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Magnetic field induced transition from a vortex liquid to Bose metal in ultrathin a-MoGe thin film
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We find transport and spectroscopic signatures that are consistent with a magnetic field induced transition from
a vortex liquid to Bose metal in a two-dimensional amorphous superconductor, a-MoGe, using a combination
of magnetotransport and scanning tunneling spectroscopy (STS). Below the superconducting transition, Tc ∼
1.36 K, the magnetoresistance isotherms cross at a nearly temperature independent magnetic field, H∗

c ∼ 36 kOe.
Above this field, the temperature coefficient of resistance is weakly negative, but the resistance remains finite
as T → 0, as expected in a bad metal. From STS conductance maps and transport measurements at 450 mK
we observe a very disordered vortex lattice at very low fields that melts into a vortex liquid above 3 kOe. Up to
H∗

c the tunneling spectra display a superconducting gap and coherence peak over a broad background caused by
electron-electron interactions, as expected in a vortex liquid. However, above H∗

c the tunneling spectra continue
to display the gap but the coherence peak gets completely suppressed, suggesting that Cooper pairs lose their
phase coherence. We conclude that H∗

c demarcates a transition from a vortex liquid to Bose metal, that eventually
transforms to a regular metal at a higher field H∗ where the gap vanishes in the electronic spectrum.

DOI: 10.1103/PhysRevB.105.L140503

I. INTRODUCTION

The survival of Cooper pairing even after the global phase
coherence is destroyed has been a recurring theme in strongly
disordered and two-dimensional superconductors [1–4]. In
zero field, the zero resistance state can get destroyed due
to phase fluctuations at the superconducting transition tem-
perature, Tc, even though Cooper pairs continue to survive
up to a much higher temperature [5–8], T ∗, giving rise to
the so-called pseudogap state [9–13] between Tc and T ∗.
On the other hand, when a magnetic field is applied at low
temperatures, one observes another intriguing phenomenon,
the superconductor (S) to bad-metal/insulator (BM/I) tran-
sition [14–19]. At a characteristic magnetic field, H∗

c , the
magnetoresistance isotherms intersect, giving rise to a state
with negative temperature coefficient of resistance (R) above
this field. In very strongly disordered superconductors such
as InOx and TiN this results in a strongly insulating state
with diverging electrical resistance, sometimes called a su-
perinsulator, which is believed to be the conjugate of the
superconductor [20–22], where Cooper pairs instead of vor-
tices are localized. On the other hand, when the disorder is
more moderate, in several systems such as MoGe, Ta, and
NbN, the resistance increases weakly with decreasing tem-
perature and remains finite even as T → 0; this state is more
appropriately classified as a bad metal [15,23–27]. Whether
Cooper pairs survive in this bad metal is an open question.
Normally, a metallic state consisting of Cooper pairs is not
expected since Cooper pairs are either in the eigenstate of the
phase which gives a superconductor, or in the eigenstate of
a number which gives an insulator. However, in recent years
there have been suggestions that Cooper pairs could exist in a

*pratap@tifr.res.in

dissipative state called a Bose metal [28–36] although its exis-
tence remains hotly debated [37–39]. Therefore, the metallic
state above H∗

c in such systems deserves careful attention.
In this Letter, we investigate the field induced S-BM transi-

tion in a 2 nm thick amorphous Mo70Ge30 (a-MoGe) thin film,
using a combination of low-temperature scanning tunneling
spectroscopy (STS) and magnetotransport measurements. The
primary advantage of STS is that it provides direct informa-
tion on the local density of states. The central finding of this
work is that the field induced bad-metal state shows spectro-
scopic characteristics that are consistent with the existence of
phase incoherent Cooper pairs as predicted for a Bose metal.

