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Spin-orbit interaction in semiconductor structures with broken space inversion symmetry leads to spin splitting
of electron and hole states even in the absence of magnetic field. We discover that, beyond the Rashba and
Dresselhaus contributions, there is an additional type of the zero-field spin splitting which is caused by the
interplay of the cubic shape of crystal unit cell and macroscopic structure asymmetry. In quantum wells grown
along low-symmetry crystallographic axes, this type of spin-orbit interaction couples the out-of-plane component
of carrier’s spin with the in-plane momentum whereas the coupling strength is controlled by structure inversion
asymmetry. We carry out numerical calculations and develop an analytical theory, which demonstrate that this
interaction dominates k-linear spin splitting of heavy-hole subbands in a wide range of parameters.
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Zero-field spin splitting of electron and hole subbands in
semiconductors caused by spin-orbit (SO) interaction gives
rise to a variety of exciting phenomena which are being
explored for technological applications [1–3]. Examples are
the intrinsic and intrinsic inverse spin Hall effects [4,5],
the spin-galvanic effect [6–9], and spin orientation by elec-
tric current [10,11], persistent spin helices [12–14], and the
paradigmatic spin field-effect transistor [15,16].

Two contributions to the zero-field spin splitting in zinc-
blende-type quantum wells (QWs) are commonly considered:
the Rashba and Dresselhaus terms [17–19]. The Rashba (or
Bychkov-Rashba) SO interaction [20–25] is related to the QW
structure inversion asymmetry (SIA) which can be tuned by
an electric field applied along the QW normal. The effective
magnetic field BR corresponding to the Rashba splitting lies
in the QW plane. The Dresselhaus term originates from bulk
inversion asymmetry (BIA) of the underlying crystal [26–30].
The corresponding effective magnetic field BD is tied to the
crystallographic axes and, therefore, its direction depends on
the QW crystallographic orientation [27]. In particular, BD lies
in the QW plane in (001)-oriented structures whereas it points
along the QW normal in (110)-oriented structures.

Technological achievements and the search for new
physics stimulate the study of QWs grown along low-
symmetry axes, such as [012], [013], etc. [31–33]. Whereas
the analysis of atomic structure readily shows that the sym-
metry of such QWs is reduced (down to the trivial C1 group
compared to the C2v group of (001)-grown QWs [34]) and,
therefore, additional terms in the SO Hamiltonian get phe-
nomenologically allowed, it is commonly assumed that the
SO Hamiltonian still consists of the Rashba and Dresselhaus
terms. The latter is obtained from the bulk Dresselhaus term
by the proper projection onto two-dimensional states in the
coordinate frame relevant to the QW.

Here, we show that there is an additional term in the
Hamiltonian of zero-field splitting, which emerges in any
QW except those grown along the high-symmetry axes 〈001〉,

〈011〉, and 〈111〉. The term is relevant for QWs based on
cubic crystals, e.g., both zinc-blende-type and diamond-type
crystals, and does not require bulk inversion asymmetry. The
effective magnetic field corresponding to this type of SO
splitting points along the QW normal whereas its magnitude is
controlled by structure inversion asymmetry and can be tuned
by gate voltage. Moreover, we find that this SO interaction
dominates the k-linear spin splitting of heavy-hole (HH) sub-
bands in low-symmetry QWs based on III–V semiconductors,
such as (013)-grown GaAs QWs. In the framework of the
Luttinger Hamiltonian, we construct the effective Hamiltonian
of the HH SO splitting for (0lh)-grown QWs where l and h
are the Miller indices and study how the SO splitting depends
on the QW orientation and width as well as the electric field
applied along the growth direction. Calculations also reveal
that the k-linear Rashba splitting of the HH states, which is
absent in the isotropic approximation and emerges in the cubic
model, has a strong dependence on the QW crystallographic
orientation.

First, we show that k-linear SO splitting follows from sym-
metry consideration and construct the effective Hamiltonian.
Figure 1 sketches the microscopic structures of asymmetric
QWs grown from a cubic crystal along three different [0lh]
axes: [001], [012], and [011]. The crystal unit cells are shown
by cubes, the color gradient from blue to red illustrates the
QW structure inversion asymmetry. We focus on the cubicity
of the unit cell and neglect its internal structure, in particu-
lar, bulk inversion asymmetry for zinc-blende-type crystals.
Moreover, for heavy holes in asymmetric quantum wells, the
BIA term is typically smaller than the SIA term [25].

