
PHYSICAL REVIEW B 105, L140301 (2022)
Letter

Stabilizing volume-law entangled states of fermions and qubits using local dissipation
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We analyze a general method for the dissipative preparation and stabilization of volume-law entangled states
of fermionic and qubit lattice systems in one dimension (and higher dimensions for fermions). Our approach
requires minimal resources: nearest-neighbor Hamiltonian interactions that obey a suitable chiral symmetry, and
the realization of just a single, spatially localized dissipative pairing interaction. In the case of a qubit array, the
dissipative model we study maps to an interacting fermionic problem. Nonetheless, we analytically show the
existence of a unique pure entangled steady state (a so-called rainbow state). Our ideas are compatible with a
number of experimental platforms, including superconducting circuits and trapped ions.

DOI: 10.1103/PhysRevB.105.L140301

Introduction. Quantum reservoir engineering is a powerful
tool in quantum information processing. In its simplest form,
it involves tailoring dissipative processes to stabilize nonclas-
sical quantum states [1,2]; when generalized to stabilizing a
subspace, it can also be used as a route to quantum error
correction [3,4]. Many experiments have implemented dissi-
pation engineering in few-body quantum systems comprised
of 1–2 qubits or bosonic modes (see, e.g., [5–9]). Theoreti-
cal work has also considered extensions to truly many-body
systems [10–12], though most proposals are experimentally
daunting, as they require engineered dissipation on every site
of an extended lattice system. More recent work demonstrated
that for noninteracting bosons hopping on a one-dimensional
(1D) lattice, a single, local engineered squeezing dissipator
can be sufficient to stabilize the entire extended system in a
state with long-range entanglement [13,14]; a subtle particle-
hole symmetry was shown to be the key ingredient, allowing
a generalization to higher dimensions [15]. These protocols
are, however, limited to stabilizing Gaussian entangled states,
whose use in quantum information is highly constrained [16].

Given this prior work, a natural question is whether a
single localized dissipative process can prepare and stabi-
lize more complex many-body entangled states. In particular,
can this approach work in systems which have (unlike free
bosons) a finite-dimensional local Hilbert space, e.g., lattices
of fermions, hard-core bosons or qubits. In this Letter, we
show that the answer is, surprisingly, yes. We describe an
extremely simple protocol exploiting symmetry and the dissi-
pative analog of Cooper pairing to stabilize highly entangled
states in 1D lattices of fermions and qubits, one example
being the so-called “rainbow state” (Fig. 1). Such rainbow
states feature long-range, volume-law entanglement, and are
known to be the ground states of highly structured, spatially
nonuniform Hamiltonians [17,18]. Our dissipative approach
does not require the realization of such exotic Hamiltonians.
Instead, it only uses nearest-neighbor Hamiltonian interac-
tions (which need not be uniform or symmetric) and a single

localized dissipator; the entangled steady state is the unique
steady state irrespective of the size of the lattice. As we dis-
cuss, the resources required to implement our protocol already
exist in a number of different quantum information processing
architectures.

Our results also have interest in the context of general stud-
ies of many-body driven dissipative system. The spin version
of our problem cannot be mapped exactly to free fermions.
Nonetheless, we are able to exactly describe the steady state.
We discuss how qualitative features of the dynamics can be
connected to a model of dissipative fermionic pairing with
phase fluctuations. Note that our work is distinct from a recent
proposal for using dissipation to generate entangled states
in 1D qubit chains [19,20]. These protocols also generated
rainbow-like entangled states, but only if the system was
initially prepared in a nontrivial, highly nonlocal entangled
steady state. In contrast, our approach has, in general, a unique

FIG. 1. Schematic of a 1D qubit array with nearest-neighbor XY
interactions, where the two central sites are coupled to a common
engineered dissipative reservoir with a pairing parameter v [c.f.
Eq. (2)]. The dissipative dynamics stabilizes an arbitrary initial state
of the qubits into a volume-law entangled rainbow state, where each
qubit is entangled with its mirror image qubit (as depicted). The
model maps to an interacting fermionic model featuring dissipative
pairing with phase fluctuations.
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entangled steady state, and hence is completely independent
of the initial state: one can start from a trivial product state and
still obtain the volume-law entangled rainbow state. Alternate
schemes that unconditionally stabilize qubit rainbow states
have also been proposed [21,22]. Our scheme is simpler to
implement, and is also far more general: it can stabilize a wide
class of entangled pure qubit states (many having a correlation
structure considerably more complex than a rainbow).

