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It is suggested that many-body quantum chaos appears as the spontaneous symmetry breaking of unitarity
in interacting quantum many-body systems. It has been shown that many-body level statistics, probed by the
spectral form factor (SFF) defined as K (η, t ) = 〈|Tr exp(−ηH + itH )|2〉, is dominated by a diffuson-type mode
in a field theory analysis. The key finding of this Letter is that the “unitary” η = 0 case is different from the
η → 0± limit, with the latter leading to a finite mass of these modes due to interactions. This mass suppresses
a rapid exponential ramp in the SFF, which is responsible for the fast emergence of Poisson statistics in the
noninteracting case, and gives rise to a nontrivial random matrix structure of many-body levels. The interaction-
induced mass in the SFF shares similarities with the dephasing rate in the theory of weak localization and the
Lyapunov exponent of the out-of-time-ordered correlators.
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Both our everyday experience and laboratory experiments
indicate that physical systems, initially prepared in a nonequi-
librium state, time-evolve into thermal equilibrium. Sets of
axioms, such as the eigenstate thermalization hypothesis
(ETH) [1–5], have been formulated to justify this generic be-
havior and the emergence of statistical mechanics. Yet, there
is no formal proof of ETH, nor a clear understanding of the
fundamental principles underlying the universality of thermal-
ization and ergodicity in a variety of quantum many-body
systems. Perhaps the most perplexing is the disconnect be-
tween the reversibility of physical laws, governing the unitary
evolution of closed quantum systems, and the irreversibility
of thermodynamic behavior, which they eventually exhibit.
A well-known example of this puzzle is the black hole in-
formation paradox [6], but the question itself can be posed
for a much wider class of quantum systems [7,8]. How does
irreversible dynamics emerge in quantum systems?

Closely related to this line of inquiry is research on
many-body quantum chaos, which has attracted much interest
recently [9–41]. It can be defined as the presence of Wigner-
Dyson level statistics [42–45] of many-body energy levels in
an interacting quantum system [46–48]. Chaoticity so defined,
ETH, and the thermal behavior in nonequilibrium settings are
often assumed to be nearly equivalent notions, although no
such equivalence has been proven. Furthermore, no generic
derivation of many-body quantum chaos exists, and only
a handful of rather fine-tuned models allow a microscopic
insight into the fine structure of many-body levels [9–15].
However, given the ubiquity of thermal, “chaotic” behavior, it
is natural to ask whether there are generic underlying reasons
for its emergence.

This Letter suggests that the spontaneous breaking of uni-
tarity may play a role in the emergence of chaotic behavior
of interacting many-body systems. Specifically, we study the
distribution of many-body energy levels in the system of N
weakly interacting particles, which populate Wigner-Dyson

distributed single-particle levels. The choice of the model of
interacting fermions “embedded” in a single-particle chaotic
background is motivated by the following considerations:
First, most actual physical media (e.g., disordered metals) are
chaotic from the single-particle perspective (see Ref. [47] for
a review). Integrable environments require fine tuning and
are not representative of typical physical systems. Second,
single-particle quantum chaos gives rise to a universal long-
wavelength description (e.g., diffusion in disordered metals)
in contrast to a nonuniversal description of systems without
intrinsic randomness where ultraviolet physics (e.g., ballistic
motion in clean conductors) complicates matters. Third, we
notice that in a previous analytical derivation of the many-
body level statistics of a Floquet-driven spin chain [10], the
many-body random matrix structure emerged after an ensem-
ble averaging. Indeed, there had been arguments that level
statistics is not self-averaging and hence introducing an en-
semble averaging (or imposing bare single-particle quantum
chaos) may be a necessary step to see many-body quantum
chaos [49].

One quantity that carries useful statistical information
about the spectrum is the two-level correlation function,
R2(E − E ′). Its Fourier transform can be shown to give
rise to the spectral form factor (SFF) [47,48,50–52] K (t ) =
〈Tre−iHt Tre+iHt 〉. This relates the statistical properties of the
static spectrum to the SFF, which explicitly involves unitary
time-evolution operators. More concrete links between the
SFF and actual thermalization dynamics have been consid-
ered [53].

