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Flat-band systems are a promising platform for realizing exotic collective ground states with spontaneously
broken symmetry because the electron-electron interactions dominate over the kinetic energy. A collective
ground state of particular interest is the chased-after exciton condensate (EC). However, in flat-band systems
other collective ground states can compete with an EC phase, and the conventional treatment of the effect of
thermal and quantum fluctuations predicts the EC phase should be unstable. Here, using double-twisted bilayer
graphene (TBLG) heterostructures as an example, we show that, for realistic interaction strengths, the EC phase
is favored with respect to other TBLG’s phases—orbital magnetism and superconductivity—when the TBLGs
have opposite doping, and that the quantum metric of the Bloch wave functions stabilizes the EC, reversing
the conclusion that would be drawn from the conventional approach in which quantum metric contributions are
neglected. Our results suggest that the quantum metric plays a critical role in determining the stability of exciton
condensates in double layers formed by systems with flat bands.
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An exciton is a bosonic quasiparticle formed by an electron
(e) bound to a hole (h). A large number of excitons can
become phase coherent and form a collective state known as
the exciton condensate (EC) [1,2]. Already in the mid 1970’s
it was proposed [3,4] that spatially separating electrons and
holes should facilitate the formation of a thermodynamically
stable EC. Such a separation can be realized in e-h semicon-
ductor double layers, in which a thin dielectric separates the
layers and distinct metal gates are used to create an excess
density of electrons in one layer, which equals the excess
density of holes in the other one. Great advances in the fab-
rication of heterostructures made possible the realization of
several novel double layers in which ECs could be realized
[5–24]. It was proposed that ECs could be formed in graphene
double layers [5,6], but experimentally no strong signatures
have been observed so far. It was then proposed that ECs
could be realized in systems based on double bilayer graphene
(BLG) [8,9,16] given that, at low energies, BLG’s bands are
qualitatively flatter than graphene’s and recent experiments
show signatures that are consistent with the formation of an
EC [18]. These results, combined with the ones for quantum
Hall (QH) bilayers [25–30] in which the kinetic term of each
layer is completely quenched would suggest that, in general,
the formation of an EC is favored in bilayers formed by two-
dimensional (2D) systems with flat bands. As a consequence,
double twisted bilayer graphene (TBLG), in which the bands
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can be made extremely flat by tuning the twist angle θ be-
tween graphene sheets [31–38], appears to be an ideal system
to seek the realization of ECs without external magnetic fields.
This expectation, however, is, in part, naive. First, the flat-
ness of the bands is associated with strong screening of the
interlayer Coulomb interaction that is the driver of the EC in-
stability. This obstacle can be overcome by tuning the system
into the strong coupling regime, where the e-(h-)densities are
sufficiently small so that the coherence length ξ of the EC
is smaller than the average distance between particles [10].
Second, the stiffness (ρs) of the EC, i.e., its robustness against
thermal and quantum fluctuations, is conventionally expected
to decrease as the bands become flatter and ultimately vanish
in the limit of perfectly flat bands.

In this work we show that the second obstacle, in general,
might not be present if one considers the contribution to ρs due
to the quantum metric of the eigenstates of the EC. We con-
sider the specific case of double layers formed by an e-doped
TBLG and an h-doped TBLG separated by a thin insulating
barrier [Fig. 1(a)]. We first perform a mean-field calculation
in which the order parameters for the EC, superconductivity
(SC), and orbital magnetism (OM) are treated on equal footing
to identify the regions of the the phase diagram as a function
of dopings in the upper (U ) and lower (L) TBLG where the
EC is favored. We then calculate ρs for the EC and show that
the contribution to it due to the quantum metric is essential to
make it positive and therefore to stabilize the EC. In addition,
we describe how ρs depends on the twist angle and find that
the most favorable twist angle θ to realize a stable EC is not
the magic angle. We also obtain the Berezinskii-Kosterlitz-
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FIG. 1. (a) Proposed experimental setup. (b) Phase diagram of
double-TBLG as a function of μU and μL for θ = 1.00◦. (c,d) Phase
transitions as a function of dopings along the arrows shown in (b).
(e) Phase transition as a function of VEC at νU = νL = 0. The legend
SC(OM)U(L) represents the SC (OM) phase in the upper (lower)
TBLG.

