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Theory of dispersive optical phonons in resonant inelastic x-ray scattering experiments
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The community currently lacks a complete understanding of how resonant inelastic x-ray scattering (RIXS)
experiments probe the electron-phonon interaction in solids. For example, most theoretical models of this process
have focused on dispersionless Einstein phonons. Using a recently developed momentum average variational
approximation for computing RIXS spectra of band insulators, we examine the influence of both electron and
phonon dispersion in the intermediate state of the scattering process. We find that the inclusion of either, and
their mutual interplay, introduces significant momentum variations in the RIXS intensity, even for momentum-
independent electron-phonon coupling. The phonon dispersion also induces nontrivial changes in the excitation
line shapes, which can have a quantitative impact on the data analysis. These results highlight the considerable

challenges of interpreting RIXS data in actual materials.
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Introduction. Resonant inelastic x-ray scattering (RIXS)
[1,2] is being used increasingly to study electron-phonon (e-
ph) coupling in solids. This application is being driven by the
steady improvements of both the instrument resolution and
our understanding of the RIXS cross section. For example,
theoretical modeling has suggested that RIXS can access the
e-ph coupling strength with momentum resolution and ele-
ment specificity [3-5].

One of the most popular methods for quantitatively ana-
lyzing lattice excitations in RIXS spectra is the single-site
framework developed by Ament et al. [3]. It approximates
the infinite system with a single isolated site whose local
electron density in the valence orbital couples to the lattice
displacements. This simplified model’s exact RIXS scattering
amplitude can be computed within the Kramers-Heisenberg
formalism using a Lang-Firsov transformation. Its key pre-
dictions are that the e-ph coupling produces a series of
low-energy harmonic excitations in the energy-loss spectra,
whose relative intensities can be mapped onto the strength of
the e-ph interaction.

Whereas this single-site model has been widely employed
for data analysis [6-10], its approximations are drastic, and
it is unclear how relaxing them may affect the results of the
analysis. For this reason, several groups have attempted to
develop alternative approaches. Examples (in no particular
order) include generalizations of the single-site framework to
include multiple modes or changes in the harmonic potential
in the intermediate state [11], exact diagonalization of small
clusters [4,12], diagrammatic approaches [5,13], cumulant
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expansions of the Green’s function [14], and dynamical mean-
field theory [15].

Recently, we introduced an efficient variational method
for computing RIXS spectra for band insulators [16]. Our
method is built on the momentum average (MA) class of
variational approximations [17,18] and allows us to treat sit-
uations where a core electron is excited into an empty band
in the intermediate state of the RIXS process and is allowed
to interact with the lattice. We showed that the single-site
approximation becomes inaccurate for shallower core-hole
potentials and found that the itinerancy of the valence electron
leads to momentum dependence in the intensity of the RIXS
phonon peaks even if both the e-ph coupling and the phonon’s
dispersion are momentum independent. Naturally, this raises
the question of whether the momentum dependence of various
features in the RIXS spectra can be used to infer momentum
dependence of either the e-ph coupling and/or the phonon
dispersion.

Here, we answer the latter part of this question. We extend
the MA formalism to study band insulators where the excited
electron couples to dispersive optical phonons. Our goal is to
understand how a finite phonon bandwidth affects the RIXS
spectra when the e-ph coupling is momentum independent
(Holstein). We find that the phonon bandwidth produces spe-
cific ¢ dependence of the multiphonon excitations so that even
for a Holstein coupling, we obtain single- and multiphonon
excitations whose peak location and intensity vary signifi-
cantly around the first Brillouin zone. Moreover, the predicted
multiphonon line shapes are complicated, deviating consid-
erably from the Lorentzian or Gaussian shapes frequently
adopted when fitting experimental data. These results expand
our knowledge of how the details of the e-ph coupling are
encoded in the RIXS cross section and further underscore the
need to move beyond single-site models in data analysis.
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The model. We examine the RIXS spectra for a band insula-
tor whose valence electrons are coupled to a dispersive optical
phonon branch in the intermediate state of the scattering
process. The Hamiltonian is H = H, + Hpn + He-ph + Hen-
Here,

H.=—t) |dd, +Hc]
(ij)

=> gdid, (1)
k

where d; (d; ) creates (annihilates) an electron at site i in
the valence band, and ¢ is the valence-band dispersion. The
optical phonon is described by

I @
q

where b; (bq) creates (annihilates) a phonon with energy
wy (we set i =1). Throughout, we assume that the sys-
tem is a two-dimensional square lattice with a = 1 so that
€ = —2t(cos k, + cos k,) whereas w; = wy + 2w;(cos g, +
cos ¢y). Since we have in mind optical oxygen modes in
transition-metal oxides, we further assume that the phonon
bandwidth is small w; < wy. The Holstein e-ph coupling is