II. METHODS

The a-MoGe film was grown by pulsed laser deposi-
tion. Details of sample growth and characterization have
been reported elsewhere [40,41,13]. STS measurements were
performed using a home-built low-temperature scanning tun-
neling microscope [42] (STM) operating down to 450 mK
and up to a magnetic field of 90 kOe using a Pt-Ir normal
metal tip. The tunneling conductance, G(V ) = dI

dV |V , as a
function of voltage (V), was measured using the standard
lock-in technique. To image vortices, spatially resolved G(V )
maps were recorded at a fixed voltage close to the coherence
peak, where each vortex appears as a local minimum. We used
an ultrahigh-vacuum suitcase to transport the sample after de-
position and transfer in the STM without exposure to air. After
completing STS measurements, the sample was transported
back to the deposition chamber in the same way and covered
with a 1 nm thick Si protective layer before transport mea-
surements. Magnetotransport measurements were performed
in a conventional 3He cryostat. Since the magnetotransport
properties of a-MoGe films are extremely susceptible to exter-
nal electromagnetic radiation [43], all electrical feedthroughs
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FIG. 1. (a) GN (V )-V tunneling spectra in zero field at different temperatures along with theoretical fit using Eq. (1). At 3.7 K and above
the spectra are fitted with AA corrections alone (dashed line) whereas at lower temperatures additional contribution from superconductivity
has to be incorporated (solid lines). Inset: Spatial map of GN (0) at 450 mK. (b) Temperature dependence of superconducting energy gap � and
�D (left axis) and sheet resistance Rs (right axis) at zero magnetic field; the dashed line is a guide to the eye that mimics the BCS temperature
variation of �.

leading to the sample were fitted with RC filters with a very
low cutoff frequency of 100 Hz.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the normalized conductance, GN (V ) =
G(V )

G(4 mV) , in zero field, averaged over a 32 × 32 grid over a
150 nm × 150 nm area at various temperatures. Supercon-
ductivity manifests as a suppression of GN (V ) for voltage,
|V | < �/e, and the appearance of coherence peaks at the gap
edge. In disordered superconductors, we observe an additional
V-shaped background that extends up to high bias [44–46],
which originates from e-e Coulomb interactions described
within Altshuler-Aronov (AA) theory [47–49]. In order to fit
the data, incorporating both the AA correction and the effect
of superconductivity, we adopt a procedure recently devel-
oped by Žemlička et al. [50]. At temperature T, the tunneling
conductance is given in terms of the single particle density of
states of the sample, N (E ), by the relation [51]

G(V, T ) ∝
∫ ∞

−∞
dE

1

kBT

e
E+eV
kBT

(
1 + e

E+eV
kBT

)2 N (E ), (1)

where kB is the Boltzmann constant. Here we assume the
density of states of the Pt-Ir tip to be energy independent,
which is a good approximation within tens of meV from the
Fermi level. In a normal metal, AA corrections modify the
bare density of states, NN as [50]

NAA
N (E ) = NN (1 + λ̃0{ fd (E , �0) − λr[ fd (E , �1)

+ fd (E + Ez, �1) + fd (E − Ez, �1)]}), (2a)

fd (E , �n) = −1

2

∫ �
kBT

0
dx

x

x2 + (
�n

kBT

)2

sinh(x)

cosh(x) + cosh
(

E
kBT

) ,

(2b)

where � = h̄
τ

, τ is the transport scattering time, Ez = 2μBH
(μB is the Bohr magneton) is the Zeeman energy when there

is an applied magnetic field H, and �0 and �1 account for
the broadening due to energy and spin scattering. We use �0,
�1, λ̃0, and λr as adjustable parameters. In Fig. 1(a) we can fit
the data for T � 3.7 K using Eq. (1), with N (E ) = NAA

