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Effects of discrete topology on quantum transport across a graphene n-p-n junction:
A quantum gravity analog
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In this Letter, we investigate the effect of next-to-nearest atom hopping on Klein tunneling in graphene. An
effective quantum dynamics equation is obtained based on an emergent generalized Dirac structure by analyzing
the tight-binding model beyond the linear regime. We show that this structure has some interesting theoretical
properties. First, it can be used to simplify quantum transport calculations used to characterize Klein tunneling;
second, it is not chirally symmetric as hinted by previous work. Finally, it is reminiscent of theories on a space
with a discrete topology. Exploiting these properties, we show that the discrete topology of the crystal lattice has
an effect on the Klein tunneling, which can be experimentally probed by measuring the transmittance through
n-p-n junctions. We argue that this simulates some quantum gravity models using graphene and we propose an
experiment to perform such measurements.
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At low energies, the quasiparticles of graphene responsible
for its transport properties have a well-known description in
terms of an emergent Dirac field theory [1–3]. This property
stems from the symmetries of the underlying honeycomb
two-dimensional (2D) lattice, which reduces to a Dirac-like
structure in the low-energy limit. The fact that the Dirac equa-
tion describes charge carriers makes graphene a testbed for
relativistic theories in a nonrelativistic setting and it allows
for the simulation of quantum electrodynamics (QED) in a
condensed matter system [4–11].

Klein tunneling was one of the first QED-like effects
to be investigated in graphene [12,13]. This relativisticlike
phenomenon corresponds to the unimpeded transmission of
particles through a potential step. Owing to the presence of
negative energy states, there is no exponential damping and
particles are almost fully transmitted when the potential bar-
rier is larger than the rest mass energy of the particles. In
graphene, conductance in transport experiments through p-n
junctions is the main observable used to detect this effect
experimentally because Klein tunneling has a strong effect on

*naveed179755@st.jmi.ac.in
†alonso.contreras@conacyt.mx
‡francois.fillion@inrs.ca
§mahsan@jmi.ac.in
‖steve.maclean@inrs.ca
¶mirfaizalmir@googlemail.com

the transmittance [14–18]. The results of these experiments
using electrostatic barriers were theoretically understood us-
ing the Dirac theory with the presence of negative energy
states below the potential [19–21]. Although much work has
been done in monolayer graphene [22–27] and other con-
densed matter systems [28], the theoretical analysis were, for
the most part, limited to the linear approximation (low-energy
limit) in the tight-binding model, where a standard Dirac
structure exists.

Some research on quantum transport has gone beyond this
linear regime by studying various limits of the tight-binding
model. In principle, these approaches are more accurate for
the calculation of transport properties, especially at higher
energies. For instance, implications of the next-to-nearest
hopping term on doping and Klein tunneling have been in-
vestigated in Ref. [29]. Within this approximation, it has
been observed that the tunneling is no longer chiral and
that an asymmetry occurs on conductance curves around the
perfect transmission point. Furthermore, the effects of the
trigonal warping terms [30–33] and deformed lattices [34] on
transmittance have been considered. In particular, the Klein
tunneling beyond the linear approximation has been studied
using a generalized pseudospin mode-matching technique in
the tight-binding model [30]. This last approach shares many
similarities with the technique presented in this paper.

In this Letter, we investigate Klein tunneling beyond
the linear approximation in monolayer graphene by includ-
ing the next-to-nearest atom hopping. This is performed by
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FIG. 1. Graphene hexagonal lattice with nearest (t) and next-to-
nearest (t ′) hopping energies.

introducing a generalized Dirac structure (GDS), which al-
lows for straightforward mode-matching calculations of the
transmittance in the continuum limit. We argue that graphene
beyond the linear regime can be used as a quantum gravity
analog. Indeed, the Dirac structure emerging in this limit is
precisely of the kind obtained in quantum gravity models with
a minimal length scenario [35–39]. Based on this physical
insight, we show that Klein tunneling at intermediate energy is
sensitive to the minimal length set by the lattice constant and,
thus, actually probes the underlying space topology. This ef-
fect simulates the effect of quantum gravity models on particle
transport. Finally, we evaluate the transmittance in an n-p-n
junction and we make a proposal to measure these effects
experimentally.

