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Friedel oscillations and superconducting gap enhancement by impurity scattering
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Experiments observe an enhanced superconducting gap over impurities as compared to the clean-bulk value.
In order to shed more light on this phenomenon, we perform simulations within the framework of Bogoliubov–de
Gennes theory applied to the attractive Hubbard model. The simulations qualitatively reproduce the experimen-
tally observed enhancement effect; it can be traced back to an increased local density of states at the Fermi energy
in the metal close to the impurity site. In addition, the simulations display significant differences between a thin
[two-dimensional (2D)] and a very thick [three-dimensional (3D)] film. In 2D pronounced Friedel oscillations
can be observed, which decay much faster in 3D and therefore are more difficult to resolve. Also, this feature is
in qualitative agreement with the experiment.

DOI: 10.1103/PhysRevB.105.L140504

I. INTRODUCTION

A nonmagnetic charged impurity in a metal at low temper-
atures is screened by Friedel oscillations in the particle density
[1]. A related effect was predicted more than five decades
ago in conventional superconductors in the presence of a
nonmagnetic impurity, where the superconducting gap shows
an oscillatory response [2]. The cause of both phenomena is
the presence of a sharp Fermi surface in these systems. The
description of such a response in the superconducting sys-
tem is considerably more complex than in the noninteracting
case. This is due to the self-consistency requirement, as it
arises in the mean-field description of an interacting system
[3]. When translational symmetry is broken, the nonlinear
nature of mean-field Hamiltonians severely limits analytical
approaches, but also numerical simulations are challenging;
for pioneering works, see Refs. [4,5].

While analytical progress has been made [2,6–10], the
analytical form of the response of the superconducting gap
is known only in the case of an impurity in the bulk of a three-
dimensional (3D) system [2,7]. Numerical studies [3,7,10–12]
on the other hand were limited to small system sizes and key
properties, such as the spatial decay of the response, have not
been analyzed quantitatively.

II. EXPERIMENTAL MOTIVATION

To map local variations of the density of states due to
scattering, i.e., Friedel oscillations, scanning tunneling mi-
croscopy (STM) in ultrahigh vacuum (UHV) is the ideal
approach [13]. At low enough temperatures, it also allows
determination of the local superconducting gap �. Local
scatterers were created by short Ar-ion sputtering of a clean
bulk Al(111) sample. Ions hitting the surface produce defects,
mostly implanted Ar [14] acting as pure potential scatterers
without spin. At the base temperature of the STM of ≈25 mK

[15], spectra of the voltage-dependent differential conduc-
tance dI/dU were recorded using nonsuperconductive W tips.

The experimental situation concerning the Friedel oscil-
lations around an implanted Ar impurity is illustrated in
Fig. 1(a). Clearly, Friedel oscillations are visible around the
defects [14]. Figure 1(b) displays a two-dimensional (2D)
map of �(x, y) near a defect appearing as a depression.
Interestingly, the superconducting gap is enhanced near the
impurity site [see Fig. 1(c)] for local spectra of the minimal
and maximal gap]. A similar gap enhancement is also ob-
served in measurements adopting Fe adatoms as impurities
(see Appendix). Figure 1(d) shows the z position of the STM
tip as a function of distance from the center of a defect that
shows up as a protrusion. In the topography, clear Friedel
oscillations are found followed at larger distances by a fall
back of the elevation to that of the plane surface. Their pe-
riod of the oscillations is with ≈0.9 nm, in good agreement
with the literature [16,17]. Note that the Al bands can be
described as free electrons but with a Fermi wave vector
in the second and third Brillouin zone [18], which leads to
backfolding of the periodicity of the Friedel oscillations. The
dI/dU spectra obtained along the same line from the defect
encoded in grayscale are displayed as well. Black corresponds
to vanishing dI/dU inside the gap, while the coherence peak
appears bright. Clearly, the gap is significantly enhanced atop
of the defect. Upon moving away from the defect, the gap
decreases with slight oscillations and reaches the clean value
some 5 nm away from the defect as evidenced by the fitted
values of �. Note that the variations are laterally much finer
than the coherence length of Al of 1.6 μm at this temperature
[19] and happen on the length scale of the variations in the
density of states.