Fermions. We begin by considering noninteracting
fermions, using this system to build up the key ideas that
will enable our qubit protocol. We consider spinless fermions
hopping on a 2N-site lattice with a tight binding Hamiltonian
ĤF = ∑

i, j Hi j ĉ
†
i ĉ j , where Hi j is a Hermitian matrix, and ĉi

annihilates a fermion at lattice site i. ĤF is readily diagonal-
ized, with d̂†

α = ∑
j ψα[ j]ĉ†

j creating a particle in an energy
eigenstate with energy εα and real-space wave function ψα[ j].
Note that we do not assume translational invariance.

Our goal is to now introduce localized dissipation which
stabilizes the entire lattice in a finite-density state with
long-range entanglement. For noninteracting bosons, this can
be accomplished by coupling a single site to a squeezed
Markovian reservoir [13–15]. Such a reservoir attempts to
enforce local pairing correlations on the coupled site. For
spinless fermions, the Pauli exclusion principle excludes an
identical approach. However, one can try the next simplest
configuration: introduce a localized Markovian dissipative
reservoir that attempts to stabilize fermionic pairing correla-
tions on two adjacent sites j = 0, 1 [i.e., prepare them in the
state (u + veiφ ĉ†

0
ĉ†

1
)|00〉]. This corresponds to simply cooling

a pair of localized fermionic Bogoliubov modes. As we will
see, simply cooling one of these modes generally suffices.

The total system dynamics including the localized dissipa-
tive pairing is then described by a Lindblad master equation:

˙̂ρ = −i[Ĥ, ρ̂] + �D[β̂L]ρ̂, (1)

Here, D[L̂]ρ̂ = L̂ρ̂L̂† − 1
2 {L̂†L̂, ρ̂}. For our fermion problem,

we have Ĥ = ĤF and

β̂L = uĉ0 − veiφ ĉ†
1
, (2)

where u = √
1 − v2, with the pairing parameter v real and

satisfying 0 � v � 1, and � parametrizes the strength of the
dissipation, and corresponds to the cooling rate of the local-
ized Bogoliubov mode β̂L. The dissipation in Eq. (1) induces
an effective non-Hermitian Hamiltonian which includes pair-
ing terms of the form (iuveiφc†

1
c†

0
− H.c.). Our system thus

has the form of an unusual dissipative impurity problem,
where the “impurity” corresponds to the local dissipative pair-
ing terms. At a heuristic level, the dissipation injects Cooper
pairs on these sites, which can then propagate outward in the
lattice. Generically, Eq. (1) will lead to an impure steady state,
with fluxes of Cooper pairs both into and out of the lattice.
We note that quadratic fermionic models with dissipative
pairing have been studied previously in the context of cold
atoms [12,23–25], but unlike our work, these assumed pairing
on every lattice site.

We next show that if the lattice Hamiltonian obeys a
ubiquitous kind of generalized chiral symmetry, then we
can ensure the existence of a unique, pure, entangled steady

state (see Supplemental Material [26]). This includes, but is
certainly not limited to, lattices that can be divided into two
equal sized sublattices, denoted A and B, such that ĤF only
permits hopping from A ↔ B. This structure is found in many
lattice systems, including all nearest-neighbor hopping mod-
els on square lattices. Observe that this implies that ĤF has
a chiral symmetry, since the symmetry that sends ĉi → −ĉi

if i ∈ A and ĉi → ĉi if i ∈ B sends ĤF → −ĤF . This guar-
antees we can diagonalize the Hamiltonian such that ĤF =∑

α>0 εα (d̂†
α d̂α − d̂†

−α d̂−α ), where d̂†
±α creates an eigenmode

with energy ±εα .
We can use this to rewrite the jump operator as a sum over

nonlocal Bogoliubov modes, which pair positive and negative
energy eigenmodes whenever the sites 0, 1 live on different
sublattices [26]:

β̂L =
∑

α

Nα (β̂α + β̂−α ), (3)

where

β̂α = uα d̂α − vα d̂†
−α, β̂−α = uα d̂−α + vα d̂†

α. (4)

These are an independent set of fermionic annihilation op-
erators obeying canonical anticommutation relations. The
constants uα and vα encode information about the overlap of
the eigenmodes with the dissipation sites 0, 1 [26]:

uα = uψα[0]

Nα

, vα = veiφψ∗
−α[1]

Nα

, (5)

