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Quantum boomerang effect in systems without time-reversal symmetry
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In an Anderson localized system, a quantum particle with a nonzero initial velocity returns, on average, to its
origin. This recently discovered behavior is known as the quantum boomerang effect. Time-reversal invariance
was initially thought to be a necessary condition for the existence of this phenomenon. We theoretically analyze
the impact of the symmetry breaking on the phenomenon using a one-dimensional system with a spin-orbit
coupling and show that the time-reversal invariance is not necessary for the boomerang effect to occur. We
explain this behavior giving sufficient symmetry conditions for the boomerang effect to occur when time-reversal
symmetry is broken.
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Introduction. Anderson localization (AL), the inhibition
of transport due to the destructive interference of partial
waves [1], is one of the most important phenomena in dis-
ordered systems. AL was successfully observed in quantum
systems [2–6], as well as for acoustic [7] and electro-
magnetic waves [8,9]. While several manifestations of AL
were discussed over the years, an entirely new phenomenon
was recently discovered—the quantum boomerang effect
(QBE) [10]: The center of mass (CoM) of a quantum particle
launched with a nonzero velocity in a disordered potential
returns, on average, to its initial position when AL is present.
In stark contrast, a classical particle will end, on average,
at a finite distance (one transport mean free path) from its
initial position. The phenomenon appears as a smoking gun of
AL and occurs in one- and higher-dimensional systems [10],
including pseudorandom potentials and the localization in
momentum space as exhibited by a kicked rotor [11]. Very re-
cently, an experimental observation of the QBE was reported
for the kicked rotor [12].

Consider a one-dimensional Hamiltonian H = p2/2m +
V (x), where V (x) is a disordered potential, e.g., a Gaus-
sian uncorrelated disorder [10]. For a wave packet with
some initial velocity ψ0(x) = N exp(−x2/2σ 2 + ik0x), the
temporal evolution of the CoM is computed using 〈x(t )〉 =∫

x |ψ (x, t )|2dx , where (· · · ) denotes the average over dis-
order realizations. The QBE assures that the CoM returns to
the origin, 〈x(t =∞)〉 = 0. Until now, the existence of the
QBE has been supported by time-reversal invariance (TRI)
arguments. In our work, we study the QBE in a system which
breaks TRI. We show that the QBE may exist in such a situa-
tion. First, we show it on a simple example, both numerically
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and using the perturbative Berezinskii expansion. Later we
formulate the sufficient conditions for QBE to occur when
TRI is broken.

The model. We consider a one-dimensional single-particle
system with spin-orbit (SO) coupling and Zeeman splitting as
the minimum ingredient to break TRI and all antiunitary sym-
metries. For this purpose we use the following well-known
Hamiltonian [13,14]:

H0 = p̂2

2m
+ γ p̂σz + h̄δ

2
σz + h̄�

2
σx, (1)

where σi are the standard Pauli matrices. The Hilbert space is
spanned by two-component complex-valued spinors. A spe-
cific experimental realization has been presented in [13,14],
using a Raman coupling between two atomic states. γ is the
strength of the SO coupling, � is the Rabi frequency of the
Raman coupling, and δ its detuning. Due to translational in-
variance of H0 the eigenstates can be labeled by wave numbers
k. The spectrum of the Hamiltonian H0 consists of two bands,
E±(k) = h̄2k2/2m ± h̄/2

√
(2γ k + δ)2 + �2, shown in Fig. 1.

In the numerical simulations we assume h̄=1 and m=1.
Every dimensional quantity is expressed through a chosen unit
of length a, i.e., energies are in units of h̄m−1a−2, times are in
units of h̄−1ma2, disorder strength η in units of h̄2m−2a−3,
velocities in units of h̄m−1a−1, wave numbers in units of
a−1, etc.

To study the QBE we add to the Hamiltonian a dis-
ordered potential, H = H0 + V (x), similarly to [15]. For
the disorder we choose a Gaussian uncorrelated disorder:
V (x) = 0, V (x)V (x′) = ηδ(x − x′), where η denotes the dis-
order strength. The disorder is the same for both spin
components.

Condition for QBE. Can we observe the QBE for our
model? In [10] it was proved that time-reversal invariance
of the Hamiltonian was a sufficient condition for the QBE to
exist [16].
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FIG. 1. Spectrum of the Hamiltonian (1) computed for γ = 0.4
and δ = � = 0.4. Depending on the choice of the parameters, there
are up to four possible eigenstates at a given energy with different
velocities. The green (red) dashed line represents an example of a
two-state (four-state) scenario. The inset displays the distributions of
gap ratio P(r̄) calculated around E = 0 and E = 0.5. The dashed
lines are theoretical predictions for the GOE and GUE symmetry
classes.

