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Accurate predictions of electronic band gaps are key to the computational design of functional materials
with tailored optical and thermoelectric properties. While an accurate description of the underlying electronic
structure is indispensable, electron-phonon interactions also play a prominent role in determining the band gap.
The harmonic vibrational approximation is used almost universally to describe electron-phonon coupling and
provides a satisfactory description in most systems. Here, we demonstrate that this is not the case for molecular
crystals due to the presence of strongly anharmonic motions. We demonstrate the breakdown of the harmonic
approximation in acene molecular crystals, and show that converged band gaps can be obtained by rigorously
accounting for vibrational anharmonicity using path-integral molecular dynamics. Finally, we characterize the
most anharmonic vibrational modes and their contributions to the band-gap renormalization.
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Introduction. Electronic band gaps are a key quantity in
studying the optical and electrical properties of materials and
are central to applications such as photovoltaics [1] and ther-
moelectrics [2]. Accurate predictions of band gaps are critical
in understanding how the electronic and optical properties
may be tuned by factors such as atomic or molecular sub-
stitutions, temperature [3–5], and pressure [6,7], and thus for
the design of materials with tailored characteristics. General
predictive calculations of the electronic properties of materi-
als require not only an accurate description of the electronic
structure of a fixed atomic configuration, but also the rigorous
treatment of quantum and thermal nuclear fluctuations, which
can lead to a significant renormalization and temperature de-
pendence of band gaps [8,9].

Traditionally this electron-phonon coupling is either ne-
glected, or accounted for subject to approximations [4]. In
particular, nuclear motion is generally assumed to be har-
monic, in which case the nuclear density distribution can
be computed analytically and used to sample the ensemble-
average band gap [4]. This approach has proven practical and
suitable for a wide range of semiconductors [8–10]. Unfortu-
nately, the harmonic vibrational approximation (HA) breaks
down for general molecular systems. This is well established
in the context of computing thermodynamic stability [11–16],
but more rarely discussed in the context of electron-phonon
coupling and computational spectroscopy.

In this Letter, we calculate fully anharmonic, quantum-
mechanical, finite-temperature electronic band gaps, and
identify the phonons that most strongly deviate from the har-
monic behavior. This is achieved by employing path-integral
molecular dynamics (PIMD) to sample the full anharmonic,
quantum-mechanical thermodynamic ensemble and subse-
quently computing the associated band gaps. To render these
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otherwise prohibitively expensive PIMD simulations feasi-
ble, we use a surrogate machine-learning (ML) potential,
constructed to reproduce the potential energy surface from
first-principles density functional theory (DFT) calculations.
We restrict ourselves to DFT electronic band gaps, reserv-
ing the extension to more sophisticated techniques for future
work. While DFT using (semi)local density functionals tends
to severely underestimate band gaps [17,18], it provides the
foundation for more accurate but computationally demanding
techniques such as diffusion Monte Carlo [19] and GW many-
body perturbation theory [20].

Using the example of the acene molecular crystals, we
highlight the catastrophic failure of band-gap calculations
based on the HA in the presence of anharmonic crystal
vibrations, and identify which phonons dominate the electron-
phonon interaction at different temperatures. Our approach
could be utilized to rigorously compute the band gaps of
various materials where anharmonicity becomes important,
such as lead-halide perovskites [21,22].

Systems and methods. To demonstrate the impact of nu-
clear vibrational anharmonicity on electron-phonon coupling
in organic molecular crystals, we use the acene series, includ-
ing naphthalene (Np), anthracene (Ac), tetracene (Tc), and
pentacene (Pc). These systems consist of an increasing num-
ber of fused benzene rings (see Fig. 1, top left panel). In
every case we report the minimum band gap of the studied
systems. The electronic and optical properties of these acenes
have been the topic of a previous study, which found evidence
of strong effects of anharmonicity [23]. Details regarding
the structures, geometry optimizations, etc., are provided in
Supplemental Material [24] Sec. II A.

We compute first-principles ensemble-average band gaps
within the adiabatic approximation

Eg = 〈Eg(X )〉H = 1

Z

∫
dXEg(X )e−βV (X ), (1)
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FIG. 1. Schematic of the key steps in obtaining first-principles band gaps within the harmonic approximation, and upon rigorous sampling
of anharmonic quantum nuclear fluctuations. For simplicity, we show a single (phonon) degree of freedom X . The approximate harmonic
potential V HA(X ) (solid line), the corresponding Gaussian probability distribution (dashed line), and samples X HA drawn therefrom (solid
circles) are highlighted in red, while the approximate surrogate ML potential V ML(X ) and associated probability distribution and samples
are shown in gray, and the rigorous, first-principles potential V (X ), distribution, and Boltzmann weights are indicated in blue. The crystal
structures are represented in terms of their molecular building blocks.

where the canonical partition function Z = ∫
dXe−βV (X ) in-

volves the configuration space integral
∫

dX [25]. We pursue
a three-pronged approach. We first geometry optimize the
different acenes (Fig. 1, panel 2), and extract the respective
“static” band gaps E st

g , which provide the reference for com-
puting vibrational band-gap corrections.