The effects of discrete topology of graphene can be in-
vestigated using its tight-binding model. In a tight-binding
model of graphene, the electron dispersion relation, expanded
to O((ka)2), is given by [3,29,40,41]

ελ
k = λh̄vF k + 9a2

4
t ′k2 − λ

h̄vF k2a

4
cos(3φk), (1)

where λ = ±1 is the band index, vF = 3ta/2h̄ is the Fermi
velocity, k = |k| is the wave-vector magnitude, and t and
t ′ are the nearest- and the next-to-nearest-neighbor hopping
energies (see Fig. 1) while a = 1.4 Å is the lattice constant.
Also, φk = arctan(ky/kx ) is the azimuthal angle of the wave
vector with respect to the x axis. The dispersion relation
[Eq. (1)] comprises three different terms: the first term is the
low-energy linear contribution, the second one appears as the
low-energy limit of the next-to-nearest-neighbor hopping, and
the third term, called trigonal warping, is the next-to-leading-
order contribution obtained from the low-energy limit of the
tight-binding model with nearest-neighbor hopping. We can
see from the above equation that the t ′ correction breaks the
electron-hole (chiral) symmetry in the sense that ε−λ

k �= −ελ
k .

The dispersion relation for massless particles in many
quantum gravity models is rotationally symmetric, of the form
εgrav,p = F (p), where F is usually a polynomial function and
p = h̄k is now the momentum, related to the wave vector
via de Broglie relations. One particular model has been ex-
tensively studied in which the dispersion relation is given
by εgrav,p = c1 p + c2 p2, where c1,2 are some coefficients

[42–44]. This dispersion relation explicitly breaks Lorentz
invariance even though it is rotationally invariant because it
is not conserving the four-momentum of a particle.

We make a connection between graphene and quantum
gravity models by neglecting the trigonal warping term. Be-
cause this term encodes the symmetry of the lattice and breaks
rotational invariance, it can be neglected for small angular
regions around the angles φδ

k = (2n + 1)π
6 ± δ with n ∈ N

and where δ = 1
3 sin−1( 3|t ′|

5t ) ≈ 0.02. In this angular region,
we have cos(3φk) ≈ 0. Assuming all processes occur in a
momentum region where we can neglect the trigonal warping
term and renaming some variables, the energy becomes

ελ
p = vF (λp − αp2), (2)

where α = 3
2

|t ′|
t

a
h̄ > 0. Obviously, this has the same form as

εgrav,p with the connection provided by the mapping c1 → vF λ

and c2 → −vF α.
To derive a dynamical Dirac-like equation having a dis-

persion relation given by Eq. (2), we borrow the technique
developed for quantum gravity models with minimal lengths.
As demonstrated in Ref. [45], this can be performed by fol-
lowing the Dirac prescription p → σ · p̂ in the expression for
the energy, where p̂ = −ih̄∇ is now the momentum operator
and σ are Pauli matrices. We use the Dirac prescription and
represent SO(2)-invariant vectors in their spinor representa-
tion. This yields the Hamiltonian operator given by

Ĥ = vF [σ · p̂ − α(σ · p̂)(σ · p̂)]

= vF [σ · p̂ − α p̂2σ0], (3)

where σ0 = I2 is the unit matrix. This procedure reproduces
the low-energy limit of the next-to-nearest-neighbor Hamilto-
nian contribution at next-to-leading order [40]. To emphasize
the fact that Ĥ has a GDS, the corresponding dynamical
equation is now given:

ih̄∂tψ (t, x) = vF (σ · P̃)ψ (t, x), (4)

where P̃ = p̂σ0 − σα p̂2 and where ψ is the two-component
spinor wave function. Equation (4) is a generalized massless
Dirac equation. In addition, it can be readily tested that the
dispersion relation obtained from the energy eigenvalue equa-
tion for the above (see Eq. (12) in Ref. [46]) is the same as
Eq. (2).