Thouless (BKT) temperature TBKT [39,40] as a function of
θ . Considering that most systems with almost flat bands are
multiband systems, our results have universal relevance for
the understanding of the conditions necessary to realize ECs:
they show that to realize an EC in 2D bilayers the flatness of
the bands of the layers must be accompanied by a significant
quantum metric contribution to the EC’s stiffness. Our results
also allow to understand in a new light the conditions that
make possible the realization and observation of ECs in QH
bilayers [41,42].

The double TBLG system is described by the Hamilto-
nian Ĥ = ĤU + ĤL + Ĥint where ĤU/L is the single-particle
Hamiltonian for the U/L TBLG and Hint describes the e-e
interactions. We assume θ to be the same for the two
TBLGs. For small θ the low-energy states of a TBLG are
well described by an effective tight-binding Hamiltonian in
momentum space with the lattice sites {b = m1b1 + m2b2}
corresponding to the reciprocal lattice vectors of the moiré
lattice. The on-site Hamiltonians describe the Dirac points of
graphene with Fermi velocity vF = 106 m/s and the nearest-
neighbor hopping matrices Ti describe the coupling between
the layers with tunneling strength w = 118 meV [33,43–
45]. Here b1 = (

√
3Q, 0), b2 = (

√
3Q/2, 3Q/2), m1, m2 ∈

Z, Q = (8π/3a0) sin(θ/2) and a0 is the lattice constant of
graphene. Recent experimental and theoretical results sug-
gest that, for a single TBLG, the strongest instabilities are
orbital-magnetism (OM) characterized by a finite polarization
in sublattice space and superconductivity (SC) [46–48]. We
therefore decouple the interactions within the same TBLG
via the mean fields �OM,SC

blσ l ′σ ′ (l = l ′, σ = σ ′), where the indices
l, l ′ (σ, σ ′) correspond to the layer (sublattice) degrees of

freedom freedom within the U or L TBLG [43]. The inter-
action between electrons in different TBLGs is decoupled via
the EC mean field �EC

blσ l ′σ ′ . We assume the EC, SM, and OM
phases obey the spin-rotation symmetry. Given the flatness of
TBLG’s low-energy bands, in the mean-field approximation
all the interactions can be replaced by effective local inter-
actions [43]. We denote the strengths of the effective local
interaction in the OM, SC, and EC channels as VOM, VSC,
and VEC, respectively. We expect VOM > VSC ∼ VEC, but it is
challenging to estimate the precise values of the interaction
strengths because of the interplay of screening effects and col-
lective instabilities. Thus, we adopt a pragmatic approach: we
set VOM = 130 meV · nm2, and VSC = 75 meV · nm2 so that
the corresponding critical temperatures T OM

c and T SC
c are in

good agreement with the experimental observations [34,37],
and consider different range of values for VEC, 60–100 meV ·
nm2, for which T EC

c ∼ 1–4 K, and the system is in a strong
coupling regime where the screening does not prevent the
formation of the EC.