Figure 1 reveals that the symmetry of a QW depends on
its crystallographic orientation if the cubicity of unit cells
is taken into account. The highest symmetry, corresponding
to the C4v point group in the cubic model, is achieved for
(001)-grown QWs, Fig. 1(a). Such a symmetry allows for
k-linear Rashba splitting of conduction-band electrons (par-
ticles with the spin projections ±1/2 on the QW normal) and
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FIG. 1. Sketch of the microscopic structures of QWs grown from a cubic crystal along the [001], [012], and [011] axes. The cubic symmetry
of crystal unit cells together with structure inversion asymmetry gives rise to k-linear spin splitting of the HH subband in (012)- and (011)-
grown QWs with the terms shown in the figure.

k-cubic Rashba splitting of heavy holes (particles with the
spin projections ±3/2). k-linear Rashba splitting of HH is ab-
sent in this model and is known to be tiny in real (001)-grown
zinc-blende-type QWs [17]. In (011)-grown QWs [Fig. 1(c)],
the in-plane axes x and y get nonequivalent and the effective
symmetry is reduced to the C2v point group. This symmetry
enables k-linear coupling of the ±3/2 states. As the results,
the Rashba Hamiltonian for HH acquires k-linear terms and
becomes anisotropic.

QWs grown along any axes between [001] and [011], e.g.,
(012)-grown QWs as shown in Fig. 1(b), has lower symmetry.
In the cubic model, they are described by the Cs point group
with the only nontrivial symmetry element: the mirror plane
x → −x. In addition to the anisotropic Rashba term, the SO
Hamiltonian in such QWs may contain the unusual term σzkx

which is also invariant in the Cs point group. Thus, the ef-
fective Hamiltonian of k-linear SO interaction in (0lh)-grown
QWs of the Cs symmetry can be generally presented in the
form

HSO = α1σykx − α2σxky + ζσzkx, (1)

where α1, α2, and ζ are the SO coupling parameters, σx,y,z

are the Pauli matrices, kx,y are the in-plane wave-vector
components, and x ‖ [100], y ‖ [0hl], and z ‖ [0lh] are the
coordinate axes relevant to (0lh)-grown QWs. Below, we
calculate these parameters for the HH subband and demon-
strate that for most crystallographic orientations the term σzkx

dominates. This term seems to be responsible for the out-
of-plane spin polarization of surface states in (013)-grown
HgTe/CdHgTe topological insulators observed in our numer-
ical k · p calculations [35]. Note that a similar term caused by
BIA in (0lh)-grown QWs would have the form σzky [36].

Now, we develop a microscopic theory of SO splitting. The
�8 valence band in bulk cubic semiconductors is described by
the Luttinger Hamiltonian, which in the cubic axes has the
form [17,34]

HL = h̄2

2m0

[
−

(
γ1 + 5

2
γ2

)
k2 + 2γ2(Jk)2

+ 2(γ3 − γ2)
∑
i �= j

(Jiki )(Jjk j )

]
, (2)

where γ1, γ2, and γ3 are the Luttinger parameters, k is the
three-dimensional wave vector, and J is the vector composed
of the matrices of the angular momentum 3/2.

To calculate the dispersion of valence subbands in (0lh)-
grown QW, we rotate the Luttinger Hamiltonian in the QW
coordinate frame (x, y, z) and solve the Schrödinger equa-
tion H� = E� with the Hamiltonian,

H = H (i)
L + H (a)

L + eV (z), (3)

where H (i)
L and H (a)

L are the isotropic and anisotropic parts
of the Luttinger Hamiltonian, respectively, and eV (z) is the
electrostatic potential energy [35]. We use the simplest form
of boundary conditions at the QW interfaces: the continuity
of � and vz� at the interfaces, where vz = h̄−1∂HL/∂kz.
These boundary conditions applied to (0lh)-grown structures
correspond to the Hamiltonians,

H (i)
L = h̄2

2m0

[
−k

(
γ1 + 5

2
γ2

)
k + 2
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i j

{JiJj}skiγ2k j

]
, (4)

and

H (a)
L = 2h̄2

m0

{
{JxJy}s(γ3 − γ2)kxky + {JxJz}s{γ3 − γ2, kz}skx

+
[
{JyJz}s cos 2θ + J2

z − J2
y

2
sin 2θ

]

×
[
{γ3 − γ2, kz}sky cos 2θ

+ kz(γ3 − γ2)kz − (γ3 − γ2)k2
y

2
sin 2θ

]}
, (5)

where k‖ = (kx, ky) is the in-plane wave vector, kz = −i∂z,
{AB}s = (AB + BA)/2 is the symmetrized product, θ =
arctan(l/h) is the angle between the QW growth direction
[0lh] and the [001] axis, and the Luttinger parameters may
now depend on the z coordinate.