N (E );
we take Ez = 0, �0 = �1 = 0.2 meV. It is important to note
that the parameters related to AA fitting do not vary more
than ±10% from their mean value over the entire range of
temperature and magnetic field which arises from statisti-
cal error. The complete set of best fit parameters is given
in the Supplemental Material [52]. In principle, � is also a
fitting parameter which we take as � ∼ 20 eV based on
τ ∼ 3 × 10−17s estimated from resistivity. However, for such
a large value of �( � {kBT, �0, �1} ), Eq. (2b) is insensitive
to its precise value and practically indistinguishable from
setting the integration limit to infinity. For T < 3.7 K, we
cannot fit the data with AA contributions alone and need to
incorporate the effect of superconductivity. In BCS theory
where the density of state in the normal metal is assumed
to be energy independent, the single particle density of states
is given by [51] NBCS

s (E ) = |Re{ E−i�D√
(E−i�D )2−�2

}|, where �D

is a broadening parameter [53] that accounts for nonthermal
sources of broadening. Even though �D is introduced as a
phenomenological parameter, this form is known to accurately
reproduce the tunneling spectrum in a wide range of situa-
tions, both in the zero field and in the presence of magnetic
field [50,54–58]. When this correction is applied on top of the
AA corrections, the single particle density of states is given
by [50]

N (E ) = NBCS
s (E )NAA

N (�), (3)

where � = Re[
√

(E−i�D)2 − �2]; � in the second term en-
sures conservation in the number of states (and charge) above
and below the superconducting transition. Using this form
for N (E ) and �, �D as fitting parameters, we can fit the
GN (V ) spectra down to 450 mK keeping �0 and �1 the same
as the normal state value [Fig. 1(a)]. Figure 1(b) shows the
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FIG. 2. (a) Magnetic field dependence of sheet resistance Rs at different temperatures. Inset: Expanded view of the same plot close to H∗
c

(blue dotted line). (b) Plot of Rs (black square) and Rlin
s (red circle) vs H at low magnetic fields at 450 mK; inset: I-V characteristics at the

same temperatures. (c) Temperature dependence of Rs at various magnetic fields. Inset shows corresponding temperature variation of sheet
conductance Gs. (d) Spatial maps of GN (V ) at the coherence peak voltage V = 1.2 mV at 450 mK for H = 1, 5, and 10 kOe. At 1 kOe we
observe a disordered vortex lattice; at 5 kOe individual vortices can be resolved only at some locations (such as the ones shown by ×) but in
the rest of the area individual vortices cannot be identified; at 10 kOe we can no longer resolve individual vortices indicating that the vortex
lattice has completely melted. Representative nearest neighbors are shown through connected black lines at a few representative locations for
the image at 1 kOe.

temperature variation of � and �D along with the temper-
ature variation of the sheet resistance, Rs. Tc ∼ 1.36 K is
defined as the temperature where Rs is 0.05% of its normal
state value. This temperature is much lower than T ∗ ∼ 3.7 K
where � vanishes, showing the existence of an extended
pseudogap state. The zero bias conductance map at 450 mK
[inset, Fig. 1(a)] shows large variations, forming puddlelike
structures consistent with earlier reports [13].

We now turn our attention to the effect of magnetic field.
Figure 2(a) shows Rs as a function of H. Below Tc, all the
Rs-H curves cross close to H∗

c ∼ 36 kOe which demar-
cates the S-BM transition [inset of Fig. 2(a)]. Concentrating
first at low temperatures and low fields, we observe finite Rs

above 3 kOe [Fig. 2(b)] at 450 mK. We confirm that this
Rs indeed corresponds to the linear resistance, by plotting
in the same graph Rlin = dV

dI |I→0 calculated from current-
voltage (I-V) characteristic measurements [inset of Fig. 2(b)].
At subcritical currents the resistance is dominated by ther-
mally activated flux flow (TAFF) following the functional
form, R = Rff exp[−U (I )

kBT ], where Rff is the Bardeen-Stephen
flux flow resistance and U (I ) is the effective pinning barrier.