For a spin-1/2 particle, the standard antiunitary time-
reversal operator is T = iσyK , where K denotes the the
time-reversal operator for a spinless particle that is com-
plex conjugation in configuration space [17] such that
x→−x, t →−t, p→−p, Kψ (x) = ψ∗(x). If γ �= 0, the dis-
ordered Hamiltonian H breaks time-reversal invariance
T HT −1 �= H . This is however not the end of the story. As dis-
cussed in [11,12], there are cases—such as the kicked rotor—
where another antiunitary symmetry, e.g., the product T P of
the conventional time-reversal T , with spatial parity P, such
that x→−x, t → t, p→−p, is sufficient to imply the QBE.

In our model we have found that, for δ = 0, the Hamil-
tonian is invariant under the generalized antiunitary operator
T = iσzK. The disorder V (x) breaks all the possible spa-
tial symmetries. As a consequence, when δ,�, γ are all
nonzero, any generalized time-reversal symmetry is broken,
and the Hamiltonian belongs to the unitary symmetry class
represented by Gaussian unitary ensemble (GUE) [instead
of the Gaussian orthogonal ensemble (GOE) appropriate
for PT or T symmetric case] [17]. As a numerical evi-
dence, the inset in Fig. 1 displays distributions of gap ratio
r̄ = min(δn/δn−1, δn−1/δn), where δn is the spacing between
neighboring energy levels [18,19]. The figure shows a very
good agreement of numerical data with the theoretical predic-
tion for the GUE [19], proving that all antiunitary symmetries
are broken.

Weak disorder couples disorder-free eigenstates with
the same energy, but different momenta and spin states.
We first study the two-state scenario, see Fig. 1. There
are two momenta k± and two corresponding spinors |χ±〉
such that |k±〉 ⊗ |χ±〉 are eigenstates of the disorder-free
Hamiltonian (1) with the same energy E0. Note that k− �=−k+,

where the associated velocities v± = 1
h̄

dE (k± )
dk are not opposite

and that the spin states |χ±〉 are not orthogonal.

For the initial wave packet, we use either one of
the two states |	±

0 〉 = |ψ±
0 〉 ⊗ |χ±〉, where ψ±

0 (x) =
N exp(−x2/2σ 2 + ik±x), N is a normalization constant.
We distinguish results calculated for the two initial states
by denoting them 〈x±〉. In our simulations we have used
σ = 50. The states |	±

0 〉 are not exact eigenstates of
H0, they are approximations to monochromatic waves.
However, based on the results of [10,20], we can safely
assume that, as long as the initial state does not contain
too many momentum components and disorder is weak,
the results are essentially independent of σ . During the
temporal evolution, only the two degenerate states are
coupled by the weak disorder. The wave packet can thus
be written as |ψ (t )〉 = |ψ+(t )〉 ⊗ |χ+〉 + |ψ−(t )〉 ⊗ |χ−〉,
where ψ±(x, t ) = 〈x|ψ±(t )〉 are the wave functions of the of
the components propagating to the right (positive velocity,
+ sign) and the left (negative velocity, − sign). This allows
us to compute the CoM as

〈x(t )〉 =
∫

x
(|ψ+(x, t )|2 + |ψ−(x, t )|2) dx . (2)

Due to nonorthogonality of the spinors |χ〉±, there exists
also an interference term ψ+(x, t )ψ−(x, t ) + c.c.. This term,
however, is quickly oscillating, hence its contribution can be
neglected in Eq. (2).

There are in total four possible elastic scattering events:
+ → +, + → −, − → −, and − → +. The forward scat-
tering events + → +, − → − do not affect the dynamics
of the CoM. Hence, in further analysis we use only the two
scattering events where the direction of motion is changed.
The associated scattering mean free times τ+ = τ+→− and
τ− = τ−→+ can be computed at weak disorder from the
Fermi golden rule or, equivalently, from the Born approxima-
tion [21,22]:

1

τ+
= ηκ

h̄2|v−| ,
1

τ−
= ηκ

h̄2|v+| , (3)

where κ = | 〈χ+|χ−〉 |2 is the spin-state overlap.
Classical solution. The classical problem is governed by

coupled Boltzmann equations ∂t f± = −v±∂x f± ∓ f+/τ+ ±
f−/τ−, where f±(x, t ) are the population densities. The
subscript ± denotes the direction of propagation. These Boltz-
mann equations are easily solved (see also Supplemental
material [23]). We obtain:

〈x±〉class. = v±τ [1 − exp(−t/τ )], (4)

with τ = τ+τ−/(τ+ + τ−), a result very similar to the one
obtained in the TRI case [10]. The particles, on average, travel
a distance |v±|τ , then stop their evolution.