The energy spectra of the ground HH subband in (001)-
, (012)-, and (011)-grown GaAs/AlAs QWs are shown in
Fig. 2. The spectra are calculated using the Luttinger param-
eters listed in Table I and the valence-band offset between
GaAs and AlAs 590 meV [38]. The electrostatic potential

TABLE I. Luttinger parameters of GaAs and AlAs [37].

γ1 γ2 γ3

GaAs 6.98 2.06 2.93
AlAs 3.76 0.82 1.42
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FIG. 2. (a1), (b1), and (c1) Energy spectra of ground heavy-hole subband in (001)-, (012)-, and (011)-grown GaAs/AlAs QWs, respec-
tively. (a2), (b2), and (c2) Equipotential cross sections of the energy spectra. Red and blue arrows show the orientations of heavy-hole
pseudospin in the spin subbands. Calculations are carried out for 5-nm-wide QWs with the built-in electric field Ez = 400 kV/cm.

V (z) is set to constants in the barriers and V (z) = Ezz inside
the well.

Figures 2(a1), 2(b1), and 2(c1) reveal that the HH
spin-orbit splitting dramatically depends on the QW crystal-
lographic orientation. As expected, the splitting is negligible
in (001)-grown QWs where k-linear terms are absent and
the Rashba splitting emerges only in the third order in the
wave vector [17]. In contrast, anisotropic k-linear splitting
of the HH subband is clearly observed in the energy spectra
of (012)- and (011)-grown QWs. Moreover, among all the
QW orientations considered in Fig. 2, the splitting is max-
imal in the (012)-grown QW. This is most clearly seen in
Figs. 2(a2), 2(b2), and 2(c2), where solid black lines show
the equipotential cross sections of the energy spectra.

To clarify the nature of the observed SO splitting we
calculate the directions of pseudospin in the spin subbands.
The pseudospin in state � is defined as s = χ†σχ , where
χ = (a, b)ᵀ/

√
|a|2 + |b|2 with a and b being the expansion

coefficients of � in the HH ground states | ± 3/2〉. Blue and
red arrows in Figs. 2(a2), 2(b2), and 2(c2) show the pseu-
dospin orientations as a function of the in-plane wave-vector
k‖ for (001)-, (012)-, and (011)-grown QWs, respectively.
In the (011)-grown QW [Fig. 2(c2)], the pseudospin lies in
the QW plane. In line with the symmetry consideration, the
overall dependence of spin splitting on k‖ is described by
the anisotropic Rashba Hamiltonian given by the first two
terms in Eq. (1). The striking difference of SO interaction
in the (012)-grown QW [Fig. 2(c2)], compared to (001)- and
(011)-grown structures, is that the pseudospin s has both the
in-plane and out-of-plane components. Physically, it means
that the eigenstates are formed mostly from either | + 3/2〉

or | − 3/2〉 states. In accordance with the symmetry analysis,
such a kind of SO splitting is allowed in cubic QWs grown
along low-symmetry axes, see Fig. 1. Moreover, the numer-
ical calculations show that, in the (012)-grown QW, s points
mostly along the QW normal for k ‖ x where the spin splitting
is maximal. All the observed features are well described by the
effective Hamiltonian (1) with |ζ | > |α1|, |α2|.

We perform a series of numerical calculations to obtain
the dependence of the SO coupling parameters α1, α2, and
ζ on the the QW width and crystallographic orientation. The
results are summarized in Fig. 3. The dependences of the SO
parameters on the QW width turn out to be nonmonotonic and
have maxima at around 7 nm. In narrower QWs, the influence
of the electric field Ez, which is set to the constant in the
QW and zero in the barriers, on the HH states is reduced.
As a result, the SO parameters decrease. In wide QWs, the
SO parameters tend to the constants since the well effectively
becomes triangular with the slope eEz.

