sy
xz = −σ Sx

yz are the conventional spin Hall conductivity [46].
The spin current described by the diagonal components σ Sx

xz =
σ

Sy
yz is similar to the magnetic spin Hall current [48] in ferro-

magnetic systems [47] except that B in our system plays the
role of the ferromagnetic magnetization M in magnetic spin
Hall systems.

The chiral anomaly effect on the spin trans-
port in the linear response regime can be captured
by considering the pumping δn5. From J S j

i =∑
ς (2π h̄)−3

∫
d3pGςp〈uςp|Ĵ S j

i |uςp〉[ f 0
ςp(δn5) − f 0

ςp(δn5 =
0)], we obtain the anomaly induced spin current
J Sx

x = J Sy
y = J Sz

z = J ano
s , where J ano

s is given by

J ano
s = − μ∗

B

2(EF + m∗λ2/h̄2)

(4π2h̄2c/e2)

τcp
δn5 σD

e
. (16)

Note that J ano
s contributes only the diagonal spin conductivi-

ties σ Sx
xz = σ

Sy
yz = σ

Sz
zz .

We estimate the magnitudes of various anomaly induced
charge/spin currents, all of which increase as EF approaches
the Weyl point energy, 0. This increase is partially due to the
explicit inverse proportionality to EF [Eqs. (12), (13), (14),
and (16)] and also due to the implicit inverse proportionality
to EF hidden in δn5 ∝ τcv. After some calculation [35], one
obtains τcv/τcp ∼ (2m∗λ2/h̄2)2/E2

F [49]. For the parameters
m∗ = 1.4me, λ = 0.7 eV·Å, EF = 2 meV, and τcp = 6.85 ps
and for the strengths E = 104 A/m and B = 1 T, we obtain
J D 
 2 × 107A/cm2, and J CM/J D 
 260 %, J D-N/J D 

32 %, J OH-N/J D 
 7 %, and J ano

s /J D 
 180 %. We note,
however, that these ratios decrease significantly when |EF|
becomes larger.

Lastly we remark that the SOC-induced chiral anomaly is
not limited to the Weyl-type SOC p · σ in the point groups
T and O. The SOC structure varies with the crystal structure
[29] and we verify [35] that the SOC structure in 11 out of
the total of 21 noncentrosymmetric point groups can gener-
ate nonvanishing Berry curvature flux through FS. Although
details of the anomaly induced charge and spin transport prop-
erties may be affected by the details of the SOC structure, our
work demonstrates the abundance of the SOC-induced chiral
anomaly.

To conclude, we demonstrated that the SOC-induced chiral
anomaly can occur in diverse noncentrosymmetric systems
even without pairs of Weyl points and without the chiral sym-
metry, provided that the Berry curvature flux through FS is
nonzero. This motivates the reinterpretation of the condensed
matter chiral anomaly as a FS property rather than a Weyl
point property, as proposed initially by Ref. [5].
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