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Random matrix theory for quantum and classical metastability in local Liouvillians
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We consider the effects of strong dissipation in quantum systems with a notion of locality, which induces a
hierarchy of many-body relaxation timescales as shown by K. Wang, F. Piazza, and D. J. Luitz [Phys. Rev. Lett.
124, 100604 (2020)]. If the strength of the dissipation varies strongly in the system, additional separations of
timescales can emerge, inducing a manifold of metastable states, to which observables relax first, before relaxing
to the steady state. Our simple model, involving one or two “good” qubits with dissipation reduced by a factor
o < 1 compared to the other “bad” qubits, confirms this picture and admits a perturbative treatment.
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Introduction. Quantum many-body systems are generically
complex, and obtaining an analytic understanding of the posi-
tion of all spectral resonances is often hopeless. It was realized
early on [1-6] that this complexity is in fact so great that many
statistical properties of the spectrum are identical with those
of random matrices sampled from an ensemble determined
by the symmetry of the system. These pioneering observa-
tions have been subsequently refined, resulting in cornerstones
of our understanding of thermalization in unitary quantum
many-body systems by virtue of the eigenstate thermalization
hypothesis [7-14], only with exceptions in integrable [15-18],
many-body localized [19-29], time-crystalline [30-32], or
scarred and constrained systems [33-35].

This thinking was recently pushed to the realm of open
quantum systems, with random matrix models of Markovian
dissipation defined via random Liouvillians [36-40], reveal-
ing fascinating spectral features of generic purely dissipative
systems, in particular a spectral support which has the shape of
a “lemon” [36,37], very different from the circular spectrum
of non-Hermitian Ginibre random matrices [41]. This feature
is also present in classical master equations, where typical
transition rate matrices have a similar spectral support [42,43].

Such random matrix models of open quantum many-body
systems represent the behavior of typical systems, rather than
of a specific model. While they reproduce global properties
of more realistic, microscopic models, they miss a crucial
ingredient: the locality of (dissipative) interactions. It was
recently shown that random matrix models for local Liou-
villians can be devised exhibiting a hierarchy of relaxation
timescales [44]. These models limit the jump operators in
the Lindblad equation to low-complexity Pauli strings, thus
encoding few-body interactions. In the absence of detailed
microscopic knowledge, this accurately models dissipation
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in current quantum computer prototypes, and the predicted
timescales were in fact observed experimentally on the IBM
platform [45].

Here we apply such a local random matrix model approach
to systems with strongly varying dissipation. We are specifi-
cally interested in the appearance of metastable states due to a
separation of timescales caused by fast and slow dissipation
modes in the system, which we model by the existence of
good qubits with low dissipation rates in a system of otherwise
bad qubits where dissipation is fast. In this setup a metastable
manifold (MM) emerges [46], to which the dynamics starting
from an arbitrary initial state relaxes quickly. At intermediate
times, the dynamics is effectively restricted to the MM, before
eventual relaxation to the global steady state at long times.
We argue that this model contains the essence of the physics
to be expected in a quantum computer with good and bad
qubits and is furthermore the simplest generic model to study
metastability. Our model generalizes findings of MMs in the
presence of local loss terms [47,48].

Model. We construct a simple model for a purely dissi-
pative, Markovian quantum many-body system consisting of
£ qubits. The Hilbert space dimension is N = 2¢, and the
operator space is spanned by all N> = 4‘ normalized Pauli
strings,

S, = N’l/zaﬂl R0y, ®---®oy,, i <{0,x,yz}, (1)
where og = 1, and o, ,; are the Pauli matrices. Dissipation
is generated by a set of k-local jump operators given by k-
local Pauli strings such that the number of nonidentity Pauli
matrices in the string is at most k. That is, for k-local S,, we
have Zle(l —8,,,0) < k. We will focus on the physically
relevant case of two-body dissipative interactions, including
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one-qubit and two-qubit (k = 2) dissipation channels, yield-
ing Ny =3¢+ 9(2) jump operators.