The gap equations for each order parameter (OP) �OP
ᾱ ,

where OP = {OM, SC, EC}, and ᾱ is a collective index, can
be linearized close to the critical temperature T OP

c : �OP
ᾱ =∑

β̄ χOP
ᾱβ̄

�OP
β̄

, where χOP
ᾱβ̄

is the bare susceptibility, indepen-

dent of �OP
ᾱ . T OP

c is obtained as the temperature T for which
the largest eigenvalue of χOP

ᾱβ̄
is equal to 1. The expressions

of χOP
ᾱβ̄

for each phase are given in [43]. In Fig. 1(b) we
show the phase diagram, as function of doping in each TBLG,
for VEC = 60 meV · nm2, obtained by identifying the highest
T OP

c . We verified for several (μU , μL ) value pairs that the
results obtained from the linearized and nonlinearized gap
equations are consistent. Close to νU = νL = 0 the correlated
insulating phase OM is favored, whereas introducing equal
electron densities in the two TBLGs μL ∼ μU favors the
SC phase [49]. When the excess density of electrons in one
TBLG equals the excess density of holes in the other TBLG,
μU ∼ −μL, the EC becomes dominant. In our system the EC
is formed by states in physically different TBLGs, no pairing
between states in bands with opposite Chern number is as-
sumed, and so the topology of the low-energy bands does not
penalize the formation of a uniform inter-TBLG EC state [50].

To investigate the possible coexistence of ordered phases
[51] we solved across several phase boundaries the full non-
linear gap equations in which all the order parameters are
allowed to be nonzero. We used large numbers of random
initial conditions and identified the solution with the small-
est total energy as the ground state. Figures 1(c) and 1(d)
show the evolution of the order parameters across the OM/EC
and SC/EC phase boundaries, respectively. In both cases the
results suggest that the system undergoes a first-order quan-
tum phase transition as the dopings are varied in Fig. 1(b).
Figure 1(e) shows the evolution of the order parameters as
a function of VEC at the neutrality point. Also in this case
the transition appears to be first order. Figure 1(e) suggests
that for VEC > 60 mev · nm2 the EC is favored in a significant
region of the (μU , μL ) plane. In the reminder we focus on
the μL = −μU ≡ μ regime, with μ sufficiently large, and set
VEC = 100 meV · nm2 so that, at the mean-field level, the EC
phase is dominant. To simplify the notation in the sections be-
low the EC label is implied.
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FIG. 2. (a) Tc as a function of μ = μL = −μU and different
values of twist angle θ . (b) Tc as a function of θ and different values
of μ.

Figure 2 shows how Tc scales with μ and θ close to the
magic angle θM = 1.05◦. Tc is largest when θ = θM , the twist
angle for which the bands are flattest, and decreases quickly
when θ is tuned away from θM . The solution of the gap equa-
tion reveals that �blσ l ′σ ′ has several nonzero components. We
performed the singular value decomposition (SVD) �blσ l ′σ ′ =
USV †, where S is a diagonal matrix whose diagonal elements
are the singular values of �blσ l ′σ ′ . Figure 3(a) shows that the
largest 20 singular values (in total we have 484 singular values
[43]) are of comparable size confirming the multicomponent
nature of the order parameter.

To better understand the orbital structure of �blσ l ′σ ′

we calculated its projections on the 4 × 4 matrices κi ⊗
σ j as mi j = [

∑
b ‖a(b)

i j ‖2]1/2, a(b)
i j = (1/4)Tr[�blσ l ′σ ′κi ⊗ σ j],

where κi (σi) are the Pauli matrices in the layer (sublattice)
space. We see, in Fig. 3(b), that m03 is the largest projec-
tion, but several other projections are comparable to it. The
fairly even distribution of the EC’s order parameter over dif-
ferent orbital channels is paralleled by its fairly slow decay
with |b|, see Fig. 3(c). These results are consistent with the
SVD’s result that �blσ l ′σ ′ describes a multicomponent order
parameter. This is in contrast with the results for the case of
superconducting pairing in isolated TBLG where the pairing
is dominated by a single channel and the magnitude of the
order parameter decreases quickly with |b| [48,52].