Concerning numerical studies of gaps near bulk impurity
sites, the published numerical data exhibit local decreases
[3,7,10–12] relative to the unperturbed gap; the systematics

2469-9950/2022/105(14)/L140504(5) L140504-1 ©2022 American Physical Society

https://orcid.org/0000-0002-2457-0978
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L140504&domain=pdf&date_stamp=2022-04-08
https://doi.org/10.1103/PhysRevB.105.L140504


MATTHIAS STOSIEK et al. PHYSICAL REVIEW B 105, L140504 (2022)

(b)

(c)

0 50 100
Elevation (pm)

0

1

2

3

4

5

La
te

ra
l p

os
iti

on
 (

nm
)

(b)

(c)

0 50 100
Elevation (pm)

0

1

2

3

4

5

La
te

ra
lp

os
iti

on
(n

m
)

0.20.10.00.10.2
Bias voltage (mV)

155 160 165
(µeV)

0

1

2

3

4

5

La
te

ra
l p

os
iti

on
 (

nm
)

(d)

(a)

FIG. 1. (a) STM topography of an Al(111) surface with a buried
defect after mild Ar+ bombardment appearing as a depression.
(b) Superconducting gap � obtained by fitting dI/dU spectra
recorded as a function of lateral position. (c) Examples of local
dI/dU spectra of maximal and minimal � recorded at positions
indicated in (a). Tunneling parameters (a)–(c): I = 0.5 nA, U = 0.4
mV. (d) Change of the z position, i.e., tip elevation, with distance to
the surface defect appearing as a protrusion together with grayscale
encoded dI/dU recorded and the fitted superconducting gap �.
Tunneling parameters: I = 8 nA, U = 2 mV; further experimental
details are given in the Appendix.

has not yet been analyzed. These theoretical predictions are
in contrast to the experimentally observed enhancement for
surface defects.

III. THEORY

Motivated by the measurements shown in Fig. 1, we
have performed numerical simulations of Friedel oscillations
in thin (2D) and thick (3D) superconducting films in dif-
ferent system sizes. We work with a tight-binding model
parametrized for an adatom on an aluminum substrate, adopt-
ing s-wave superconductivity on the Bogoliubov–de Gennes
level. For comparison, earlier studies did not consider adatoms
but substitutional atoms in the bulk or near surfaces. Our
choice is motivated by the typical arrangement in STM mea-
surements.
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FIG. 2. (a) Spatial map of the response of the pairing ampli-
tude of a 2D superconductor to an impurity located at the origin.
(b) Response of the pairing amplitude along the surface diagonal
multiplied by the distance from the impurity r in units of the lattice
constant a. (Parameters: filling n = 0.2, U = 1.6, Vimp = −0.06t ,
λF /2 ≈ 2.85a.)

Our most important conclusions are twofold: First, the gap
enhancement may be understood as a consequence of the
local density of states (LDOS) at the Fermi energy underneath
the impurity being increased as compared to the unperturbed
surface. Second, depending on the film thickness, Friedel os-
cillations exhibit a qualitatively different behavior with a 1/r
envelope for 2D and a decay considerably faster than 1/r2 in
3D. Our findings thus explain the most striking features seen
in experiment (Fig. 1).

Model and method. We study the Hubbard model with
attractive interaction U dressed with an impurity realized
as an extra site (“adatom”) with scattering potential Vimp; if
not otherwise stated, we choose Vimp = −0.06t . The impurity
strength has been chosen to model the difference in work
function of Fe and Al. The adatom is modeled as a potential
impurity, due to the absence of a free spin in experiment (see
Appendix).

The model is solved on square (2D) and cubic (3D) lattices
on the mean-field level, i.e., within the Bogoliubov–de Gennes
(BdG) approximation treated with full self-consistency and
stipulating s-wave pairing; as a consequence, the pairing am-
plitudes �(r) and n(r) are inhomogeneous in space. The in-
teraction strength U is tuned so that the superconducting cor-
relation length equals half the system size, ξ = 54a (2D) and
ξ = 10.6a (3D), where a denotes the lattice spacing. Further
computational details have been relegated to the Appendix.