The dynamics of the density matrix p is governed by the
purely dissipative Liouvillian [49] defined in terms of a Kos-
sakowski matrix K,,, which encodes the nontrivial couplings
between the dissipation channels and is randomly sampled
from the ensemble of positive-semidefinite matrices. The sums
i, v run over the Ny jump operators L,, = S,,, given by k-local
Pauli strings in Eq. (1),

NL

.1 .
Llp] = Z K [LMPLL - E{L:)L;u p}] )

u,v=1

Using the same procedure as in Refs. [36,44,45], we generate
the i.i.d. non-negative eigenvalues of K from a uniform dis-
tribution, and normalize them such that TrK = N. Then, we
rotate the basis by a Haar random unitary U € CUE(N,) to
yield K = UTDU, where D is the diagonal eigenvalue matrix
of K.

In contrast to Ref. [44], we are interested in understanding
the effect of a strongly varying dissipation strength across
the system. The simplest way to consider this is by splitting
the set of jump operators {L,} into strongly dissipative ones,
{L),}, and weakly dissipative ones, {L;}. This is achieved by
defining a set of “good” qubits in a system of otherwise “bad”
qubits: weak jump operators are those that contain a noniden-
tity Pauli matrix on a good qubit, so that dissipation happens
at a rate scaled by /o < 1, L) = /aS,,, while strong jump
operators are still of the form L; =8, [50].

Spectrum of the Liouvillian. In Fig. 1, we show the complex
eigenvalues A; of a realization of the Liouvillian for £ = 6, for
one (left) and two (right) good qubits, with two-qubit interac-
tions and one-qubit dissipation (k = 2-local in our definition).
The Liouvillian (2) is bistochastic (as all L, are Hermitian);
thus it generically has a single eigenvalue zero with the iden-
tity as the unique stationary state, and all other eigenvalues
with negative real parts.

Due to the locality of our model, the spectrum separates
into multiple eigenvalue clusters, organized by the locality of
their eigenmodes. If good and bad qubits have the same rate
of dissipation (o« = 1), we recover the spectrum of Ref. [44].
As we make good qubits better (¢ < 1), additional eigenvalue
clusters appear. These clusters have a real part proportional to
o, and are indicated by the blue bars in Fig. 1. For decreasing
o, these clusters move progressively closer to zero. For small
o they combine to form the MM (see below) of long-lived
states with the slowest relaxation. The other clusters also
move slightly with o, but reach a limiting position well sepa-
rated from the MM.

Note that in the case of one good qubit, there is a single
cluster of three eigenvalues close to zero, while for two good
qubits there are two such clusters, one with six and the other
with nine eigenvalues. To elucidate these spectral properties
further, we study these clusters using perturbation theory.

Perturbation theory. Due to the physical requirement that
the Liouvillian is trace preserving and completely positive, the
random K matrix is diagonally dominant [44]. It hence has the
following properties: the mean of the matrix elements K,,, is

8,,wvN/Nr and the standard deviation is N/ (\/ENE/ 2), which
can be shown by the central limit theorem and using random
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FIG. 1. Spectra X; of random local Liouvillians for £ = 6 with
one (left column) or two (right column) good qubits as a function of
the weak dissipation rate «. The spectral gap, given by the magnitude
of the real part of the first excited eigenvalue, decreases propor-
tionally with «. Bars indicate the eigenvalues of the unperturbed
Liouvillian £°, the starting point of our perturbation theory. Blue bars
indicate the position of eigenvalues giving rise to the MM at small «.
For small « there is a separation between metastable eigenmodes and
the rest of the spectrum, since all other eigenvalues have real parts
smaller than A(n, = 1, n, = 0) given in Eq. (4), and indicated by the
vertical dashed line in each panel.

matrix theory for U. Hence, we can devise a perturbative
treatment by splitting the K matrix as K = Ky + K, where
Ky = (N/Np)1 is the unperturbed matrix, and K; a small per-
turbation which we neglect for now.