The mathematical structure defined thus far by the GDS in
Eq. (4) and the dispersion relation in Eq. (2) is consistent with
the framework of the generalized uncertainty principle (GUP).
In this framework, one postulates the existence of generalized
position and momentum operators, X̂ and P̂, that obey a
modified commutation relation (see Sec. A in Ref. [46]):

[X̂i, P̂j] = ih̄

[
δi j − α

(
δi j P̂ + P̂iP̂j

P̂

)]
. (5)

These relations imply a minimal measurable length (�x)min ∼
h̄α and a maximal measurable momentum (�p)min ∼ α−1

[45,47]. Therefore, in this formalism, α ∝ a is a parameter
that captures the effect of the discrete topology. It appears in
our description of graphene owing to the discreteness of its
atomic structure. A similar technique, based on a deformation
of the Heisenberg algebra, has been considered for the calcu-
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lation of the optical conductivity with next-to-leading-order
corrections at zero and finite temperature [48–50].

To obey the generalized commutation relations (5), the
generalized position and momentum operators must be related
to the usual position and momentum operators as X̂ = x̂ and
P̂ = p̂(1 − α p̂), with [x̂i, p̂ j] = ih̄δi j . The operators X̂ and P̂
can be interpreted as the high-energy position and momentum,
respectively, while x̂ and p̂ are their low-energy counterparts
[35]. The definition of the generalized momentum can be
understood as a rotational-symmetric energy-scale transfor-
mation. The Dirac-like equation obtained from this formalism
has the form given in Eq. (4) when one replaces the momen-
tum operator by the generalized one and by using the Dirac
prescription [35,45].

As expected from the dispersion relation, the full Lorentz
symmetry is not preserved in this mathematical structure and
this implies particle-hole asymmetry. This symmetry breaking
is algebraically indicated by the presence of P̂iP̂j/P̂ terms in
the commutation relations (5). Thus, chiral symmetry break-
ing arises from a more fundamental, although a less stringent,
phenomenon of Lorentz symmetry breaking, which is remi-
niscent of the discrete topology of the space itself. It is less
stringent, because we still consider the space to be isotropic
(which shows up as the SO(2) symmetry).

It is interesting to note that the algebraic structure induced
by the GUP also occurs in some quantum gravity models
[35,36,38,39], where the Planck length plays a role analogous
to interatomic length in graphene. Actually, this formalism
was developed to be consistent with string theory, black hole
physics, and doubly special relativity [45,47]. In gravitational
theories, however, we have α ∼ �plank/h̄, where �plank is the
Planck length. As a consequence, nonlinear corrections to the
dispersion are very weak, unless one probes the system at
Planck energy scales. This is not possible with actual experi-
mental apparatus.

On the other hand, nonlinear corrections in graphene start
to be important at much lower energy scales [41]. Further-
more, as demonstrated in this article, it follows an algebraic
structure consistent with GUP for some specific angles φk.
Therefore, it is interesting to look at phenomenological im-
plications of these corrections as they can be used as quantum
gravity analogs. For this purpose, we analyze Klein tunneling
at intermediate energies (∼100 meV) to investigate the effects
of the α term on this phenomenon.

To study Klein tunneling, we consider free waves scatter-
ing on an n-p-n junction (more details of this calculation can
be found in Sec. B of Ref. [46]). Thus, an electric static barrier
potential V (x) = V0(x)(D − x), where D is the potential
length, is introduced in the GDS, resulting in

Ĥ �(r) = {vF [−ih̄σ · ∇ + αh̄2 σ0 ∇2] + V (x)}�(r)

= EG �(r). (6)

Here (as in ordinary Klein tunneling [19,20]) the potential
barrier distinguishes three different regions: region A [V (x) =
0, x � 0], with an incoming wave and a reflected one from
the interface at x = 0; region B [V (x) = V0, 0 < x � D], with
two waves, one transmitted from region A and another re-
flected by the interface at x = D; and region C [V (x) = 0, x >

D], where there is just a transmitted wave. In the piecewise

constant potential V (x), Eq. (6) admits plane-wave solutions
�(x) = eikyyϕ(x), where

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eikxx

(
1

eiφ

)
+ Re−ikxx

(
1

−e−iφ

)
, x < 0;

aeiqxx

(
1

−eiθ

)
+ be−iqxx

(
1

e−iθ

)
, 0 < x � D;

T eikxx

(
1

eiφ

)
, x > D;

(7)