In a vortex solid the collective pinning barrier diverges with
decreasing current, I, as U (I ) = U0( Ic

I )α (α ∼ 1) thereby
giving a vanishing Rlin in the zero current limit [59,60]. In
a vortex liquid (VL) U (I ) is independent of I and thus Rlin has
finite value [61]. Further evidence of VL is obtained from STS
images of the vortex state [Fig. 2(d)]. At 1 kOe we can resolve
individual vortices even though the spatial configuration is ex-
tremely disordered; at 5 kOe some vortices are still visible but
at many places we also observe blurred or elongated structures
indicating considerable motion of vortices during the acquisi-
tion time of the image; at 10 kOe the vortex system is deep
into VL and we cannot resolve individual vortices anymore.
From Rs vs T at different H [Fig. 2(c)] we observe that for
H > H∗

c , dRs
dT < 0 down to 300 mK, even though the sheet

conductance Gs(= 1
Rs

) extrapolates to a finite value as T → 0,
characteristic of a bad metal. Scaling analysis [62] of the R-H
data close to H∗

c is given in the Supplemental Material [52].
To understand the evolution of the superconducting state at

higher fields, we investigate the GN (V ) vs V spectra, spatially
averaged on a 32 × 32 grid over a 150 nm × 150 nm area
[Fig. 3(a)]. For H > 70 kOe the tunneling spectra can be fitted
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FIG. 3. (a) GN (V ) vs V in different magnetic fields at 450 mK along with theoretical fit using Eq. (1). For H > 70 kOe the spectra are fitted
with AA corrections alone (dashed line) whereas at lower temperatures additional contribution from superconductivity has to be incorporated
(solid lines). (b) Fit of GN (V ) vs V at H = 30, 40, and 50 kOe using NBCS

s (E ) (solid line) and NMod
s (E ) (dashed line) respectively; successive

spectra following 30 kOe are shifted upward by 0.12 for clarity. For 40 and 50 kOe (H > H∗
c ) the fit using NBCS

s (E ) deviates significantly in
the voltage range where the coherence peak appears (shaded gray region). (c) Plot of NBCS

s (E ) (black dot) and NMod
s (E) (blue solid line), used

for the theoretical fit in (b) at 40 kOe. (d) Magnetic field dependence of coherence peak height (CPH). Inset: Variation of superconducting
energy gap �, �D as a function of magnetic field at 450 mK; for H > H∗

c , these values correspond to the values used in NBCS
s (E ) from which

NMod
s (E ) is constructed.

using N (E ) = NAA
N (E ). We define this field as H∗. Below H∗,

we observe two distinct magnetic field regimes [Fig. 3(b)].
For H < H∗

c we can fit the tunneling spectra using N (E ) in
Eq. (3) with � and �D as shown in the inset of Fig. 3(d). For
H∗ � H > H∗

c this form is no longer adequate; we observe
that the fitted value is larger in the voltage range correspond-
ing to the energy where the coherence peaks are expected in
NBCS

s (E ). This deviation results from a complete suppression
of the superconducting coherence peaks above H∗

c . To illus-
trate this point we modify NBCS

s (E ) in the following way:
We use the empirical form, NMod

s (E ) = α0 − A exp(−BE2),
and adjust α0, A, and B such that NMod

s (E ) ≈ NBCS
s (E )

when NMod
s (E ) � 0.95, but asymptotically approaches 1 in-

stead of exhibiting the coherence peak at higher values
[Fig. 3(c)]. Using N (E ) = NMod

s (E )NAA
N (�) results in an ex-

cellent fit of the tunneling curves above H∗
c [Fig. 3(b)]. In

Fig. 3(d), we plot the coherence peak height (CPH), defined as
max{NBCS/Mod

s (E )}−1. With increasing field CPH gradually
reduces and becomes zero above H∗

c .
To understand the physical implication of these results

we note that, while the superconducting energy gap is a di-
rect manifestation of the pairing of electrons forming Cooper

pairs, the superconducting state requires another ingredient,
namely, the global phase coherence among Cooper pairs,
which is related to the appearance of the coherence peaks at
the gap edge [51]. If Cooper pairs lack phase coherence, it is
expected that the single particle spectrum will remain gapped,
but the coherence peaks will get suppressed [2,4,7,63]. In
a magnetic field, the nucleation of vortices complicates this
scenario. Here both the gap and the coherence peaks vanish
inside the vortex core but appear as one goes further from the
vortex center. In a VL, where vortices are rapidly moving, a
slow measurement such as STS measures the time averaged
tunneling spectrum which has contributions from both inside
and outside the core. This broadens the spectrum by partially
filling the gap and suppressing the coherence peaks. It has
been shown [55] that the average spectrum in the mixed
state can be captured by adjusting �D. This accounts for the
gradual increase in �D and suppression of CPH below H∗

c .
On the other hand, the abrupt disappearance of the CPH for
H∗ � H > H∗

c , with no commensurate filling of the gap indi-
cates that the Cooper pairs no longer have phase coherence.
In conjunction with Gs in the T → 0 limit, this implies the
formation of a dissipative state made of Cooper pairs, i.e., a