We can express the Liouvillian L (or it adjoint) as a matrix
in the Pauli string basis [51] with matrix elements LY, =
Tr(S,L[S,]). To leading order off-diagonal matrix elements
vanish, and by separating the expressions for weak and strong
channels we get for the diagonal elements, and thus eigenval-
ues to leading order,

2 ‘
where N and N, are the numbers of weak and strong jump
operators, respectively, that anticommute with §,,. The num-
bers ny, and ng of nonidentity Pauli matrices on good and bad
qubits determine the above. For the 2-local case with £,, good
qubits, we obtain from Eq. (3)

2
Ang, ny) = — ]7[61155 + 6n4ly(a — 1)
L

—4n? + a(6ny€ — 8nyng —4nl)]. (@)

Since there are many Pauli strings with the same numbers
of ny, and n,, each eigenvalue is highly degenerate. There

L180201-2



RANDOM MATRIX THEORY FOR QUANTUM AND ...

PHYSICAL REVIEW B 105, L180201 (2022)

is a unique steady state, n,, = ny = 0, corresponding to the
identity.

Including the small perturbation K| lifts the degeneracy of
the eigenvalues, and gives them small imaginary parts. To see
this, we diagonalize the Liouvillian with K = K inside each
degenerate subspace. Lowly degenerate eigenvalues, which
are well separated from the rest of the spectrum, develop into
the clusters observed in Fig. 1, while for eigenvalues close to
others and with high degeneracy the separation does not sur-
vive, and the perturbation theory breaks down in these cases
(see [52] for a detailed discussion of this for large systems).
For small «, the perturbation theory is excellent and yields
well-separated eigenvalue clusters close to the steady state, as
can be seen in Fig. 1. Each eigenvalue cluster in this case is
centered around the unperturbed eigenvalue A(ns, ny), indi-
cated by black (ns > 0) and blue (ny = 0) bars, as predicted
from our perturbation theory.

Further inspection of Eq. (4) reveals that eigenvalues cor-
responding to observables with only identities on bad qubits
(i.e., ng = 0) are proportional to —«, while any observable
with a nonidentity on a bad qubit picks up a constant offset
and thus generically has a much faster decay rate. This is what
makes up the MM: eigenvalues with real parts proportional to
—a are close to zero for small «, and well separated from
the rest of the spectrum. They are centered around A(ng =
0,ny) = —;4\,—‘2‘(3nwé — 2n§), which means that for one good
qubit we get one eigenvalue cluster (since n,, can only be
either zero or 1), and for ¢, good qubits, we get £, sepa-
rate eigenvalue clusters with eigenvalues proportional to —o.
The remaining eigenvalues are always smaller than A(ng =
I,n, =0) = —%(S(Z —{y) — 2+ 3¢,), indicated by the
vertical dashed line in Fig. 1. This sets the separation between
the MM and the rest of the spectrum, and thus the relaxation
timescale of an arbitrary initial state toward the MM before
relaxation to the steady state happens on a timescale o 1/c.

Metastable manifold. The existence of eigenvalues with
small real parts, which are well separated from the rest of
the spectrum for small «, gives rise to metastability [46,53—
55]. The evolution p(t) = €'~ py of any initial state py can be
written in terms of the eigenvalues A,, and right eigenmatrices
R, of the Liouvillian,

M 4t

p(t)=Ro+ Y " cuRn+ Y €"cuRu, (5

m=1 m=M+1
where we have split the contribution of the M eigenvalues
with largest real parts from the rest of the spectrum, and were
the coefficients ¢,, are given by c,, = Tr(L,,00), L, being the
left eigenmatrices. For a large spectral separation, there is a
wide range of times for which the modes m > M have already

decayed and can be neglected above, giving

M

pt) X Ry + ) & cuRiy. (©6)

m=1

This is the metastable regime where dynamics is approxi-
mately restricted to the lower-dimensional MM. The valid
combinations of ¢; classify a MM as either classical or quan-
tum [46,55]. A MM is called classical if there exists a basis
of density matrices p; so that any state in the MM is a positive
linear combination p(t) & Zlm:] pipi with 0 < p; < 1. In this

case the MM is a simplex, analogous to the manifold of
probability distributions, with p; the probabilities of being in
each metastable phase p;, and the long-time dynamics can be
cast as a classical Markov jump process between these phases.
When such basis does not exist the MM is said to be quantum.