Quantum numerics. We take a system with γ = 0.4 and
δ = � = 0.4. The solution is obtained in a box large enough
for the wave packet not to touch the edges, L = 10 000,
with a sufficiently small discretization 
x = 0.2. The initial
state’s energy is chosen E0 = 0, so that k− = −0.6453 and
k+ = 1.1850. This also means that κ = 0.505 and the ve-
locities are v− = −0.5340 and v+ = 0.8014. We have used
disorder strength η = 0.0049, so that τ− = 323.61, τ+ =
215.66, τ = 129.42, and the transport mean free path [23] is
�t = τ

√|v−|v+ = 84.67. For the time propagation we have
used the Chebyshev kernel method [24–27].
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FIG. 2. Temporal evolution of the center of mass (2), for wave
packets launched with a positive (upper curve) and negative (lower
curve) velocity. The blue symbols (with error bars representing sta-
tistical errors, averaging over 40 960 disorder configuration) are the
quasiexact numerical results. Even without time-reversal invariance,
we observe the full quantum boomerang effect—the center of mass
returns to the origin. The dashed lines present the classical solu-
tion (4) which does not return to the origin. The orange solid lines
are the prediction of our fully quantum theory by Berezinskii.

The results of the simulations are presented in Fig. 2. Even
though TRI is broken, we observe a perfect QBE. Similarly
to the TRI case, the CoM returns to the origin after the initial
ballistic motion. The figure also includes classical solutions
(dashed lines) obtained using Boltzmann equations. For a
very short time, the classical solutions agree with quantum
simulations. Then Born approximation is sufficient to describe
the quantum dynamics. However, from t ≈ 3τ, classical and
quantum outcomes split, and the quantum particle returns to
the origin.

The data displayed in Fig. 2 constitute a major result of this
paper—presence of the full QBE without TRI. All previous
studies of the boomerang effect [10–12,28] insisted on the
importance of TRI (in addition to Anderson localization) for
the boomerang effect. Here we can give a negative answer to
the question whether TRI is a necessary condition for the QBE
existence.

Diagrammatic approach. In addition to a purely numerical
solution, Fig. 2 displays theoretical predictions, described be-
low, which perfectly agree with numerics. We use an approach
very similar to the one used for the TRI case in [10]: the
Berezinskii diagrammatic technique [29]. The main difference
with respect to earlier works [29–32] is that there are more
different scattering vertices due to the lack of TRI in our
case. The results are found as a Taylor series in powers of t
for the CoM positions [23,33].

Here, for simplicity, we present solutions only for the pos-
itive initial velocity state. We obtain

〈x+(t )〉 = v+τ

[
t

τ
− t2

2τ 2
+ t3

6τ 3

− (1 + 
(4 + 
(8 + 
(4 + 
))))t4

24(1 + 
)4τ 4

]
+ O(t5)

(5)

with 
 = |v−/v+|.

This quantum solution agrees with the classical one up to
third order:

〈x±(t )〉class. = v±τ

[
t

τ
− t2

2τ
+ t3

6τ 3
− t4

24τ 4

]
+ O(t5), (6)

similarly to the TRI boomerang [10]. Likewise, we find a finite
radius of convergence for the series in Eq. (5), which seems to
slightly depend on the value of 
.

A significant difference between our solution and the TRI
case is that 〈x±(t )〉 is no longer universal. Starting from fourth
order, all terms explicitly depend on 
. Of course the TRI
solution is fully recovered when 
=1.

To describe the center of mass evolution for intermediate
times, we use a Padé approximant [34] of the Taylor series.
The long-time scaling should be similar to the TRI system,
i.e., 〈x(t 
τ )〉 ∝ t−2, as also supported by the numerical
evidence. While, in the TRI case, there is a more accurate
asymptotic expression [10]: 〈x(t 
τ )〉 ∼ 64 ln(t/τ )(τ/t )2,

the derivation is much more difficult when TRI is broken [33],
so we only know for sure the leading t−2 behavior. Thus, we
compute the CoM at any time as

〈x±(t )〉 = τv±
(τ

t

)2
lim

n→∞ Rn(t ), (7)

where Rn(t ) is a diagonal Padé approximant [34], whose
coefficients are calculated from the short-time Taylor series,
Eq. (5). To obtain high accuracy of the approximation, we use
n = 30. There is however no visible difference with results
obtained for lower n, e.g., n = 20.