Results: Adatom site (2D and 3D). On the adatom the local
order parameter is greatly reduced with respect to the bulk
value �(rI ) ∼ 0.1�BCS. On the other hand, the experimen-
tally accessible spectral gap on the adatom is enhanced in the
same way as on the site below. We note that such an effect
has been demonstrated before in disordered superconductors,
where self-consistency leads to regions with low order param-
eter exhibiting a large spectral gap [5]. The spectral gap on the
sites other than the adatom is comparable to the local order
parameter.

Results: Thin-film substrate (2D). For our investigation we
focus on the pairing response (to the adatom) of the metal
atoms near the surface (substrate). Figure 2(a) displays the
spatially resolved response of the pairing amplitude �(r) near
the impurity. Friedel oscillations with a frequency of 2kF

are clearly visible, as one would have expected. Also, the
superconducting gap is enhanced at the impurity site, in the
computation by more than 24%.
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FIG. 3. (a) Spatial map of the logarithm of the pairing amplitude
in the surface layer of a 3D superconductor with an impurity at the
origin. (b) Response of the pairing amplitude to an impurity on the
surface of a 3D superconductor. The response is computed from
data shown in (a) averaged over the surface angle. The prefactors
of the power-law fits are chosen such that they agree with the data at
r = 1a ≈ 1.48λF /2. (Parameters: filling n = 0.12, U = 3.2, Vimp =
−0.06t , λF /2 ≈ 2.14a, C ≈ 1.8 × 10−4�BCS.)

In Fig. 2(b) the envelope of the oscillatory part of the pair-
ing amplitude is analyzed. In order to highlight the 1/r-type
power-law decay, the product r�(r) is plotted; it displays
amplitude fluctuations with a strength independent of r as
characteristic of a 1/r envelope. Note that this behavior is in
pronounced contrast to the familiar textbook result for the free
Fermi gas, where we have the asymptotics sin(2kF r)/(kF r)d

for particle-density oscillations in d dimensions, so 1/r2 in
2D [20]. We mention that similar behavior has been de-
tected in layered superconductors with anisotropic pairing,
where the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion is comprised of a normal r−2 and a superconducting r−1

contribution [21].
Results: Thick-film substrate (3D). In Fig. 3, the pairing

response (to the adatom at the origin) of the metal atoms at
the surface (substrate) of a cube with a linear size L = 22 sites
is shown. The overall shape of the response is qualitatively
similar to the 2D case. For instance, an enhancement of the
gap by 20% is observed underneath the impurity site, �(r =
0) = 1.2�BCS [22].

A significant difference with the thin-film response occurs
with respect to the decay of the oscillations. In order to bet-
ter highlight this important point, in Fig. 3(b) we plot the
response (to adding the impurity) of the local gap function
δ�(r) averaged over a circle with radius r around the impurity
site. Due to the cubic symmetry underlying our microscopic
model (and the simulation volume), the rotational symmetry
is broken and therefore the integration over the circle reduces
the oscillation amplitudes. Nevertheless, the 2kF oscillation is
clearly visible in Fig. 3(b). As to the corresponding envelope
function, we observe a significantly different thick-film decay
compared to the thin-film limit. While for the system sizes
available to us the true asymptotics is out of reach, strictly
speaking, in the intermediate regime our data in Fig. 3 exhibit
an envelope r−ns + C with ns > 2; the constant C depends
on system size and is expected to vanish upon L → ∞, ul-
timately revealing the true asymptotic decay. We take our
observation as evidence that the surface exponent ns exceeds
the corresponding bulk exponent nb that takes a known value
nb = 2 [2].
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FIG. 4. Response of the superconducting gap δ�imp (left) and the
normal-state LDOS at the Fermi energy δρF (right) to an impurity
(adatom) located on the surface of the cubic lattice (same situation
as in Fig. 3). Shown is the dependency on the impurity potential
Vimp (horizontal axis) and the number of nearest neighbors Nnn of
the impurity site (vertical axes). δ�imp and δρF quantify the average
response of the gap and the normal-state LDOS at the Fermi energy
on all sites neighboring the impurity. (Parameters: filling n = 0.12,
U = 3.2.)