At the level of the perturbative calculation above, we can
read off the eigenmatrices R, and L, (m < M) forming the
MM. For one good qubit (¢, = 1), we have three eigenval-
ues with ny, = 1, ng = 0, and the matrices are the three Pauli
strings with a nonidentity on the good qubit and the identity.
For two good qubits, we obtain two eigenvalue clusters in
the MM, which remain well separated even for large ¢ (cf.
discussion in [44] and [52]): one is formed by the six one-
qubit Pauli strings with one identity on one of the good qubits
(nw = 1), and the other by the nine two-qubit Pauli strings
with nonidentities on both good qubits (ny, = 2). Perturbation
theory thus suggests that the MM is quantum, since it is
invariant under the action of SU(2) operators on the slow
sites. However, this assumption might fail when we take into
account the full random K matrix, the additional corrections
allowing for a classical manifold to form. We now test this
numerically.

To test for classicality of the MM we apply the algorith-
mic approach of Refs. [54,55] which tries to systematically
find the best possible simplex from spectral data of the Li-
ouvillian. Accuracy is measured by a bound on the average
distance of metastable states outside this optimal simplex.
This bound follows by noting that given some basis p,, (m =
0, ..., M) of the MM [56], there exists a unique dual basis P,
with normalization chosen as Tr(P,p, ) = 8y . Therefore,
the coefficients for a state p projected to the MM are given
by pm = Tr(B,p), bounded by the maximum and minimum
eigenvalues of P,,. These eigenvalues reside between 0 and 1
if the MM is exactly a simplex, and thus classical. How far
any eigenvalues AP of the B, are outside this range defines
a classicality measure [55]

M 2N

C= ZLNZZmaX[—AEP’”),O]. @)

m=0 j=1

Since an exactly classical MM has vanishing C, the more C
departs from zero the farther away from classical the MM is.

With this procedure we construct the simplex approxima-
tion to the MM for a set of 1000 realizations of the disorder
matrix K at a dissipation rate o = 107>, showing a histogram
of C in Fig. 2(a) (green). We see that the manifold is never
classical, C 2 1, in the disorder realizations we consider. To
illustrate this visually, for one sample realization we plot
the projections of random pure states onto the metastable
manifold against the expectation values of Pauli operators
on the slow site in Fig. 2(c): we see that many of these
projections fall outside the optimal simplex, and indication
that the MM is not classical. In Fig. 2(e), we evolve a few
metastable states as they converge toward the stationary state,
seeing that some spend time outside the simplex (but still
within the quantum MM).

The quantum nature is apparently robust in this random
matrix model as suggested by perturbation theory. It is natural
to expect that the noncommuting dissipation channels are
responsible for the robustness of the quantum MM, e.g., the
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FIG. 2. (a) Histograms of the classicality C for an ensemble of
1000 disorder realizations of K, for the quantum MM case (green,
right) and the classical MM case (purple, left), for / = 6 and at a
dissipation rate @ = 107> (b) Simplex that best approximates the
MM in the classical MM case for one disorder realization (blue
dots indicate the extreme metastable phases [56], lines the edges of
the simplex, dashed lines are behind the volume of the simplex) in
which approximately all metastable states are contained if the MM
is classical, in the basis of Pauli strings with Z Pauli matrices on
the slow sites 1 and 6 [Sf = SZ()()()()(), Sé = S()()()oz, STSé = Sz()OOOz in the
notation of Eq. (1)]. Dots (purple) are projections of a set of random
initial states onto the MM, plotted according to the expectation value
of the three observables. All states sampled fall within the simplex,
as expected for a classical MM. (c) Same for the quantum MM
case, now in terms of Pauli strings with a nontrivial Pauli matrix
on the slow site [S)zf = SOxOOO(% S; = S()y()()()o, S; = S020000]~ Projections
of random initial states escape the simplex, as the MM is quantum
(the shaded Bloch sphere), with those inside colored green and those
outside colored red. (d), (e) Projections of the time evolution for long
times of the metastable phases (blue curves) and of a set of random
initial states (black curves) within the MM toward stationarity (red
dot), for the classical MM case (left panel) and quantum MM case
(right panel). Curve segments colored red in (e) are outside the
simplex approximation.