Nα =
√

u2|ψα[0]|2 + v2|ψ∗−α[1]|2, (6)

where Nα fixes normalization. For certain finely tuned param-
eters, it is possible that some Nα = 0, in which case those
eigenmodes have no overlap with the dissipation sites, and
thus are not cooled. However, for a generic Hamiltonian, Nα �=
0, and so the jump operator is a linear combination of all 2N of
the Bogoliubov modes; the steady state is uniquely their joint
vacuum. This state is pure, and has entanglement that grows
linearly with system size. We can express the steady state in
terms of the eigenmodes as |ψ〉 = ∏

α>0(uα − vα d̂†
−α d̂†

α )|0〉.
The correlators in the steady state are

〈d̂†
α d̂β〉 = |vα|2δαβ, 〈d̂α d̂β〉 = −uαvβ sgn(α)δα,−β. (7)

In real space, the entanglement structure of our dissi-
patively stabilized steady state is only between the two
sublattices A and B, and the amount of entanglement between
the two sublattices grows linearly with N [26]. However,
despite only being between the sublattices, the spatial pattern
can be quite complicated. Given a generic Hamiltonian, any
given lattice site will be correlated with the entire sublattice
it does not reside on. There are many systems that possess
the chiral symmetry required for our scheme. A particu-
larly simple example (that, surprisingly, will generalize to the
case of spins) is a 1D lattice with 2N sites described by a
Hamiltonian with nearest neighbor hopping that possesses an
inversion symmetry about its midpoint. Since ĤF is symmet-
ric, if the sites 0, 1 are mapped to each other by the mirror
symmetry, then uα = u, vα = v ∀α. The correlators defined in
Eq. (7) are then also particularly simple in real space, giv-
ing the unique steady state |ψ〉 = ∏N

i=1(u − v(−1)iĉ†
−iĉ

†
i )|0〉.
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This state exhibits volume-law entanglement (see Fig. 1), and
is known as a rainbow state [17,18]. As discussed in [26],
many more examples are possible, including the 1D Su-
Schrieffer-Heeger model [27,28] and the two-dimensional
(2D) Hofstadter model [29].

Qubits. Using the above fermionic setup as inspiration,
we now ask whether a similar dissipative preparation scheme
is possible for an array of coupled spins or qubits. While
any quadratic A ↔ B hopping Hamiltonian worked for the
fermions, it turns out the qubits require the slightly stricter
condition of a 1D nearest-neighbor hopping chain. In this
case, the sublattices are comprised of every-other lattice sites.
Further, while the fermions would take any placement choice
of 0, 1 so long as they were on different sublattices, the qubits
require they be neighboring [26].

This still leaves all 1D nearest neighbor hopping models,
including disordered systems. For simplicity, we will focus
below on the case of a lattice with mirror symmetry. It was in
this case that the fermions had simplified spatial correlations,
giving rise to the rainbow structure. The master equation is
then given by Eq. (1) with Ĥ = ĤS and

ĤS = −
[ −2∑

i=−N

Jiσ̂
+
i σ̂−

i+1+
N−1∑
i=1

Jiσ̂
+
i σ̂−

i+1+ J−1σ̂
+
−1σ̂

−
1

]
+ H.c.,

(8)

β̂L = uσ̂−
0

+ vσ̂+
1

. (9)

Here, σ̂+
i (σ̂−

i ) is the Pauli raising (lowering) operator on site
i. Our lattice has 2N sites labeled (−N, . . . ,−1, 1, . . . N ), i.e.,
there is no zeroth lattice site. We will constrain the hoppings to
obey Ji = J−i−1, so Ĥ has mirror symmetry. The dissipation-
coupled sites 0 and 1 will then be the middle two sites of
the lattice, i.e., 0 = −1, 1 = 1. While the dissipator here may
seem exotic, we show below how they can be realized in a
number of platforms using existing experimental tools.

The above spin model can be readily mapped to fermions
using the Jordan-Wigner (JW) transformation [30]. However,
it necessarily maps to an interacting fermionic model [in
contrast to the quadratic system considered in Eq. (2)]. The
most convenient mapping to JW fermions ĉ j is given by the
transformation

ĉi =
{( ∏i

j=1 σ̂ z
j

)
σ̂−

i 1 � i � N,( ∏N
j=1 σ̂ z

j

)(∏i
j=−N σ̂ z

j

)
σ̂−

i −N � i � −1.
(10)

This corresponds to using site 1 as the reference for the string
operators. Letting N̂tot be the total fermion number operator,
our model can be expressed in terms of these fermionic de-
grees of freedom as

ĤS =
∑

i �=N,−1

Jiĉ
†
i ĉi+1 + J−1(−1)N̂tot ĉ†

1ĉ−1 + H.c., (11)