This Letter considers the generalized SFF defined as

K (η, t ) = 〈Z (it + η)Z (−it + η)〉 = 〈|Tre−iH (t−iη)|2〉, (1)

where η → 0± is an infinitesimal. The key observation of the
Letter is that

lim
η→0

lim
N→∞

K (η, t ) �= lim
N→∞

lim
η→0

K (η, t ), (2)
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FIG. 1. Schematic log-log plots of the SFF K (t ) of the random
matrix model given by Eq. (3) for the (a) noninteracting and (b) in-
teracting case. (a) is obtained using the numerical data from our
previous study [54], while (b) is the RMT prediction applying the
analytical expression for the GUE SFF in Ref. [52]. (a) In the nonin-
teracting case, the SFF consists of an initial slope, an exponential-in-t
ramp, and a plateau that starts at t = 2N/J . (b) In the presence of
interactions, the many-body spectrum exhibits RMT statistics and the
exponential ramp is expected to be replaced with a linear one which
approaches the plateau at a much larger time t ∼ 2N/J . See also
Ref. [56] where this SFF transition has been observed numerically
in a similar model of Majorana fermions.

and random matrix theory (RMT) statistics appears if the η →
0 limit is taken after the N → ∞ limit, suggesting a possible
connection between the emergence of quantum chaos and the
spontaneous breaking of unitarity. We note that although the
calculation is done with η → 0+ being a positive infinitesi-
mal, it can be easily generalized to the case of η → 0− and
the main conclusion still holds.

We consider an interacting random matrix model of
fermions populating Wigner-Dyson single-particle levels and
generic nonrandom two-body interactions. For simplicity, we
restrict ourselves to the case of broken time-reversal symme-
try. The Hamiltonian assumes the form

H =
N∑

i, j=1

ψ
†
i hi jψ j + 1

2

N∑
i, j,k,l=1

ψ
†
i ψ

†
j Vi j;klψkψl , (3)

where h is a N × N random Hermitian matrix drawn from a
Gaussian unitary ensemble (GUE) [42] with the distribution
function P(h) ∝ exp(− N

2J2 Trh2). The interaction matrix V is
antisymmetric, Vi j;kl = −Vji;kl = −Vi j;lk = V ∗

kl;i j , and not ran-
dom. We consider an arbitrary fixed realization of V .

In the absence of interactions, the model is trivially many-
body integrable. However, the SFF is still nontrivial showing
an initial slope falling off the value of K (t = 0) = 22N and
then rapidly increasing via an exponential ramp to a plateau
K (t ) = 2N at t � 2N/J [see Ref. [54] and Fig. 1(a)]. This
implies residual correlations in the many-particle spectrum on
single-particle energy scales, �E ∼ N−1J . However, there are
negligible correlations on smaller many-body energy scales
and the statistics there becomes Poisson—the plateau. Inter-
actions are expected to break integrability and give rise to
Wigner-Dyson many-body level statistics, whereas the expo-
nential ramp is replaced with a much slower linear one leading
to a plateau at �E ∼ 2−N J [see Fig. 1(b)]. The question
is, how does this transition occur? It is argued below that
this involves two “steps”—spontaneous breaking of unitarity,
which selects a unique saddle point out of a manifold of
“unitary” saddle points, and gapping out soft modes, which

are responsible for the exponential ramp in the noninteracting
theory [54,55].

The SFF defined in Eq. (1) for this model can be expressed
as the following functional integral,

K (η, t ) =
∫

DhP(h)
∫

D(ψ̄, ψ )e−S[ψ̄,ψ], (4a)

S[ψ̄, ψ] = −i
∑
a=±

∫ za

0
dt ′

[
ψ̄a

i (t ′)(i∂t ′δi j − ζahi j )ψ
a
j (t ′)

− i

2
ζaψ̄

a
i (t ′)ψ̄a

j (t ′)Vi j;klψ
a
k (t ′)ψa

l (t ′)
]

(4b)

The Grassmann field ψa
i is labeled by a flavor index i =

1, . . . , N along with a replica index a = ±, and is subject to
the antiperiodic boundary condition ψa(za) = −ψa(0), with
za = t − iζaη and ζa = ±1 for a = ±. The integration over
ψa yields the partition function Z (iζaza).