8 —ik-R; 7t i
Heph = o Ze kRigid, (b +b_,), ©)

where g is the strength of the coupling and N is the number of
lattice sites. Finally,

Heh = €ch ij-pi - UQ Z ddei - PE-P,-) “4)

describes the core-hole and its interaction with the valence
electron. Specifically, p! (p,) creates (annihilates) an electron
in the relevant core level at site i, €, is the on-site energy
of the core level, and —Uy is the local attractive interaction
between the valence electron and the core hole. We use a
mixed notation for the Holstein coupling [Eq. (3)] where the
electron (phonon) operators are represented in real (momen-
tum) space for later convenience. Finally, Eq. (4) captures the
core-hole’s influence on the system in the intermediate state
via a local core-hole potential. We note that although the bare
Uy potential is purely local, the effective potential can extend
over the entire lattice (albeit decaying very fast away from the
core hole) [16,19,20] once dressed by the e-ph interaction.

The method. Our starting point is the standard Kramers-
Heisenberg equation for the RIXS intensity [1,2], which we
reformulate by expanding the § function as the imaginary part
of a final-state Green’s function [21],

1 |Fre(q, 2)?
I(g.0) = ——Im ) Jg . (5)
T G w+in—Ef +E,

Here, 7 is a broadening parameter, and Fy, is the scattering
amplitude,

fID} n) (n| D; |g)
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where |g), |n), and |f) are the initial, intermediate, and final
states of the RIXS process with energies E,, E,, and Ef,
respectively, z = wi, + i, wiy, and wyy are the energies of
the incident and scattered x-ray, and @ = Wy — Wi, and q are
the energy and momentum transferred to the sample, I is the
inverse core-hole lifetime, and D; is the dipole operator. (Here,
we have omitted the geometric prefactors associated with the
dipole matrix elements to focus on the effects of the electron
and phonon dispersions.) The specific elemental edge does not
matter at our level of modeling [16].

We briefly explain here our variational approach, delegat-
ing all details to the Supplemental Material [22]. The first step
is to evaluate the spectral amplitude F,. Following Ref. [16],
we cast it as a generalized propagator,

1 .
Freq.0) = = Y R flpld, G()d] pilgy . (T)

where G(z2) =[z—H + Eg]". We generate an equation of
motion (EOM) for Fj,(z) by applying the Dyson iden-
tity G(z) = Go(z) + G(2)VGo(2), where V = H,.pn and Hy =
H — Hepn has the associated resolvent Go(w). The EOM for
Frg(z) depends on new propagators, whose EOMs depend on
other new propagators, etc., generating an infinite hierarchy of
coupled EOMs. To simplify it, and then solve it, we define a
variational Hilbert space characterized by the size and spread
of the phonon cloud [18] and only keep in the hierarchy the
EOMs for propagators consistent with this variational choice.
In particular, it has been well documented that for a Holstein
coupling that is not deep into the adiabatic regime, a one-site
cloud approximation is very accurate. Deep in the adiabatic
regime, Holstein polaron clouds spread over several consec-
utive sites, and the variational space needs to be expanded
accordingly [23,24]. We implement this one-site cloud vari-
ational solution here. We emphasize that this polaron cloud
can appear anywhere in the system, it is not restricted to the
core-hole site. Additional technical details can be found in the
Supplemental Material [22] as well as Refs. [16—18].

Results and discussion. Figure 1 presents RIXS spectra
for an itinerant electron, Holstein coupled to a dispersive
optical phonon branch. Here we take wy = 1 as our unit of
energy and set w; = 0.02wy, t = Swo, g = 2wy, Ug = 20wy,
and I' = 2w, unless otherwise stated. The effective e-ph cou-
pling A = g?/4twy = 0.2 is, thus, rather weak. For a typical
transition-metal oxide, we expect wg ~ 100 meV. Our value
for T is, therefore, halfway between values appropriate of
the transition-metal L edge and oxygen K edge [4,8,11].
Our choice for Uy is smaller than the Up ~ 4-6 eV typ-
ically adopted in the literature [4,12,25-27]. This choice
partially accounts for the interaction between the core hole
and the lattice and accentuates the delocalization effects
in the intermediate state. As discussed previously [16], the
core-hole-lattice coupling, which is neglected in Eq. (3), can
frustrate polaron formation in the valence band. At the lowest
order, this effect reduces the effective core-hole potential,
which we account for by reducing Uy,.

For reference, Fig. 1(a) shows the RIXS spectrum for
a dispersionless optical phonon (w; = 0). It shows the ex-
pected multiphonon excitations located at multiples nwq of the
phonon energy. The excitations have Lorentzian line shapes

L180302-2



THEORY OF DISPERSIVE OPTICAL PHONONS IN ...