Gap and density. We rationalize our results by recalling a
basic result from BCS theory that connects the superconduct-
ing gap with the density of states at the Fermi surface ρF :

� � 2h̄ωDe
− 1

UρF ad . (1)

Here, the pairing volume ad relates the attractive Hubbard
interaction U to the effective pairing interaction Vk,k′ featured
by BCS theory. The latter binds a Cooper pair with energy
density V if the corresponding particle-hole states are situated
within a shell around EF of width h̄ωD (in the present model
h̄ωD ≈ U ); hence a = vF /ωD and V ∼ Uad , introducing the
Fermi velocity vF . Reinterpreting Eq. (1) on a local scale, we
stipulate an approximate relation

ln

[
�(r)

2h̄ωD

]
� − 1

N (r)
, (2)

where the abbreviation N (r) := UρF (r)ad has the interpreta-
tion of the number of particles within the distance ∼U from
EF inside the correlation volume ad . In the superconducting
phase these particles participate in pair formation with a gap
size exponentially decreasing with N−1(r) increasing. These
heuristic considerations prompt the formulation of a rule of
thumb: A modulation of the LDOS at the Fermi energy in the
normal phase is typically accompanied by a proportional mod-
ulation of the local gap function in the superconducting phase;
in other words, particle densities n(r) slightly enhanced above
the clean reference value correspond to slightly enhanced gap
values �(r).

A numerical test of this proposition has been depicted in
Fig. 4. For different kinds of binding scenarios—adatoms in
on-site, bridge, and hollow positions (Nnn = 1, 2, 3)—and for
varying on-site potential Vimp, the response of the gap and the
normal-state density in the metal substrate near the impurity
is shown. The conjectured rule of thumb manifests in the
strong resemblance of left and right panels. Such a correlation
between normal-state LDOS and the order parameter has been
demonstrated before in superconductors with substitutional
atom impurities [23].

This property of the increase of the LDOS at the Fermi
energy below an adatom impurity distinguishes it from the
case of a substitutional atom impurity, which has been studied
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earlier [3,7,10–12]. In these studies a decrease of the super-
conducting gap at the impurity was found.

Furthermore, Fig. 4 shows that our results are only weakly
dependent both on the sign and amplitude of the impurity po-
tential, showing that the enhancement effect does not depend
on fine tuning.

IV. CONCLUSIONS AND SUMMARY

Motivated by STM measurements of the superconducting
gap near an adatom on an Al(111) surface, we have performed
corresponding simulations within the BdG formalism. Our
simulations capture all qualitative features seen in the ex-
periment: (i) relatively quickly decaying Friedel oscillations
(as compared to the thin-film limit studied in simulations);
and (ii) an enhancement of the superconducting gap in the
vicinity of the impurity of the order of 10%. The enhancement
has been traced back to the modulation of the (normal-state)
LDOS at the Fermi energy in the vicinity of the adatom.
In recent experiments on FeSe superconductors with a finite
impurity concentration, a global increase of the critical tem-
perature has been observed [24]. It remains to be seen if the
mechanism described in this Letter can have a similar effect.

Our results are encouraging in the sense that BdG has
been shown to provide a reliable framework reproducing the
salient features of physical reality, at least on a semiquanti-
tative level. Future work should provide more detailed (and
extensive) investigations comprising, in particular, a larger set
of experimental realizations screening different substrates and
adatoms.
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APPENDIX

1. Experimental background

a. Experimental details

A bulk Al crystal of (111) orientation was cleaned by cy-
cles of Ar-ion sputtering and annealing to 700 K in UHV until
clean and atomically flat surfaces were found with STM. After
STM inspection, impurities in the form of Fe atoms were de-
posited onto the sample while resting in the STM at cryogenic
temperatures [27,28]. The low mobility at these temperatures
prohibits thermal diffusion and the Fe atoms do not aggregate
to larger clusters or islands. At the base temperature of the

FIG. 5. Differential conductance dI/dU recorded at 25 mK on
bare Al(111) (blue dots) and atop a single Fe atom on Al(111)
(red dots) together with fits (solid lines) to thermally smeared
BCS density of states. Blue and red solid lines display the fits to
the experimental data points. Feedback conditions: U = 400 μV,
I = 500 pA.