Starting from Eq. (4) and following the standard σ -model
derivation procedure [57–60], we obtain

K (η, t ) = 1

ZφZQ

∫
Dφ

∫
DQ exp (−S[Q, φ]), (5a)

S[Q, φ] = − i

2

∑
a

ζazaφ
a
il

( − ωa
m

)
V −1

i j;klφ
a
jk

(
ωa

m

)

+ N

2J2
TrQ2 − Tr ln[(Eσ 3 + iQ) ⊗ I f + �].

(5b)

Here, E and � are matrices with elements,

Eab
nn′ = δabδnn′εa

ne−iεa
nδza , �ab

i j;nn′ = δabφ
a
i j

(
ωa

n−n′
)
, (6)

where εa
n = 2π (n + 1/2)/za and ωa

m = 2πm/za denote the
fermionic and bosonic Matsubara frequencies, respectively.
σ 3 indicates the direct product of the third Pauli matrix in
the replica space (labeled by a) and the identity matrix in the
frequency space (indexed by n), while I f represents the N × N
identity matrix in the flavor space (labeled by i). The phase
factor e−iεa

nδza in Eq. (6), with δza being the time discretization
interval for path a, ensures convergence of the integral. We
have reduced the problem to a theory of the matrix field
Q and bosonic field φ. Q is a Hermitian matrix acting in
the replica and Matsubara frequency spaces. It decouples the
ensemble-average-generated four-fermion term. The bosonic
field φ is introduced to decouple the interactions [61], and
carries replica, frequency, and flavor indices. See Sec. I A of
the Supplemental Material [62] for the detailed derivation and
the expressions for normalization constants Zφ and ZQ.

In the large N → ∞ limit, the functional integral Eq. (5)
can be evaluated by considering the saddle points and small
fluctuations around them. We assume that the decoupling field
φ does not influence the stationary configuration of the matrix
field Q, and obtain from the noninteracting action S[Q, φ = 0]
[Eq. (5b)] the saddle-point equation:

Qsp = J2(−iEσ 3 + Qsp)−1. (7)

This is solved by diagonal matrices � with

�ab
nm = ±Jδabδnm,

∣∣εa
n

∣∣ � J. (8)
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N
J

η

t2 +η2

(b)

(a)

ReS[Λ,0]

ReS[Λ,0]

FIG. 2. Schematic plot of the real part of the noninteracting
action Re S[�, 0] (vertical displacement) for various diagonal saddle
points (solid circles). (a) For η = 0, Re S[�, 0] of all diagonal saddle
points are equivalent, and the corresponding contributions to the SFF
differ only by phase factors. It is essential to take into account fluc-
tuations around all saddle points for the computation of SFF for zero
η. (b) For nonzero η, the differences in Re S[�, 0] between various
saddle points are non-negligible as long as η/(t2 + η2) � J/N . The
standard saddle point �(0) (solid red circle) acquires the minimum
Re S[�, 0] and dominates over all remaining saddle points. In this
case, the SFF is dominated by fluctuations around �(0).

Each diagonal element can take two possible values, result-
ing in 22Nε distinct diagonal saddle points �, with Nε being
the total number of Matsubara frequencies considered. We
investigate the long-time behavior of the SFF K (t  J−1),
which allows us to focus on the low-energy sector of the
theory (|εa

n| � J) and ignore the correction from nonuniversal
single-particle density of states.

In the zero η and δza limit, the noninteracting action re-
mains invariant under unitary transformations Q → U †QU
satisfying UEσ 3U † = Eσ 3. These unitary transformations U
are of the form U = ∏Nε

n=1 Un, where Un ∈ U (2) is a rotation

acting on the subblock [ Q++
nn Q+−

n,−n−1
Q−+

−n−1,n Q−−
−n−1,−n−1

]. More saddle points
can be found by applying the symmetry transformations U to
the diagonal ones Qsp = U †�U .