long-time dynamics for £,, = 1 lives on a Bloch sphere, which
a classical master equation cannot approximate. To construct
a classical MM, we manually remove this feature by making
only the z direction of the good qubits strongly dissipative,
i.e., the dissipation rate /o = 1 for the Z Pauli matrices on
good qubits. For example, we consider this modified model
for ¢, =2, and {L}]} are those jump operators that have X
or Y Pauli matrices on the good qubits, but not those with
Z. Counterintuitively, the MM is spanned by the strongly
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FIG. 3. Comparison of the exact dynamics (solid lines) with the
dynamics projected onto the MM (dashed lines) for £ = 7, for qubits
with one (left column) and two good (right column) qubits at two
different dissipation rates « = 1072, 10~>. We show expectation val-
ues of three observables with different localities, each prepared by
a random linear superposition of all the Pauli matrices of the cor-
responding locality. Observables supported by the bad qubits vanish
rapidly, and the long-time dynamics on the good qubits coincide with
the effective dynamics. Note that for a MM to display, the locality of
the observable has to be smaller or equal to the number of the good
qubits.

dissipative Z Pauli strings on the good qubits because such
strings commute with all rapidly relaxing operators in Eq. (3).
In this case, the MM is thus made up of 4 operators: the
identity, the Z operator on each good qubit, and the product
of Z operators on both good qubits. The algorithms of [54,55]
yield an extremely accurate simplex approximation to the
MM, confirming that it is effectively classical as shown in
Fig. 2(a). This is visualized by projecting a set of random
states onto the slow-mode eigenspace in Fig. 2(b), locating
them well within the simplex. Further, as shown in Fig. 2(d),
the long-time evolution of a set of these metastable states
(black), or the metastable phases (blue), remains within the
simplex at all times.

Metastable dynamics. Using Eq. (5), we can calculate the
evolution of observables at any time. To consider generic
initial states we choose pp as a random linear superposition
of the full Hilbert space. Figure 3 (full lines) shows the
time evolution of observables with different locality proper-
ties (nontrivial Pauli strings of different lengths k). Note the
appearance of plateaus in the relaxation curves, specifically
for the shorter Pauli strings which have a larger overlap with
the matrices R,, that define the MM.

After a fast transient, dynamics is confined to the MM.
The approximate dynamics is then obtained by project-
ing both the initial state and the observables onto it, and
solving Eq. (6). The dashed curves in Fig. 3 show the
corresponding results: the effective dynamics captures the
long-time behavior accurately, showing that metastability im-
plies dimensional reduction from the whole Hilbert space to
the MM.
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Conclusion. Starting from a random local and purely dis-
sipative Liouvillian, we have defined a random matrix model
for generic metastability in open quantum systems relevant for
strongly varying dissipation timescales in quantum computers
if dissipation is strongly dominant. We find that a separation
of dissipation timescales induces the presence of a metastable
manifold to which initial states relax, before the evolution to
the steady state occurs at much longer times. If the dissipation
on good qubits does not further single out certain Pauli op-

erators, we show that the metastable manifold is generically
quantum, while further structure can lead to classical mani-
folds instead.
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