β̂L = uĉ−1(−1)N̂tot − vĉ†
1. (12)

We see that the presence of the phase operator (−1)N̂tot

in both ĤS and the dissipative terms ruins a mapping to
free fermions. On a heuristic level, we can interpret this as
a modification of Eq. (2) that now describes fluctuations in
the phases of the Cooper pairs injected into the system by

the reservoir. For the simple fermionic system described by
Eq. (2), pairs are always injected with a fixed phase φ; in
contrast, in Eq. (11), they are injected with a phase ±1 that
depends on the system’s parity. We stress that even with other
gauge conventions for the JW transformation, it is not possible
to eliminate these phase fluctuations (i.e., string operators)
from the dissipator.

To better understand our system, we can rewrite the
nonlinear dissipation operators in terms of a fixed basis
of local Bogoliubov operators ˆ̄βA = uĉ−1 − vĉ†

1,
ˆ̄βB = uĉ1 +

vĉ†
−1. As was noted in the preceding section, we can write ˆ̄βA

as a sum over the modes defined in Eq. (4). Further, in the spe-
cial case of a mirror symmetric Hamiltonian ˆ̄βB will also be a
sum over these modes, [26]. Defining P̂ev = (1 + (−1)N̂tot )/2
as the projection operator onto even number-parity states, we
have

β̂L = ˆ̄βAP̂ev − [(u2 − v2) ˆ̄βA + 2uv ˆ̄β†
B](1 − P̂ev). (13)

This provides a simple way to understand the phase fluc-
tuation physics: it is as though the dissipation has a
parity-dependent temperature. For even-parity states, the dis-
sipation can only remove Bogoliubov excitations, i.e., it acts
like an effective zero temperature bath. In contrast, for odd-
parity states and v �= 0, we see that there are amplitudes for
the dissipation to either create or destroy excitations (like an
effective bath at a non-zero temperature).

Equation (13) also leads to an important conclusion: de-
spite the additional nonlinearity and phase fluctuations in
our spin model, the steady state of our simple free fermion
model in Eq. (2) is also a steady state of the spin model.
This steady state (which here is a rainbow state, given the
mirror symmetry of Ĥ) has a definite even number parity,
and hence the Liouvillian acting on this state is identical to
the free fermion Liouvillian. At a heuristic level, this state
has a definite number parity, and hence phase fluctuations are
irrelevant. Returning to our original qubit degrees of freedom,
the pure steady state takes the form

|ψss〉 =
N∏

i=1

(u + (−1)ivσ̂+
i σ̂+

−i )|0〉. (14)

Equation (13) also lets us show that as long as v2 �= 1/2, this
steady state is unique [26]. Since the Hamiltonian conserves
Bogoliubov excitations, moving between manifolds with dif-
ferent Bogoliubov number can only happen dissipatively. The
state with no Bogoliubov excitations has even parity, so it can
only be cooled by Eq. (13); however, there is no lower number
state, and so it is dark to the dissipation. On the other hand,
every higher excitation state can be cooled, and so eventu-
ally all of the population flows to the Bogoliubov vacuum.
Note, this argument also holds for non-rainbow symmetric
systems [26]. Thus, we have a central result of this Letter:
any initial state of our qubit array (irrespective of its purity or
entanglement) will relax into this volume-law entangled pure
state. Further, this result holds independently of the magnitude
of the hopping parameters Jj/�, and even in the presence of
additional Hamiltonian terms that preserve the mirror symme-
try of ĤS [26].

We can now also understand the additional constraints put
on the qubits to maintain the purity of the steady state. The fact
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FIG. 2. (a) Low-lying dissipative spectrum of our master equation in Eq. (1) (i.e., real part of Liouvillian eigenvalues) for a six site 1D
lattice with � = Jj , plotted as a function of v2. We take the simple case where the Hamiltonians ĤF , ĤS have a mirror symmetry. Both
the qubit model (orange) and the free-fermion model (blue) are shown. While the spectra coincide for the trivial v = 0 case, the fermionic
spectrum is independent of v, whereas for qubits, slow modes and complex level structure arise as v is increased. (b) Time evolution of both
the average excitation number (orange) and total number parity (−1)N̂ (blue) for an eight-site lattice, v2 = 0.4, starting from the vacuum state;
other parameters same as (a). The qubit model exhibits an extremely slow relaxation of total number parity, a direct reflection of the pairing
phase fluctuations that emerge in its fermionic representation.

that the chain must be 1D nearest neighbor hopping is a result
of the nonlocal nature of the Jordan-Wigner transformation.
In the same vein, requiring the dissipation coupled sites to be
neighboring tells us the only string operator that appears in the
master equation is (−1)N̂tot . Despite these constraints, we can
see that our model is still incredibly robust to disorder. The
steady state will still be pure, unique and entangled regard-
less of the different hopping amplitudes between lattice sites.
See [26] for more details.