The presence of nonzero η breaks this
∏Nε

n=1 U (2) sym-
metry of the noninteracting theory and allows us to select
one dominant saddle point. The noninteracting action of a
diagonal saddle point acquires the form

S[�, 0] = i
N

J2

∑
a,n

ζa�
aa
nnε

a
ne−iεa

nδza + const. (9)

The phase factor e−iεa
nδza is only needed for convergence and

can be omitted here. In the case of η/(t2 + η2) � J/N , among
various saddle points, (�(0) )ab

nm = Jsgn(n + 1/2)δabδnm yields
the minimum Re S[�, 0] and consequently the dominant
contribution. By contrast, for η = 0, the contributions from
various saddle points to the SFF differ only by phase factors
(see Fig. 2). We call �(0) the standard saddle point and all re-
maining diagonal saddle points the nonstandard ones [59,63].

Let us now consider the fluctuations of Q around the diag-
onal saddle points �, which fall into two categories [54,64]:
(i) soft modes (or Goldstone modes) generated by unitary

rotations of saddle points Q = R†�R and associated with the
explicitly breakdown of the U (2Nε ) symmetry of the non-
interacting action by the Eσ 3 term; or (ii) massive modes
that cannot be obtained by rotation. In the zero η case,
there is a subset of unitary transformations U ∈ ∏Nε

n=1 U (2)
which leaves the noninteracting action invariant. Applying
these symmetry transformations to diagonal saddle points
Q = U †�U generates a special type of soft modes called zero
mode with δS[Q, 0] = 0 [65].

In the noninteracting case, the soft modes are responsible
for the exponential-in-t ramp, whereas the massive modes
only give rise to a nonessential constant [54]. Therefore, we
focus on the interaction effects on the soft modes. If η = 0,
to evaluate the SFF, one must sum over contributions of
fluctuations around various saddle points. By contrast, for
η → 0+ [or more precisely η/(t2 + η2) � J/N], there is one
dominant saddle point �(0) determined by the η-induced sym-
metry breaking, and it is sufficient to consider only soft mode
fluctuations around it.

In the following, we consider the latter case and explore
the influence of interactions on soft mode fluctuations around
�(0) and their contribution to the SFF. In this case, the SFF
can be approximated by (see Sec. I D of the Supplemental
Material [62])

K (η, t ) = Zme−S[�(0),0]

ZφZQ

∫
Dφ

∫
M

DQe−δS[Q,φ;�(0)],

δS[Q, φ; �(0)] = i
N

J2
Tr[σ 3E

(
Q − �(0))]

+ i

J2

∑
a,n,n′,i

Qaa
nn′φ

a
ii

(
ωa

n′−n

)

−
∑

a,m,i, j

iζaza

2
φa

il

( − ωa
m

)

×
(

V −1
i j;kl + i

ζa

za
M̃a

mδikδl j

)
φa

jk

(
ωa

m

)
, (10)

where M̃a
m = −∑

n(�(0) )aa
nn(�(0) )aa

n+m,n+m/J4, and Zm denotes
the nonessential contribution from massive modes. The inte-
gration

∫
DQ is over the manifold M of matrices Q which

are generated by unitary rotations of the standard saddle point
�(0):

Q = R−1�(0)R, R ∈ U (2Nε )

U (Nε ) × U (Nε )
. (11)

These matrices Q represent soft modes around �(0) and
obey the nonlinear constraints, TrQ = 0 and Q2/J2 = I . The
aforementioned zero modes are the special soft modes corre-
sponding to

Q = U −1�(0)U, U ∈
Nε∏

n=1

U (2)

U (1) × U (1)
. (12)

For the matrix field Q governed by the action in Eq. (10),
the noninteracting propagator is given by

(
G (0)

X

)ab;ba

nm;mn = N

2J3

〈
Qab

nmQba
mn

〉
0 = i

ζaεa
n − ζbεb

m

, (13)
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for n � 0 > m. Interactions between Q and φ result in a self-
energy correction, which gives rise to a mass term λab

nm in the
interaction-dressed inter-replica Q propagator (see Sec. I D 3
of the Supplemental Material [62]),

(GX )ab;ba
nm;mn = i(

ζaεa
n − ζbεb

m

)
(1 + δz) + iλab

nm

, (14)

for a �= b and n � 0 > m. Note that the intra-replica propa-
gator Gaa;aa

X contributes to the disconnected SFF Kdis(η, t ) =
〈Z (iz+)〉 〈Z (−iz−)〉 which dominates the early-time slope
regime and will not be considered here. Assuming that the
main interaction effect on the SFF comes from the mass λab

nm,
we ignore the renormalization effect and set δz = 0. We obtain
a self-consistent equation for the mass λab

nm [Eq. (S59) in the
Supplemental Material [62]], whose explicit form depends on
the interaction matrix V and is not important for our purpose.
Equation (14) shows that the fluctuations of the bosonic field
φ lead to decoherence and introduce a cutoff λ in the soft
modes.