In the above, R and T are the reflection and transmission
coefficients, respectively, while a and b are the coefficients
of the waves under the barrier. Also, k is the wave vector
in regions A and C while q is the wave vector in region
B. The angles φ = arctan(ky/kx ) and θ = arctan(qy/qx ) are
the incident and transmitted angles, respectively. Since the
potential V (x) is translationally invariant along the y axis, the
projection of the wave vector ky is a conserved quantity and
we have ky = qy. Without loss of generality, we will assume
ky > 0, representing an electron traveling from the lower half
plane y < 0 to the upper half plane y > 0. Moreover, we will
restrict ourselves to the energy range 0 < EG < V0, where the
Klein tunneling phenomenon occurs. The energy EG in region
A is related to k via Eq. (2). Also, we can find qx in region B:

q2
x = 1

(2αh̄)2

(
2 − 4α(EG − V0)

vF

− 2

√
1 − 4α(EG − V0)

vF

)
− k2 sin2 φ. (8)

The transmitted angle θ can be found using tan θ =
(k sin φ/qx ). Then matching the modes, i.e., equating the
spinors in the three regions at the two boundaries of the
potential assuming the continuity of the solution �(x, y) at
x = 0 and x = D, gives us the conditions on the coefficients of
the spinors. Solving the resulting system of four simultaneous
equations for R, and using TG = 1 − |R|2, we finally obtain
the transmittance as

TG = cos2 φ cos2 θ [cos2(qxD) cos2 φ cos2 θ

+ sin2(qxD)(1 + sin φ sin θ )2]−1. (9)

For normal incidence, the transmission probability is TG =
1 and it is independent of the barrier height V0 and width
D, like that in the linear case. The transmission probability
becomes unity also when qxD = πn, n ∈ Z. The linear case
is obtained by setting α = 0 in Eqs. (2) and (6), and repeating
the above-mentioned calculations. It can also be obtained as a
limiting process (see Sec. B of Ref. [46]) and we recover

q2
x = (EG − V0)2

h̄2v2
F

− k2 sin2 φ, (10)

the same result as Ref. [19].
In Fig. 2 (top) we show a polar plot of the transmission

coefficient T and TG to compare the predictions of the linear
versus the generalized Dirac structures. We considered the
parameters of graphene reported in Ref. [29], a = 1.4 Å,
t = 3 eV, and t ′ = −0.3 eV. Moreover, the barrier is V0 =
285 meV high and D = 96 nm wide. As demonstrated above,
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FIG. 2. Top: Transmission probability T and TG through a V0 =
285-meV-high and D = 96-nm-wide barrier as a function of the
incidence angle φ, both with k = k0 = 1.3407 × 108 m−1. The blue
curve is the linear prediction of T and the red curve the prediction
TG with the GDS. The black curve corresponds to unit transmission.
Center: Probability density in the x-y plane of the superposition of
two plane waves, � = �(k0, 0) + �(k0, π/3), considering only the
linear regime. Bottom: Probability density ||�||2 using the gener-
alized Dirac structure. In all plots, the barrier is placed parallel to
the armchair direction and the horizontal (vertical) axis is the x (y)
coordinate.

the angle at which transmission is maximized depends on
the momentum of the incoming wave. Therefore, we specif-
ically selected the momentum k = k0 = 1.3407 × 108 m−1

for which the barrier becomes transparent (TG = 1) at φ =
0,±π/3, where trigonal warping is null. For k0 the energy in
the linear regime is E = 84.4638 meV while considering the
GDS is EG = 84.226 meV. The barrier is placed parallel to
the armchair direction. The blue curve is the linear prediction
of T as in Ref. [19] and the red curve the prediction TG with
the generalized Dirac structure (9). The green-shadowed areas
are regions for the incident angle φ where trigonal warping
can be neglected. In these areas, Eq. (6) represents correctly
Klein tunneling up to O((ka)2). The transmission in the GDS
is shifted compared to the linear case because Klein tunneling
is susceptible to changes in the energy of incoming quasipar-
ticles which results from the different dispersion relation. In
general the transmission coefficient is different for the two
cases for the same angle of incidence φ for a given wave
number k.

Since Eq. (6) is a linear differential equation, then it is
also a correct representation in the subspace spanned by
the plane waves with incident angle φ ∈ (−δ, δ) ∪ (π/3 −
δ, π/3 + δ) ∪ (−π/3 − δ,−π/3 + δ).