The inset in Fig. 3(a) shows the dependence of the SO
parameters on angle θ which defines the QW crystallographic
orientation. The angles θ = 0 and θ = π/4 correspond to
(001)-grown and (011)-grown QWs, respectively. In line with
the symmetry consideration, the parameters are zero at θ = 0
and ζ = 0 at θ = π/4. The parameters α1, α2 are propor-
tional to θ2 at small θ and reach maxima at θ = π/4, i.e.,
in (110)-grown QWs. The parameter ζ behaves differently: It
is proportional to θ at small angles and reaches a maximum
at θ ≈ 0.36 which is close to the (013)-growth direction. The
calculations show that for GaAs/AlAs QWs the term ζσzkx

prevails in the SO Hamiltonian of heavy holes in a wide range
of QW crystallographic orientations.
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FIG. 3. Dependences of the parameters of SO Hamiltonian (1)
α1, α2, and ζ of heavy holes on the QW width for (011)-, (012)-, and
(013)-grown GaAs/AlAs QWs. The dependences are calculated for
the Luttinger parameters listed in Table I and built-in electric field
Ez = 100 kV/cm. The inset shows the dependence of α1, α2, and ζ

on the growth direction θ for 10-nm-wide QWs.

Finally, we obtain analytical expressions for the SO
coupling parameters. We assume that the warping of the
valence-band spectrum, which is an essential ingredient for
the k-linear splitting of the HH subbands, is small, i.e.,
|γ2 − γ3| � γ̄ , where γ̄ = (γ2 + γ3)/2.

At k‖ = 0 and in the absence of warping (H (a)
L = 0),

the solution of the Schrödinger equation gives the series
of the heavy-hole and light-hole states |HHn,±3/2〉 and

|LHn,±1/2〉, respectively, with the energies εh/l,n and the
envelop functions ϕh/l,n(z).

At k‖ �= 0, the ground HH states |HH1,+3/2〉 and
|HH1,−3/2〉 are coupled. The k-linear coupling is described
by the effective Hamiltonian (1). The second-order pertur-
bation theory (first order in k‖ and first order in γ2 − γ3)
gives the following equations for the SO coupling parameters
(see Ref. [39] for details),

α1,2 = 3

2

h̄2Q

m0
sin2 2θ, ζ = −3

2

h̄2Q

m0
sin 4θ, (6)

where

Q = h̄2

m0

∑
n

∫
ϕh,1(z){γ̄ , ∂z}sϕl,n(z)dz

εh,1 − εl,n

×
∫

ϕl,n(z)∂z(γ3 − γ2)∂zϕh,1(z)dz. (7)

The parameter Q is nonzero only if the QW is asymmetric
and, at least, one of the Luttinger parameters has a jump at the
interfaces [40].

The dependences of α1, α2, and ζ on the growth direction θ

calculated numerically in Fig. 3 are well described by Eqs. (6)
despite the fact that the analytical theory is not strictly appli-
cable to GaAs/AlAs QWs since the difference between γ2 and
γ3 is not small. As it follows from Eqs. (6), the parameter ζ

reaches a maximum at θ = π/8 which is quite close to 0.36
obtained in the numerical calculations.

To summarize, we have shown that the zero-field spin
splitting of two-dimensional states in QWs grown along low-
symmetry crystallographic axes goes beyond the Rashba and
Dresselhaus contributions. In particular, there is spin-orbit
coupling between the out-of-plane component of the carrier’s
spin and the in-plane momentum whose strength is governed
by QW structure inversion asymmetry. The developed micro-
scopic theory shows that this type of coupling can be quite
strong and dominate k-linear spin splitting of heavy holes
in (0lh)-oriented GaAs QWs. This finding provides an addi-
tional way to manipulate spins in low-dimensional structures.

More generally, our Letter suggests a type of tunable gy-
rotropy in low-symmetry QW structures: coupling between
the out-of-plane component of an axial vector and the in-plane
component of a polar vector controlled by structure inversion
asymmetry. This coupling can give rise to a number of in-
teresting phenomena, such as optical activity, magnetoelectric
effect, current-induced Faraday and Kerr rotation, the circular
photogalvanic effect, etc.
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