Second, we compute the band gap within the HA, which
amounts to approximating the physical Hamiltonian H with

HHA ≡ 1

2

∑
n,q

∇2
un,q

+ V HA, V HA ≡ 1

2

∑
n,q

ω2
n,qu2

n,q (2)

(in atomic units). This primarily serves the purpose of pro-
viding atomistic insight by resolving the phonons, labeled
by branch index n and wave vector q, and (subsequently)
their respective contributions to the vibrational band-gap
correction. We compute the ensemble-average EHA

g using a
finite-displacement approach [26,27] to compute phonon fre-
quencies {ωn,q} and coordinates {un,q} (Fig. 1, panel 3), and
then draw N random samples {X HA

i } from the multivariate
Gaussian phonon distribution and calculate their band gaps
{Eg(X HA

i )} (Fig. 1, panel 4). EHA
g is then simply computed as

the average band gap of the samples

EHA
g = lim

N→∞
1

N

N∑
i=1

Eg
(
X HA

i

)
. (3)

This provides a nonperturbative description of electron-
phonon coupling [8], within the constraints of the approximate

harmonic vibrational distribution. Unfortunately, the sys-
tematic error resulting from the HA cannot be quantified
reliably.

To rigorously account for general, anharmonic quantum
nuclear motion we finally employ path-integral techniques.
Since converged first-principles PIMD simulations for our
structures are prohibitively expensive, we use the total ener-
gies and forces computed as a side product of sampling EHA

g

to train a surrogate ML potential V ML (gray solid, Fig. 1, panel
5). We chose the tried-and-tested Behler-Parinello framework
as implemented in the N2P2 package [28], in which structures
are encoded in atom-centered symmetry functions [29] and
passed through fully connected feedforward artificial neural
networks to compute atomic forces and contributions to the
total energy. We replicate the architecture, which has previ-
ously proven highly accurate and reliable for polymorphs of
benzene [30,31]. In result, the evaluation of V ML is orders of
magnitude less expensive than a corresponding first-principles
calculation, which renders PIMD simulations using the ML
Hamiltonian,

HML ≡
Na∑
i=1

p̂2
i

2mi
+ V ML(r̂1, . . . , r̂Na ), (4)

computationally tractable. This permits us to compute the
band gap of the ML ensemble as the average over the DFT
values computed for a small number N ′ of sample structures

L180301-2



IMPORTANCE OF VIBRATIONAL ANHARMONICITY FOR … PHYSICAL REVIEW B 105, L180301 (2022)

{X ML
i } drawn from a PIMD trajectory:

EML
g = lim

N ′→∞
1

N ′

N ′∑
i=1

Eg
(
X ML

i

)
. (5)

In practice we find that computing the DFT band gap for
between 50 (for the larger supercells) and 200 (for the unit
cells) configurations from PIMD trajectories for 32 beads
at regular intervals of 50 fs, provides suitably converged
ensemble-average band gaps.

Crucially, the affordability of V ML comes at the price of
residual errors with respect to the reference V , which may
arise from the short-ranged nature of the ML potential [32],
information lost during the “featurization” of the samples
[33], or from limited data. While the root-mean-squared (rms)
errors in ML energies and forces do not exceed 3.1 meV/atom
and 0.16 eV/Å, except for naphthalene, they stand to affect
the band-gap estimates. To quantify this we use the first-
principles potentials {V (X ML

i )}, which come as a complement
of evaluating the corresponding band gaps [Eq. (5)], to extract
the first-principles band gap Eg by statistical reweighting of
the samples obtained from the ML ensemble (Fig. 1, panel 8):

Eg = lim
N ′→∞

∑N ′
i=1 w

(
X ML

i

)
Eg

(
X ML

i

)
∑N ′

i=1 w
(
X ML

i

) ,

wi ≡ exp
{−β

[
V

(
X ML

i

) − V ML
(
X ML

i

)]}
. (6)

Recovering the DFT band gaps Eg for the unit cells of
acenes using Eq. (6) reveals a consistent overestimation of
the band-gap correction for all acenes using V ML, which does
not affect the trends and microscopic insights discussed below.
This overestimation is largest for naphthalene (97 meV) and
much smaller for the larger acenes, consistent with smaller
errors in V ML for these systems.