In Fig. 2 (center and bottom), we show the interference
pattern produced by the superposition of two incoming waves
at different angles of incidence, � = �(k0, 0) + �(k0, π/3),
considering the linear regime and the GDS, respectively. For
the GDS and the chosen angles of incidence (0 and π/3),
the transmittance is TG = 1 and, thus, both incoming waves
are fully transmitted. As a consequence, the wave function
after the barrier (region C) is the same as in region A. On the
contrary, in the linear case T �= 1 for the angle π/3. Thus,
a certain fraction of the incoming wave is reflected back,
creating an interference pattern in region A.

As demonstrated previously, it is possible to simulate the
effect of minimum length on Klein tunneling in graphene
by showing that the transmittance TG(E , φ), for some spe-
cific angles, is sensitive to the discrete topology (TG �=
T ). Probing this effect experimentally would be challeng-
ing because it requires a careful positioning of the potential
barrier with respect to the lattice and because it requires
resolving the transmission coefficient in angle and energy.
However, this may be possible with actual experimental
techniques. Indeed, time-resolved photoemission electron mi-
croscopy (TR-PEEM) is capable of resolving the dynamics
of charge carriers in time, space, energy, and momentum
with nanometer and femtosecond resolutions [51]. In addi-
tion, laser beams can generate well-controlled photoinduced
currents in graphene [52]. Therefore, we propose to use a
pump-probe experiment where a mid-infrared pump photoex-
cites charge carriers and makes them scatter on the potential
barrier. Because this happens on short time scales (approxi-
mately the wave period of �t ∼ 200 fs), charge carriers travel
large enough distances to go through the potential barrier
(∼200 nm � D), but low enough to reduce possible scat-
terings with impurities and defects (ballistic regime). The
laser field intensity required to accelerate charge carriers to
the required energy is estimated as I ∼ 105 W/cm2, using
�p ∼ eE��t where E� is the laser field strength. This is
below the intensity of known mid-infrared laser sources [53].
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Furthermore, it is also possible to scan many scattering angles
by modifying the laser polarization. The resulting dynam-
ics can then be analyzed with the PEEM as a function of
the pump-probe time delay. Using the scattering dynam-
ics of the distribution of charge carriers measured from the
PEEM, we expect to be able to evaluate the transmission
coefficient.

In this Letter, we have studied the effect of next-to-nearest
atom hopping on quantum transport in graphene. This was an-
alytically done by analyzing the tight-binding model beyond
the linear regime. The effective quantum dynamics obtained
from such an approximation was used to obtain an emergent
generalized Dirac structure, which captured the effects of dis-
crete topology and which is reminiscent of Lorentz-breaking
quantum gravity models. This technique is general and could
be applied to any Dirac materials with an underlying discrete
topology. It was proposed that such effects can be tested by
measuring transmittance through n-p-n graphene junctions
using a pump-probe experiment.

Here we point out that the analogy with quantum grav-
ity can be clearly seen by considering its analogy with
doubly special relativity (DSR) [36]. In DSR, the Planck
energy acts as the maximal possible energy, and the smooth
manifold structure of spacetime breaks beyond that energy.

Furthermore, due to DSR, the behavior of spacetime also
changes at intermediate energies, and this can be observed in
effects like the breaking of Lorentz symmetry. In graphene,
the situation is similar, as we have a maximum energy scale
at which the interatomic bounds break, along with any smooth
structure. This again has similar implications for intermediate-
energy phenomena in graphene. Therefore, graphene can also
be used as an analog for Lorentz-violating phenomena, which
remain very elusive in high-energy particle physics experi-
ments (see Refs. [54,55]).

To conclude, it would be interesting to generalize this
work by incorporating the effects of a trigonal warping term.
This could be done by certain asymmetric expansion of the
generalized momentum in terms of the standard low-energy
momentum. This will naturally furnish us a nonisotropic GUP
reflecting the nonisotropy of space itself [56]. It will be useful
to use this formalism for the study of Klein tunneling and
other phenomena in graphene with a trigonal warping term.
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de Ciencia y Tecnología (CONACyT-México) under Grant
No. FORDECYT-PRONACES/61533/2020. F.F.G. and S.M.
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