PHYSICAL REVIEW B 105, L180302 (2022)

w/wo

w/wo

FIG. 1. RIXS spectra calculated for various model parameters. The results plotted for momentum transfers g along the high-symmetry
cuts of the first Brillouin zone of the square lattice. The high-symmetry points are denoted as I' = (0,0), M = (1,1), X = (1,0), and S =
(1/2,1/2) in units of 7 /a. All results were obtained with a variational constraint p = 2 (see the Supplemental Material [22] for more details).
(a) Mobile electron coupled to an Einstein phonon (t = 5 and w; = 0); (b) mobile electron coupled to a dispersive optical phonon (t = 5 and
w; = 0.02); (c) localized electron coupled to a dispersive optical phonon branch (+ = 0 and w; = 0.02). All parameters are in units of wy = 1.
We have multiplied the intensity of the multiphonon peaks by the factor indicated in the corner of the respective region. The dashed blue lines
indicate the edges of the corresponding multiphonon energy convolution (see the text for more details). The green lines are plots of the RIXS

spectrum at the high-symmetry points.

with a broadening set by n = 0.04wy to mimic the instru-
ment’s resolution. The amplitude of the peaks decreases as
the excitation number 7 increases. (For more clarity, we scaled
each overtone by the numerical factor indicated in red at the
top of the plot.) The momentum dependence of the intensity
of the first phonon peak is due to the electron mobility in
the intermediate state [16]. The intensity of the multiphonon
peaks is ¢ dependent, but it is harder to discern on this scale.

Figure 1(b) shows the RIXS spectrum when we introduce
a phonon dispersion with a narrow bandwidth @; = 0.02wy.
The single-phonon peak continues to be a Lorentzian with
broadening 7, but its position now follows the phonon dis-
persion wy, indicated by the dashed blue line, as required by
the conservation of momentum and energy [3,5]. Its intensity
again exhibits a significant momentum dependence due to
the mobility of the electron in the intermediate state. This is
further confirmed by the RIXS spectrum shown in Fig. 1(c) for
a localized electron (f = 0 and w; = 0.02wy). Indeed, here
the single-phonon peak tracks the phonon frequency w, but
has the same intensity at all values of ¢.

Much more important is the observation that now the
higher-order peaks in Fig. 1(b) also show a strong momen-
tum dependence both in their line shape and intensity. To
understand it, consider first the two-phonon peak. Here, the
total transferred momentum is distributed between the two
phonons left behind after the RIXS process, ¢ = ¢’ + ¢”. The
transferred energy must then equal the two phonons’ energy

wg—q + wg = 2w + 4w, Z cos % cos (q’ — %)

S=x,y

There is no broadening at the M-point [= (7, 77)] (apart from
the extrinsic broadening 7); however, for any other g, the two-
phonon peak has an intrinsic broadening 8w (cos % + cos %’ ),
marked by the blue dashed lines due to the convolution over
all ¢’ values.

We can explain the broadening of the higher multiphonon
peaks in a similar manner; it results from the convolution over

the n-phonon energies with total momentum ¢ =) ., g;.
The expected outermost energies allowed by this constraint
are shown by the dashed blue lines and indeed mark the
regions with finite RIXS intensity. The higher-order peaks,
thus, exhibit an ever-growing broadening. For example, the
four-phonon feature is approximately twice as wide as the
two-phonon one. Figure 1(c) shows the same broadening
for the localized electron, confirming that this feature is
due solely to the phonon dispersion. These findings natu-
rally explain why many experiments have resolved increasing
linewidths for the multiphonon excitations [4,12].

Another interesting observation is that the shape of the
two- and three-phonon peaks is highly nontrivial and does
not follow a Lorentzian or Gaussian lineshape as is often
assumed. Furthermore, the three-phonon peak is skewed,
producing asymmetric peaks around the I' and M points.
The bond-stretching “breathing” phonon modes in transition-
metal oxides often have bandwidths reminiscent of our
model [28] whereas Cu L-edge RIXS experiments can ac-
cess momentum transfers approaching the X point. Therefore,
copper oxide materials could serve as a platform for ex-
perimentally confirming these effects, provided the coupling
is strong enough to generate multiphonon excitations and
depending on the instrumental resolution and the actual
self-energy broadening of the valence electron. Nonetheless,
it seems to be worth investigating. For example, it might
be worth examining how incoherent, extremely correlated
Fermi liquid [29,30] or non-Fermi liquid [31] behavior would
manifest here.