Carrying out the integration over Q and φ in Eq. (10), we
find that, up to an irrelevant constant, K (η, t ) is approximately
given by

K (η, t ) ∝ exp

{
−

∑
ab

∑
n�0>m

ln
[
(G−1

X )ab;ba
nm;mn

]

+1

2

∑
a,m

[
Tr ln Ṽ a

(
ωa

m

) − Tr ln V
] − S[�(0), 0]

}
.

(15)

Here, Ṽ a
i j;kl (ω

a
m) = −iζaza 〈φa

il (ω
a
m)φa

jk (−ωa
m)〉 stands for the

effective interaction matrix and is proportional to the interac-
tion dressed propagator for the bosonic field φ [see Eq. (S49)
in the Supplemental Material [62]).

In the exponent in Eq. (15), only the first term with a �= b
contributes to the connected SFF Kcon = K − Kdis. Substitut-
ing the explicit form of the interaction-dressed inter-replica
propagator Gab;ba

X into this term and evaluating the Matsubara
frequency summation by the analytical continuation tech-
nique, one obtains

ln Kcon(η, t ) =
∑
a �=b

1

4π2

∫
ε,ε′

ln
(
1 + e−iζazaε

)
ln

(
1 + e−iζbzbε

′)

×
(

1

−i(ε − ε′) + λab(ε + ε′)

)2(
∂λab

∂ε
− i

)

×
(

∂λab

∂ε′ + i

)
. (16)

Here, λab(ε + ε′) now represents the analytic continuation of
the inter-replica mass λab

nm from ζaε
a
n → ε and ζbε

b
m → ε′, and

is assumed to be a function of ε + ε′ (independent of ε − ε′).
The noninteracting connected SFF can also be obtained from
the equation above by setting λab = 0.

Focusing on the difference between the interacting and
noninteracting cases, we then replace the factor ln(1 +
e−iζazaε ) in Eq. (16) with e−iζazaε. We assume that the neglected
contribution cancels partially with higher-order fluctuation
correction (see Sec. I F of the Supplemental Material [62] and

also Ref. [54]) and find

ln Kcon(η, t ) = t
∑
a �=b

∫ EUV

−EUV

dE

2π
e−2ηE e−ζaλ

ab(E )t�(ζa Re λab)

×
[(

1

2

∂λab

∂E

)2

+ 1

]
, (17)

where EUV ∼ J denotes the ultraviolet cutoff.
Let us now take the limit η → 0+. In the noninteracting

case, after setting λab = 0, it is straightforward to see from the
equation above that ln Kcon(η → 0+, t ) ∝ t , and an infrared
divergence originating from the zero modes occurs. This in-
frared divergence can be resolved by including a higher-order
fluctuation correction [54,62] (which is also needed to recover
the correct overall coefficient), and is cut off by the mass λab

in the interacting theory at the quadratic order.
With interactions, fluctuations of decoupling field φ lead

to the dephasing effect, reflected by the appearance of a mass
λ to the soft modes. The mass λab results in an exponential
factor e−ζaλ

ab(E )t�(ζa Re λab) in ln Kcon(η → 0+, t ), and thus
suppresses the exponential-in-t growth of the connected SFF.
We note that what matters is not the explicit form of the inter-
replica mass λab(E ), but its existence.

For the case where η → 0− is a negative infinitesimal, the
dominant saddle point is instead −�(0) and the soft mode fluc-
tuations around this saddle point are described by a nonlinear
σ model which can be obtained by replacing �(0) in Eqs. (10)
and (11) with −�(0). Through a calculation similar to that of
the η → 0+ case, one can show that the inter-replica propa-
gator of the fluctuations around −�(0) also acquires a mass,
which arises from interaction-induced dephasing processes
and is responsible for the suppression of the exponential ramp.