STM of ≈25 mK [15], spectra of the voltage-dependent tun-
neling current I (U ) were recorded with the feedback loop of
the STM disabled. dI/dU curves were obtained by a numer-
ical derivative in order to avoid energy smearing when using
a lock detection. STM tips were prepared from high-purity W
wire by chemical etching and cleaning in UHV. The tips were
not superconducting as tested by taking the tunneling spectra
of a Au(111) surface at the base temperature.

b. Gap enhancement with Fe impurity

Figure 5 shows the tunneling spectra recorded on a clean
area ≈23 nm away from Fe atoms (blue dots) and atop an Fe
impurity (red dots). Fe is the most common impurity in Al and
the absence of a Kondo effect in high-purity Al indicates that
the magnetic moment of Fe in Al is absent from the beginning.
To verify this, we drove Al to the normal phase by applying
a magnetic field of 14 mT normal to the surface. While this
field induces a transition to the normal state, it hardly is strong
enough to eventually eliminate a possible Kondo resonance of
the Fe spin. Nevertheless, we could not observe any Kondo
peak in dI/dU spectra (not shown), in agreement with the
nonmagnetic nature of Fe on Al(111). Thus with the absence
of a magnetic moment of Fe in Al, we also do not expect to
observe Yu-Shiba-Rusinov bound states [29–31], i.e., the Fe
impurity does not break Cooper pairs by spin-flip scattering
reducing the superconducting gap � or inducing in-gap states.
Even more, � atop the Fe atoms appears larger than that on
the bare Al(111) surface in the experiment (see Fig. 5).

Fitting the dI/dU spectra with thermally broadened BCS
density of states [15] allowed us to quantify the increase
from the bare Al gap of 159.6 ± 0.1 μeV to 166.6 ± 0.1 μeV,
while the broadening of both curves due to the electronic
temperature does not change significantly (112 ± 1 vs 115 ±
1 mK). We conclude that, while Fe acts as a local scatterer for
electrons and presumably also Cooper pairs on the Al(111)
surface, it does not act as a spin scatterer. Following this result,
any scatterer on the surface or near the surface should induce
similar local variations of the � as evidenced for the buried
defect in Fig. 1.
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2. Computational model and method

We study the Bogoliubov–de Gennes (BdG) model with an
adatom impurity

Ĥ = ĤBdG + Ĥimp, (A1)

where

ĤBdG = −t
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ −
Nlat∑

i=1,σ

(
U

2
n(ri ) + μ

)
n̂i,σ

+
Nlat∑
i=1

U 〈ĉ†
i,↓ĉ†

i,↑〉ĉi,↑ĉi,↓ + H.c. (A2)

The impurity is realized as an extra site external to the Hub-
bard lattice,

Ĥimp = −t ĉ†
I,σ ĉ1,σ −

(
U

2
n(rI ) + μ − Vimp

)
n̂I,σ

+U 〈ĉ†
I,↓ĉ†

I,↑〉ĉI,↑ĉI,↓ + H.c., (A3)

with local occupation number n(ri ) = ∑
σ 〈n̂i,σ 〉, pairing am-

plitude �(ri ) = 〈ĉ†
i,↓ĉ†

i,↑〉, U > 0, number of lattice sites Nlat,
and impurity of potential Vimp at site rI . All computations are
conducted at T = 0; the chemical potential μ is adjusted to
fix the particle density

∑
i

n(ri )
Nlat

= n. In the case of the 2D

system ĤBdG is defined on a periodic square lattice of linear
size L = 121a, with lattice constant a. In 3D the cubic lattice
that ĤBdG is defined on, is periodic in the x and y axis, whereas
on the z axis we impose open boundary conditions. In 3D the
linear system size is L = 22. The adatom is located on one of
the surfaces. The density n(r) and pairing amplitude �(r) are
computed self-consistently up to tolerance α = 10−5 in Fig. 2
and α = 10−6 in Fig. 3. �(r) will be given in units of the clean
gap �BCS without the impurity. To compute the response,
we take the difference of the self-consistent potentials with
and without impurity excluding the impurity site. For a more
in-depth description of the solution of the BdG system, we
refer to Ref. [32]. All results have been computed with a
full-diagonalization solver.
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