Dynamics and multistability. While the qubit and free-
fermion dissipative arrays share the same pure steady state,
the models have strikingly different dynamics. This is a direct
consequence of the form of the dissipator given in Eq. (13).
The phase fluctuations in the fermionic representation of the
qubit model lead to slower overall relaxation, due to the effec-
tive nonzero temperature and excitation-creation associated
with odd-parity states. As can be seen from Eq. (13), this
odd parity heating increases as v is increased from 0, with an
amplitude ∝ v

√
1 − v2. For free fermions, there is no heat-

ing: the dissipative dynamics always corresponds to removing
excitations, irrespective of the system state.

Shown in Fig. 2(a) is the numerically calculated dissipative
spectrum of the Liouvillians for the free fermion and qubit
versions of our model as a function of the pairing parameter
v2. For free fermions, the relaxation rates are independent of
v2; one can show that for large N , the slowest relaxation rate
(dissipative gap) scales as 1/N3 [26]. In stark contrast, the
relaxation rates in the qubit model depend on v2, with the
emergence of an extremely small dissipative gap as v2 → 1/2.
Figure 2(b) demonstrates that this emergent slow timescale
manifests itself directly in observable quantities. We see that
for both the qubit and free-fermion models, the average parti-
cle numbers relax on a similar timescale ∼1/�. The average
parity relaxes on the same timescale for fermions, but for the
qubit model, exhibits exponentially slower relaxation. This
is a direct manifestation of the effective phase fluctuations
encoded in Eq. (11).

The case u2 = v2 = 1/2 is also of special interest. Eq. (13)
indicates that in this case, the dissipation can only remove ex-

citations from even parity states, and can only add excitations
to odd parity states. This immediately leads to multistability,
as if the system starts in a state with 2m Bogoliubov excita-
tions, it will forever be stuck in a manifold of states having
either 2m or 2m − 1 excitations. This immediately leads to at
least N + 1 steady states (see [26] for more details). We stress
that there is no multistability in the free-fermion model.

Experimental Implementation. The basic qubit master
equation in Eqs. (8) and (9) could be realized in a variety of
platforms. Linear arrays of tunnel-coupled qubits have been
realized in many systems, including trapped ions [31–33]
and superconducting qubits [34–36]. The required dissi-
pation on sites j = −1, 1 could be achieved by driving
these qubits with two-mode squeezed light via transmission
lines or waveguides [37]. In this case, � would represent
the waveguide coupling rates, and v/u = tanh r with r the
squeezing parameter. While such a scheme could be realized
by driving superconducting qubits with two-mode squeezed
microwave radiation generated by a Josephson parametric
amplifier [38,39], implementation routes that do not require
nonclassical microwaves or light are also possible. The re-
quired dissipator can be realized by coupling qubits j =
−1, 1 to a common dissipative bosonic mode (e.g., a lossy
microwave cavity), and then either modulating the qubit fre-
quencies, or modulating the qubit-resonator couplings (as was
recently achieved [40]). By interfering, e.g., a red sideband
process on one qubit with a blue sideband process on the sec-
ond qubit, the required dissipator can be achieved (with u, v

being determined by the modulation amplitudes). Interfering
red and blue sideband processes has been used previously
in both trapped ion [8] and superconducting qubit [41] ex-
periments for reservoir engineering bosonic modes, but not
to control qubit dissipation in the way we suggest. More
details on this modulation approach, and on the resilience of
our scheme to disorder and unwanted dissipation (i.e., qubit
dephasing and relaxation) are presented in [26].

Conclusions. We have demonstrated that the combination
of spatially localized pairing dissipation with symmetry con-
strained Hamiltonian dynamics can be used generically to
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stabilize entangled states in systems with locally constrained
Hilbert spaces. These states can exhibit long range, volume-
law entanglement. In the case of a qubit array, our setup
corresponds to a dissipative spin chain that is equivalent to
an interacting fermionic model, which can be interpreted in
terms of dissipative Cooper pairing with phase fluctuations.

Our ideas are compatible with a number of different exper-
imental platforms, and could provide an important resource
for a variety of quantum information processing protocols.
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