For the acenes, applying the same reweighting strategy
to recover Eg from the sampled {Eg(X HA

i )} is prevented by
substantial differences between V HA(X ) and V (X ), leading to
diverging weights and unphysical band-gap estimates, which
do not agree with those obtained using PIMD. However, since
statistical reweighting can be attempted at no additional cost
in terms of DFT calculations, for near-harmonic systems it
provides a practical means of probing for anharmonic effects
and avoiding unnecessary PI calculations.

Results. Let us demonstrate the breakdown of the HA
in the case of anthracene at T = 300 K. As visualized in
Fig. 2(a), the harmonic correction to the static band gap
(red) fails to converge with increasing supercell size. Mean-
while, accounting for anharmonic effects leads to smooth
convergence up to large, size 27 (3 × 3 × 3) supercells. To
elucidate the disagreement between the two cases, we project
the harmonic and anharmonic trajectories of anthracene onto
the phonon coordinates {un,q}. This allows us to compare

the rms displacement
√

〈u2
n,q〉 of each phonon mode (n, q)

at the two levels of theory. Figure 2(b) shows significant dif-
ferences in the rms displacements of low-frequency phonons,
and highlights two particularly anharmonic modes (black cir-
cle and arrow) that involve sliding motions between several
anthracene molecules as shown in the inset. In Fig. 2(c) we

(a)

(b)

(c)

FIG. 2. Harmonic and anharmonic renormalisation of the an-
thracene bandgap at 300 K (panel a). The root-mean-squared phonon
displacements of the two distributions (panel b) highlight unphysical
displacements for harmonic low-frequency phonons, in particular for
those involving a sliding motion between several molecules (inset).
Panel c shows the corresponding harmonic and anharmonic potential
energy surface, where room temperature is marked with a dotted line.

plot the harmonic potential energy surface along the phonon
coordinate un,q of one of the two modes and compare it to
the true, fully anharmonic potential along un,q as obtained
through direct DFT calculations. We see that the true potential
is much stiffer than its HA and, in comparison, stifles the
amplitude of the vibrational motion. This is consistent with
the corresponding harmonic and anharmonic rms displace-
ments observed in Fig. 2(b), and suggests that the HA leads
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FIG. 3. Band-gap renormalization of the acene crystals, com-
puted with path-integral molecular dynamics. (a) Convergence of
the band-gap correction at 300 K with respect to the simulation
cell size. (b) shows the difference between the converged 100- and
300-K corrections (black), as well as the band-gap renormalization at
100 K (red).

to unphysically large phonon amplitudes, which in turn result
in the lack of convergence for the harmonic band gap seen in
Fig. 2(a).

The breakdown of the HA is not limited to the case of an-
thracene. In Supplemental Material [24] Sec. III, we show that
the remaining acenes exhibit similar behavior, with strongly
anharmonic low-frequency phonons, which can in turn mani-
fest a similar lack of convergence for the harmonic band gap.
Such anharmonicity generally arises when studying supercells
of size four or above, where phonons can primarily involve
intermolecular motion between several molecules, resulting
in extremely low-frequency anharmonic motion, particularly
for (but not limited to) acoustic modes. Consequently, stud-
ies using coarse q grids (or, conversely, small simulation
cells within finite-displacement approaches) may escape the
breakdown of the HA and obtain reasonable estimates of vi-
brationally renormalized band gaps of molecular crystals [23].
However, this generally comes at the price of errors due to un-
converged q sampling (in particular, neglecting low-frequency
q → 0 phonons), as apparent in Figs. 2(a) and 3(a). Accurate
band-gap predictions thus require studying large supercells,
which exhibit strong anharmonicity. Notably, the degree of
anharmonicity is fairly insensitive to the flavor of electronic
structure theory, as shown for pentacene in Supplemental Ma-
terial [24] Sec. III.

Therefore, in order to rigorously account for electron-
phonon interactions in molecular crystals, we turn to the
aforementioned PIMD approach, which fully accounts for
anharmonicity and nuclear quantum effects. Figure 3(a) shows
that the room-temperature band-gap renormalization of the

acene crystals converges smoothly with increasing supercell
size. Pentacene and tetracene band gaps are already reason-
ably well converged for supercells of size two. The band gaps
only show marginal changes when increasing the supercell
size to eight, which is the maximum we were able to sim-
ulate for these systems, due to memory limitations in the
DFT band-gap calculations for the sampled configurations.
For the smaller acenes, larger supercells are required to reach
convergence and even for the 3 × 3 × 3 case naphthalene and
anthracene seem to not be fully converged. However, DFT
calculations on larger supercells are prohibitively expensive.
More details regarding the convergence of PIMD averages are
given in Supplemental Material [24] Sec. II.