Figure 4 shows the low-energy bands along the γ − κ+ −
ν − γ − ν̄ path in the moiré Brillouin zone (BZ) [43] for θ =
1.05◦ and θ = 1.00◦ in the presence of the EC condensate.
For θ = 1.05◦ the very large Fermi velocity of the low-energy

FIG. 3. (a) The first 20 singular values of the SVD decom-
position �bl σ l ′σ ′ = USV †. (b) Amplitudes of the order parameter
components mi j . (c) Scaling with |b| of m03. Here θ = 1.05◦ and
μ = 0.30 meV.

FIG. 4. Band structures in the EC phase at T = 0 and μ =
0.30 meV for (a) θ = 1.05◦ and (b) θ = 1.00◦. The color bar indi-
cates how much the eigenstate is localized in the U/L TBLG. The
inset in (a) shows the moiré Brillouin zone.

bands at the γ point prevents the EC from opening a gap at
this point. As θ is tuned away from θM the singularity at the
γ point morphs into two very small e-h pockets, Fig. 4(b).
The results of Figs. 4(a) and 4(b) show that, in double layer
TBLG, the EC is expected to be, strictly speaking, gapless.
However, given that the gapless nature is due to a very small
number of states close to a single point of the BZ, the density
of states is very negligible within the EC’s gap (see [43]) and
so we expect that the transition to the EC state could be clearly
observed in transport and spectroscopy measurements.

We now consider the stability of the EC with respect to
fluctuations. The dominant fluctuations are the ones of the
phase ϕ(r) of the order parameter � → �eiϕ(r). Expanding
the action in the long-wavelength limit around the saddle
point identified by the mean-field solution we have S = S0 +∫

dτ
∫

dr 1
2ρs

αβ∂rα
ϕ∂rβ

ϕ, where S0 is the action at the saddle
point and ρs

αβ is the αβ component of the EC’s stiffness. The
EC is stable when ρs

αβ is positive-definite. For a multiband
system ρs

αβ is given by the general expression [53,54]

ρs
αβ =

∑
k,i, j

nF (Ej ) − nF (Ei )

Ei − Ej

(
1

4A
〈ψi|v̂α|ψ j〉〈ψ j |v̂β |ψi〉

− 1

A
〈ψi|v̂c f ,α|ψ j〉〈ψ j |v̂c f ,β |ψi〉

)
, (1)

where Ei (|ψi〉) are the eigenvalues (eigenstates) of the
mean-field Hamiltonian HMF, nF (E ) is the Fermi-Dirac dis-
tribution, A is the area of the sample, v̂α (k) = ∂HMF/∂kα

and v̂c f ,α (k) = (1/2)γz∂HMF/∂kα are the components of the
regular and counterflow velocity operators, respectively, γz is
the Pauli matrix acting in the U/L subspace, and k = (kx, ky )
is the Bloch wave vector. In our case, ρs

xy = ρs
yx = 0, and

ρs
xx = ρs

yy ≡ ρs. For a multiband system we can identify a con-
ventional contribution to ρs, ρs,conv, arising almost exclusively
from intraband terms (the same band index in the electron
or hole subspace), and a “geometric” contribution, ρs,geom,
due to interband terms (different band indexes in both the
electron and hole subspaces) and write ρs = ρs,conv + ρs,geom.

Because ρs,geom is closely connected to the quantum metric of
the Hilbert space spanned by the eigenstates of HMF [52–57],
it is often called a geometric contribution to the superfluid
stiffness.

Figure 5 shows how ρs,conv, ρs,geom, and ρs depend on μ

and θ . All the results were obtained for T = 20 mK 
 Tc.
We notice that ρs does not grow with μ contrary to the
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FIG. 5. (a) Conventional ρs,conv, (b) geometric ρs,geom, and (c) to-
tal stiffness ρs as a function of μ for different values of θ . (d) ρs

versus θ for different values of μ.

conventional result ρs ∝ μ. For θ = 1.05◦ and θ = 1.10◦,
ρs,conv and ρs,geom are comparable and the relative weight
changes with μ. For all the other twist angles considered
ρs,geom is larger than ρs,conv, regardless of μ.