The higher phonon excitations eventually revert to a Gaus-
sian line shape as evident in the four-phonon line, owing
to the central limit theorem (the crossover from unusual to
Gaussian lineshapes is controlled by the strength of the e-ph
coupling). In contrast to the case of a dispersionless phonon
[panel (a)], we also see a stronger momentum dependence
of the weight of the higher-phonon peaks. Comparison with
panel (c) reveals that its details depend on the phonon and
valence-band’s bandwidth. We expect that this intensity and
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FIG. 2. An analysis of the phonon excitations for wy =1,
t = Swy, w; = 0.02wp, I' = 2wy, and g = 2wy. (a) The width of the
phonon excitations, defined as the empirically determined half-width
half maximum (HWHM) of the peak as a function of momentum.
(b) The momentum dependence of the maximum phonon excitation
intensity, normalized to their peak intensity at (0,0). In all pan-
els, results are shown for the first four-phonon excitations and for
Uy = 20w, (solid lines) and Uy = 60w, (dashed lines).

the specific lineshapes will be further affected by a momentum
dependence of the e-ph coupling, but the study of this issue is
deferred to future work.

Figure 1 clearly illustrates that both electron mobility and
phonon dispersion, and their interplay, produce phonon ex-
citations with nontrivial momentum dependence in the RIXS
spectra. We further quantify these results in Fig. 2 for different
values of Uy. Figures 2(a) and 2(b) plot the linewidth of the
phonon peaks and their intensity as a function of momentum
as obtained from numerical fitting of a Lorentzian lineshape.
Here, the peak intensity is determined from the peak maxi-
mum. One could use the integrated area instead, which would
show similar trends but with quantitative differences (not
shown). The HWHM is used as proxy for the peak width.
For Uy = 20wy, the intensity of the first and second phonon
excitations varies significantly. For example, the first phonon
excitation drops in intensity by more than half when tracking
from (0, 0) to (7, ), whereas the intensity of the second
phonon excitation grows by a factor of 2. As discussed, the
width of the first phonon peak is fixed to our input resolu-
tion (n = 0.04wy), whereas the width of the second phonon
peak varies by more than 100% following the trends noted
previously. In comparison, the momentum dependence of the
third and fourth phonon excitations is weaker but remains
significant.

We also examine a larger core-hole potential Uy = 60wy.
This value effectively localizes the excited valence electron at
the core-hole site in the intermediate state and reduces the mo-
mentum dependence of the phonon peaks (similar to the ¢t = 0
results). The only exception is the two-phonon peak, which
still varies rapidly as a function of g. This result suggests
that the largest contribution to the momentum dependence
of two-phonon excitation arises from the phonon dispersion
rather than the electron mobility. To confirm this, Fig. 3 com-
pares the results of the same analysis, this time for systems

(b) 1(q)/1(0)
0.10
0.08 | — phtes |15 1
2-ph, t=5
—— 3-ph, t=5
0.06 —— 4ph, t=5 [1.0 1
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0.0)  (m1) (m0) (0,0) (0,00  (max) (mo0) (0,0)

FIG. 3. An analysis of the phonon excitations for localized
(t = 0, dashed lines) and delocalized ( = 5wy, solid lines) electrons,
similar to Fig. 2. Other parameters are wy = 1, w; = 0.02wy, Uy =
20wy, and g = 2wy.

with t =0, t = 5wy, and Up = 20wy. The strong similarity
between the results for the localized electron (t = 0) and those
obtained for a mobile electron with Uy = 60wy, indicate that
this larger potential is indeed strong enough to localize the
electron in the intermediate state.

Summary and conclusions. Our results demonstrate that
electron mobility and phonon dispersion produce momentum-
dependent phonon excitations in the RIXS spectra. Crucially,
this dependence emerges even for models with momentum
independent e-ph interactions and would significantly impact
estimates for the strength of the coupling if one does not
account for it. We also found that the phonon dispersion
produces a nontrivial broadening of the multiphonon excita-
tions. This effect may account for the increasing widths of the
phonon excitations often observed in experiments [4,12].

Our results have important implications for analyzing
RIXS data on systems with dispersive phonon modes. For
example, the single-site model predicts that the strength of
the e-ph coupling can be directly extracted from the in-
tensity ratios of successive phonon excitations with g,/T" =
I,4+1(q9)/1,(q) [3]. In our model, g is independent of q yet
the resulting 7,,(g) functions are not, showing that this simple
mapping does not hold for dispersive systems. Importantly,
this conclusion holds in the limit of strong electron localiza-
tion (i.e., strong, attractive core-hole potentials) if the relevant
phonon branch has a sizable bandwidth.

Our results are for a band insulator where the core electron
is excited into an empty band in the intermediate state of the
scattering process. We suggest that such systems, along with
other dilute materials, could be used to develop a controlled
theory of e-ph coupling in RIXS experiments. In the future, it
is highly desirable to explore these effects in cases where the
band is partially filled and/or where correlation effects cannot
be neglected.
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