We compare the theoretical results with the numerical data
in Fig. 2. The agreement is outstanding. We have performed
a slight adjustment of the scattering rates 1/τ±, given in the
weak disorder limit by Eq. (3) [23]. Indeed, higher order terms
in the disorder strength η are known to exist [21], but they are
small (of the order of 1%) and do not affect the structure of
the Berezinskii method. Even without the adjustment, using
the fully analytic expression (3), the agreement between the
Berezinskii theory and the numerical results is excellent [23].
This shows that the boomerang effect not only survives the
breaking of TRI, but also that the time evolution of the CoM
can be computed theoretically.

The QBE also exists in the four-state scenario, when H0 has
four eigenstates with the same energy E0, see Fig. 1. As shown
in Fig. 3, after an initial fast departure from the origin, again
the CoM returns to the origin exhibiting a perfect QBE. The
dashed line is the classical solution of the coupled Boltzmann
equations [23] which, amusingly, shows that the classical so-
lution also reveals a tendency to return at short times, only
then stopping at a nonzero distance from the origin. For this
case, the diagrammatic approach, while feasible, would be
very painful and is left for a possible future study.

Finally, we give an explanation of the observed QBE based
on symmetry arguments. The product of the commuting parity
operator P and spinless time-reversal operator T is such that
x → −x, t → −t, p → p and does not touch the spin degree
of freedom. It is an antiunitary operator squaring to +1; it is
thus not a generalized time-reversal operator for the spin-1/2
system. It modifies the disordered Hamiltonian so that

PT H (PT )−1 = H0 + V (−x) = H̃ �= H. (8)

L180202-3
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FIG. 3. Quantum boomerang effect in the four-state scenario
of Fig. 1: γ = 0.4 and δ = � = 0.4, E = 0.75, and η = 0.0225
for a Gaussian state with initial momentum k = 0.68 and width
σ = 50. The numerical calculation in blue shows that there is a
full quantum boomerang effect at long time 〈x(t → ∞)〉 = 0. In
contrast, the classical solution of the coupled Boltzmann equa-
tions indicate a finite displacement of the center of mass of the wave
packet.

In an Anderson localized system, the infinite-time CoM posi-
tion after evolving with H may be obtained using the diagonal
approximation:

xH (t = ∞) =
∑

i

〈φi| x |φi〉 | 〈φi|ψ0〉 |2

=
∑

i

〈φi| x |φi〉 | 〈φi| T P PT |ψ0〉 |2, (9)

where {|φi〉} is the eigenbasis of H and |ψ0〉 is the initial state.
The eigenstates of H̃ are |φ̃i〉 = PT |φi〉. We have 〈φi| x |φi〉 =
− 〈φ̃i| x |φ̃i〉. Inserting it in Eq. (9), we get

xH (t = ∞) = −
∑

i

〈φ̃i| x |φ̃i〉 | 〈φ̃i| PT |ψ0〉 |2. (10)

Hence, if PT |ψ0〉 = |ψ0〉 (which is the case for our initial
Gaussian wave packets), then xH (t = ∞) = −xH̃ (t = ∞).
For a single disorder realization, xH (t = ∞) is generically
nonzero. However, because H and H̃ belong to the same
statistical distribution of disorder with the same weight, after

disorder averaging, we obtain

〈x(t = ∞)〉 = xH (t = ∞) = −xH̃ (t = ∞) = 0, (11)

implying the full QBE.
The Hamiltonian H has no generalized TRI and is in the

GUE symmetry class but still displays a full QBE, as exem-
plified in the inset of Fig. 1.

Summary. We have demonstrated the presence of the
QBE in an exemplary spin-orbit system where all antiu-
nitary symmetries—especially time-reversal invariance—are
broken. We can give a sufficient condition for the appear-
ance of the QBE in a general setting. The full QBE, i.e.,
〈x(t = ∞)〉 = 0, is present if there exists an unitary or
antiunitary transformation U satisfying the following condi-
tions: (i) the position operator is odd under the action of
U : UxU −1 =−x, (ii) the disorder-free part of the Hamilto-
nian is symmetric under this transformation UH0U −1 = H0,
(iii) the transformed disorder Ṽ = UVU −1 is a valid disorder
realization with the same weight, and (iv) and the initial state
is symmetric under the transformation U |ψ0〉 = |ψ0〉. For our
Hamiltonian (1), such transformation is the product of the
parity and spinless time-reversal operators U = PT .

By generalizing the Berezinskii diagrammatic approach to
a system without TRI, we have computed the time evolution
of the CoM in a quasianalytic way. The theoretical result is in
perfect agreement with the numerical data for the spin-orbit
coupled model. Although in our work we have studied a
one-dimensional system, similarly to the TRI counterpart of
the phenomenon, we believe that the QBE is also present in
higher-dimensional unitary systems.

After the original submission of this work, the preprint [35]
appeared which had a partial overlap with our finding and
generalizes QBE to certain non-Hermitian systems.
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