The suppression of the exponential ramp is a necessary pre-
requisite for the emergence of RMT statistics in a many-body
spectrum. In particular, for the interacting model (with broken
time-reversal symmetry) whose many-body energy levels fol-
low Wigner-Dyson statistics, the connected SFF should grow
linearly in t instead of exponentially. However, the derivation
of the explicit expression for the SFF requires a consideration
of the fluctuation corrections beyond the quadratic order. For
the noninteracting case, the many-body SFF can be expressed
in terms of the connected n-point single-particle level correla-
tion function Rcon

n (ε1, . . . , εn) as [54,62]

ln K (η, t ) =
∑

n

Nn

n!

∫ n∏
k=1

dεk

[∑
ak

ln
(
1 + e−iζak zak εk

)]

× Rcon
n (ε1, . . . , εn). (18)

The saddle-point action S[�(0), 0] [Eq. (5b)] yields the n = 1
term which results in the initial slope, whereas the quadratic
fluctuation correction leads to the n = 2 term which con-
tributes to the exponential ramp. The contributions from n > 2
terms are as important and are necessary to obtain the correct
overall coefficient in the exponent of the ramp. In the presence
of interactions, Eq. (18) is no longer valid. However, we find
that the quadratic fluctuation correction Eq. (16) is analogous
to the n = 2 term. If the interaction effects on all higher-order
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fluctuations are similar, their contributions will be suppressed
in a similar way.

In Sec. II of the Supplemental Material [62], we also
perform an analogous calculation of the SFF for a two-
dimensional (2D) disordered system of fermions interacting
via density-density interactions. In the ergodic regime t 
L2/D, with D being the diffusion constant and L the system
size, the statistics of noninteracting single-particle energy lev-
els can be universally described by RMT [57,63,64,66–70],
and the corresponding field theory becomes effectively the
same as the current theory of the random matrix model. In
the diffusive regime with L2/D  t  τel, where τel denotes
the elastic scattering time, the connected SFF is governed
by inter-replica diffusons, which acquire a mass from the
dephasing processes due to interactions [see Eq. (S132) in
the Supplemental Material [62]]. The inter-replica mass gives
rise to an exponential decay factor in the exponent of the con-
nected SFF, and is crucial for the emergence of RMT statistics.
This mass is similar to the dephasing rate [71,72] that cuts
off the quantum interference correction to conductance and
the Lyapunov exponent of the out-of-time-ordered correlator
(OTOC) [73,74] in interacting disordered metals. All these
three quantities are given by the mass of diffusons, and the
complex time z± = t ∓ iη in the SFF now plays the role
of inverse temperature in the dephasing of the conductance
correction and the Lyapunov exponent of OTOC. If the fluc-
tuations of the interaction decoupling field become ineffective
in destroying the coherence, these three types of diffuson mass
vanish, Poisson statistics would appear, the quantum conduc-
tance correction would diverge [75,76], and the OTOC would
no longer grow exponentially in time, suggesting a connec-
tion between dephasing failure and many-body localization.

However, it is unclear under what condition dephasing fail-
ure will occur for these three separate cases, which requires
a more detailed analysis of these masses and is a possible
direction for future work.

In conclusion, we have shown that the spectral form factor
behaves in a drastically different way in the η → 0± limit
compared to the η = 0 case. In the former case, the exponen-
tial ramp of the noninteracting theory is suppressed, which
leads to the appearance of a plateau at a later time (or equiva-
lently to the emergence of correlations on smaller many-body
energy scales). Note that the mathematical problem of calcu-
lating level statistics studies properties of the spectrum, has no
notion of temperature, and the SFF is described by the correla-
tions of two unitary time-evolution operators. While the η = 0
case is formally correct, it does not account for the possible
external perturbations and noise that the physical system may
experience, and which would lead to nonunitary time evolu-
tion. Our proposed explanation of the result is that the η → 0±
limit (or any other way of imposing a nonunitary structure in
the SFF) in effect encodes such tiny nonunitary perturbations,
which get magnified in the thermodynamic limit. Mathemat-
ically this occurs via a spontaneous symmetry breaking in
the σ -model saddle-point manifold and the appearance of a
“dephasing” mass of the Goldstone modes, while physically
this may imply spontaneous breaking of unitarity triggered by
any external perturbations.
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