L140503-4



MAGNETIC FIELD INDUCED TRANSITION FROM A … PHYSICAL REVIEW B 105, L140503 (2022)

FIG. 4. Phase diagram showing the temperature evolution of H∗

(orange square), H∗
c (blue square), and Hm (red square); the dashed

line is the fit to the thermal melting line. The Bose metal phase is
realized between H∗

c and H∗. In between Hm and H∗
c we have a vortex

liquid.

Bose metal. We would like to note that this state is distinct
from the zero field pseudogap state, where, as shown before,
the spatially averaged spectra do not undergo any qualita-
tive change across Tc. The origin of the pseudogap state
lies in the emergence of tens of nanometer-sized supercon-
ducting puddles [64,65] separated by insulating regions and
thermal fluctuations between these puddles that destroy the
zero resistance state [13,66]. Here, even though we observe
inhomogeneity in GN (0), the complete suppression of CPH
in the average spectrum suggests that the coherence peak
is uniformly suppressed everywhere. This has been further
confirmed [52] by selectively fitting spectra in regions of high
and low GN (0).

In Fig. 4 we show the phase boundaries of H∗
c and H∗

in the H-T parameter space. The H∗ boundary is determined
from STS measurement and is defined as the highest magnetic
field (at fixed temperature) or highest temperature (at fixed
field) where the tunneling spectra cannot be fitted with the AA
contribution alone [52]. The H∗

c boundary, on the other hand,
is defined from the magnetic field at which two magnetoresis-
tance curves at successive temperatures intersect. As expected
for a quantum phase transition, this boundary is nearly tem-
perature independent until about Tc; above Tc it closely

follows the H∗ boundary. Finally, we define the vortex lattice
melting boundary, Hm, above which a finite linear resistance
appears. The temperature variation of Hm is described very
well by the formula for thermal melting [60,52] of the vortex
lattice if one substitutes H∗

c for the upper critical field.
To place things into perspective all our results lead to the

conclusion that above and below H∗
c there exist two distinct

dissipative states demarcated by distinct transport and spec-
troscopic signatures. While the state below H∗

c is a classical
VL, the question remains as to what the other state which we
phenomenologically classify as a Bose metal is. Though we
cannot conclusively settle this question here, one possibility
is that it is a quantum VL. In a recent paper [67], it was shown
that vortices in a 20 nm thick a-MoGe film undergo quantum
zero-point fluctuations, whose fractional amplitude with re-
spect to intervortex separation increases with increasing mag-
netic field. Here, a similar analysis shows [52] that the zero-
point fluctuation amplitude of the vortices is expected to be
about half the intervortex separation at H∗

c , such that quantum
tunneling could be the dominant mechanism of vortex mo-
tion above this field. Whether such a state would display the
complete suppression of the coherence peak needs to be theo-
retically investigated. The other point to note is that in our ex-
periment the Bose metal exists only for T � Tc, when the zero
field state can sustain a finite supercurrent, even though frag-
mented superconducting puddles continue to exist up to T ∗.

IV. CONCLUSION

In summary, we have shown spectroscopic signatures that
are consistent with the existence of a magnetic field induced
Bose metal in an ultrathin a-MoGe thin film. In the future, it
would be interesting to obtain a more direct proof of pairing
from the charge of the carrier through measurements such as
shot noise [68]. These results have relevance to other systems
such as high-temperature superconductors [31] where Bose
metal states have been reported. We hope that our results will
bolster further theoretical investigations on how such a state
emerges in a two-dimensional superconductor.
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