Comparing our value of −0.683 eV for the room-
temperature band-gap renormalization in naphthalene to
the −0.44 eV [34] obtained using density functional per-
turbation theory (DFPT) [35,36] and Allen-Heine-Cardona
(AHC) theory highlights the differences arising from differ-
ent approximations to the electron-phonon interaction. While
Ref. [34] relies on the HA and perturbation theory, our PIMD
approach naturally includes anharmonicity and higher-order
terms in the electron-phonon interaction. The latter are known
to be important in molecular crystals [8] and are reflected,
for instance, in the nonquadratic dependence of the pentacene
band gap on the displacement of low-frequency phonons
shown in Supplemental Material [24] Fig. 4(b). We also note
that the lack of convergence of the band gap that we observe
within the HA is not related to the divergence which can ap-
pear in AHC theory, particularly for IR-active materials [37],
where it can be remedied by including nonadiabatic effects.
We expect our results for the acene crystals (unlike more ionic
materials [38]) to be insensitive to nonadiabatic effects. More-
over, we emphasize that the unphysical effects that arise from
neglecting the effects of anharmonicity on electron-phonon
coupling are not an artifact of finite displacement methods,
as similar observations have been reported for SrTiO3 within
AHC theory [39].

Figure 3(a) highlights larger band-gap corrections for
smaller molecular crystals. It is however not yet clear whether
the differences in the band-gap renormalization of the acenes
are due to thermal or quantum nuclear motion. To answer
this question, we also sample the band gaps at 100 K using
PIMD. In Fig. 3(b), we plot the difference between the band
gaps at 100 and 300 K (black). This purely temperature-driven
renormalization is more pronounced for smaller acenes, in-
dicating that thermally activated low-frequency phonons are
more strongly coupled to the band gaps of these systems.
The remaining band-gap renormalization at 100 K (red)
is also stronger for the smaller systems. At low temper-
atures nuclear quantum fluctuations due to high-frequency
phonons dominate, since thermal activation is minimal, while
these modes have significant zero-point energies h̄ωn,q/2. To
further elucidate the different couplings of low- and high-
frequency phonons to the acene band gaps, we compute the
phonon-resolved band-gap renormalization within a quadratic
approximation, which confirms the above picture (see
Supplemental Material [24] Sec. IV).

Finally, it is interesting to visualize the phonons which
most strongly couple to electrons as a result of thermal ac-
tivation (see Supplemental Material [24] Sec. V). Rotations
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around the molecular long axes lead to significant band-gap
renormalization in all studied systems, and increasingly so
for the smaller acenes. Naphthalene is the only system with
significant contributions from rotations around the molecular
short axis, which drive the failure of the harmonic approxi-
mation. We hypothesize that such short-axis rotations become
energetically unfavorable for larger acenes, increasing the
frequency of these phonons beyond the threshold of thermal
activation at room temperature. Highly anharmonic sliding
motions [such as the one in Fig. 2(b)] become important in
the larger acenes and result in a blueshift of the gap (see
Supplemental Material [24] Sec. III). The anharmonic char-
acter of these motions, as well as their importance for
phenomena such as charge transport and singlet fission in
organic crystals, are well known [40–42].

Conclusions. In this Letter we have demonstrated the
breakdown of the HA for computing electron-phonon effects
and associated thermodynamic averages of observables for
molecular crystals. We have presented an integrated approach
for rigorously including anharmonic effects in calculations of
electron-phonon coupling within the adiabatic approximation,
showing that it permits computing converged values for the
phonon-induced band-gap renormalization of the acene crys-
tals. We find that both low- and high-frequency vibrations
couple more strongly to the band gap of crystals consist-
ing of smaller molecules, which we discuss in light of the
displacement patterns of specific phonon modes. Sliding
motions are consistently found to be among the most an-
harmonic ones, emphasizing the need to rigorously include

anharmonicity in the study of phenomena such as charge
transport and singlet fission where these are known to be
important.

In the acenes the breakdown of the HA is driven by
low-frequency acoustic phonons, which are only probed for
fine sampling of the Brillouin zone. However, vibrational
anharmonicity is a recurrent theme in functional materials
and more generally plays prominent roles in determining
material properties, such as in the dynamic stabilization of
halide perovskites [43] and the cubic perovskite phase of
SrTiO3 [14]. We thus emphasize that our approach for cap-
turing anharmonic effects is universal (albeit subject to the
adiabatic approximation) and applicable to diverse materials.
Given the demonstrable importance of nonadiabatic effects for
electron-phonon coupling in more ionic materials [38], it will
be interesting to investigate the interplay of nonadiabaticity
and vibrational anharmonicity.
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