The results of Fig. 2(a) show that the mean-field critical
temperature Tc at θ = 1.00◦ is only slightly smaller than at
θ = θM , and therefore that, at the mean-field level, double-
layer TBLG with θ = 1.00◦ is a very good candidate for the
realization of an EC. However, strikingly, for θ = 1.00◦ we
find that ρs,conv for the EC is negative for all the values of μ,
see Fig. 5(a) (this can happen because of the lack of particle-
hole symmetry). This result would lead us to conclude that for
θ = 1.00◦ the EC is fragile against fluctuations and therefore
not a stable ground state, despite the relatively large value
of Tc. This conclusion is reversed if one takes into account
the geometric contribution to ρs, Fig. 5(b): for θ = 1.00◦ the
ρs,geom is positive and much larger, in absolute value, than
ρs,conv, guaranteeing the robust stability of the EC. In fact,
Figs. 5(c) and 5(d) allow us to conclude that the EC is most
stable for θ = 1.00◦, not for θ = θM as one would infer from
the mean-field results.

The results of Figs. 5(c) and 5(d) can be used to obtain
TBKT via the equation kBTBKT = 2πρs[�(TBKT), TBKT], where
we took into account the valley and spin degeneracies. For
the dependence of � on T we can adopt the BCS scaling
�(T ) = 1.764kBTc(1 − T /Tc)1/2, with kB the Boltzmann’s
constant. The results for TBKT are shown in Fig. 6. From
Figs. 6(a) and 6(b) we see that, contrary to the mean-field
results, the twist angle for which the critical temperature
TBKT is largest is not θM , but θ = 1.00◦ for all the values
of μ. Indeed TBKT at θ = 1.00◦ is up to 50% larger than at
θM . This somewhat surprising result arises entirely from the
geometric contribution to ρs. It is interesting to notice that,
contrary to the conventional wisdom, for some twist angles,
TBKT decreases rather than increasing with μ. Such behavior is
particularly marked for θ = 1.00◦ and θ = θM , Fig. 6(a), due
to the significant decrease of the geometric contribution to ρs,

FIG. 6. (a) TBKT as a function of μ for different values of θ . (b)
TBKT as a function of θ for different values of μ. (c,d) TBKT/Tc as a
function of μ, θ , respectively.

as seen in Fig. 5. Figures 6(c) and 6(d) show how the ratio
TBKT/Tc scales with μ and θ , respectively. It is particularly
interesting to see that, for all values of μ, TBKT/Tc is minimum
at θM .

In summary, we studied the competition between OM, SC,
and EC phases as a function of the dopings of the layers
via comprehensive mean-field calculations in double TBLG
systems. We discussed the nature of the phase transitions,
and we showed that, for realistic interaction strengths, the
EC phase is favored when the TBLGs have sufficiently large
and opposite dopings. We then studied the stiffness ρs of the
EC and demonstrated that the quantum metric contribution
to ρs is essential to make ρs positive so that the EC is sta-
ble against fluctuations. A “conventional” study of the EC’s
stability that does not include interbands terms would lead
to the conclusion that in flat-band double layers ECs can be
unstable. However, we found that this conclusion is reversed
if the interband terms responsible for the quantum metric of
the flat bands are taken into account. Finally, we obtained
TBKT for the ECs and found that the largest TBKT is real-
ized not at the magic angle θ = 1.05◦, but at θ = 1.00◦. The
results present a comprehensive and detailed picture of the
possible correlated states of double-twisted bilayer graphene
and show the role played by the quantum metric on the sta-
bility and TBKT of the exciton condensate in double-twisted
bilayer graphene and so should constitute a useful guide to
experimentalists studying the correlated phases of these novel
systems. In a more general context, our findings point to the
importance of the quantum metric for the understanding of the
physics of ECs in flat-band systems, including QH and moiré
bilayers [58–60].
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