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This Research Letter studies the evolution under external compression of the wrinkling modes of single- and
few-layer graphene or another two-dimensional atomic crystal embedded in or placed on a compliant matrix,
or on a dense fluid in a gravitational field. An analytical model based on the nonlinear bending elasticity of
the graphene is developed, which shows that the compressive surface stress causes spatial localization of the
extended sinusoidal wrinkling mode with a solitonlike envelope, with the localization length decreasing with
overcritical external strain. The parameters of the extended sinusoidal wrinkling mode are determined from the
conditions of the anomalous softening of the flexural surface acoustic wave with predominant out-of-plane and
suppressed in-plane surface displacements, propagating along the graphene in a compliant anisotropic matrix.
Self-localization of the wrinkling modes finally results in the formation of strongly localized modes with ap-
proximately one-period sinusoidal profiles and external-strain-independent wavelengths. Self-localization of the
wrinkling modes is governed by the derived Ginzburg-Landau-type nonlinear envelope-function equation with a
negative dispersive term, which we relate with the graphene-nonlinearity-induced repulsion between soft flexural
surface acoustic waves with negative effective mass. One- and two-dimensional wrinkling patterns and two types
of strongly localized graphene wrinkling modes with different symmetry are described.
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Introduction. The exceptional physical and mechanical
properties of graphene have made it very attractive for the
construction of nano- and electromechanical devices and as
a reinforcing inclusion in polymer nanocomposites [1–5]. As
mechanically reinforcing layers in polymer nanocomposites,
the graphene layers provide longitudinal stiffness that sig-
nificantly exceeds the corresponding characteristics of the
polymer matrix, which ensures high tensile strength of the
nanocomposite in the plane of reinforcement. However, under
the compression conditions, the ultimate load of the polymer
nanocomposite is determined not only by the strength of its
components, including possible nanoparticle fillers [6], but
also to a large extent by the loss of stability of the stiff
reinforcing layers embedded in the polymer matrix. Primarily,
the instability of a uniaxially compressed stiff elastic layer
placed on a compliant substrate results in the appearance
of an extended sinusoidal wrinkling mode above the critical
compressive strain [7–10]. For a stiff elastic layer embedded
in a compliant matrix, similar wrinkling instability was first
described within the linear macroscopic theory of elastic-
ity [11,12], and with the use of the Winkler model [13,14]
and molecular dynamics simulations [15,16] later. In this
Research Letter, on the basis of the derived Ginzburg-Landau-
type nonlinear envelope-function equation with a negative
dispersive term we show that the compressive surface stress
in the graphene or another two-dimensional atomic crys-
tal [1,4,5] (such as hexagonal boron nitride), embedded in
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or placed on a compliant matrix, or on a dense fluid in a
gravitational field, results in spatial localization of the ex-
tended sinusoidal wrinkling mode with a solitonlike envelope,
with the localization length decreasing with overcritical ex-
ternal strain. We further show that self-localization of the
wrinkling modes results finally in the formation of strongly
localized modes with approximately one-period sinusoidal
profiles and external-strain-independent wavelengths. Both
one- and two-dimensional (1D and 2D) wrinkling patterns
and two types of strongly localized wrinkling modes with
different symmetry are described. The parameters of the ex-
tended sinusoidal wrinkling mode are determined from the
conditions of anomalous softening of the flexural surface
acoustic wave (FSAW) with predominant out-of-plane and
suppressed in-plane surface displacements, propagating along
the stiff elastic layer embedded in or placed on compliant
anisotropic matrix, or on a dense fluid [17–20]. The anoma-
lous softening implies that both the frequency and the group
velocity of the FSAW turn to zero at the softening (see
Fig. 1), which provides two independent conditions to find
out the critical surface stress and the wrinkle wave number
and allows us to clarify the origin of the wrinkling modes’
self-localization [21].

Localized wrinkling modes (folds with an outward mor-
phology) were observed in glassy polymer film placed on
a surface of elastomer substrate [24] and numerically simu-
lated in stiff silicalike film placed on a prestretched nonlinear
polymer substrate [25,26], but the elastic properties of both
the film and the substrate in these studies are different from
those of the graphene and soft linear elastic substrate. The
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(a)

(b)

FIG. 1. Anomalous softening of the FSAW, propagating along
the graphene monolayer (a) embedded in a matrix of polyethylene
or (b) placed on water, caused by compressive strain or negative
surface tension. The frequency ω is measured in units (a) of vt/a,
where vt = 0.861 km/s, a = ρs/ρ = 7.6 Å for the polyethylene with
density 998 kg/m3, or (b) of gravity wave frequency

√
gkx0, where

kx0 = 4.86 × 105 m−1; wave number kx is measured in units (a) of
1/a or (b) of kx0. Green, red, and blue lines correspond (a) to the
strain 0.998ε (cr.)

xx , 1.0ε (cr.)
xx , and 1.002ε (cr.)

xx or (b) to the surface tension
0.996G(cr.)

xx , 1.0G(cr.)
xx , and 1.004G(cr.)

xx , respectively. The blue lines
show the negative effective mass of the FSAW beyond the softening.
The inset in (a) shows ω2 for the blue line close to kx0 = 1.49/a,
where ω2 < 0 and the sinusoidal wrinkle with kx = kx0 exponentially
grows in time.

localization of subcritical folds was studied in a strut on
an elastic foundation [27] and in a thin elastic membrane
floating on a dense fluid [28–31], while the proposed model
describes the overcritical localization of wrinkling modes in
the graphene on a compliant solid matrix or on a dense
fluid in a gravitational field. The described overcritical wrin-
kling with self-localization in the graphene on a dense fluid
in a gravitational field [32] is consistent with the observed
overcritical buckling with ridge formation in Langmuir mono-
layers [33–35].

Analytical model and anomalous FSAW softening. The
main contributions to the elastic energy of the embedded
graphene are given by its in-plane strain εαβ produced by
(relatively weak) external uniform strain ε0

αβ , and induced
out-of-plane w = us

z and in-plane us
α displacements of the

graphene or 2D atomic crystal [36]:

εαβ = ε0
αβ + 1

2

(
∂us

α

∂xβ

+ ∂us
β

∂xα

)
+ 1

2

∂w

∂xα

∂w

∂xβ

, (1)

when the total static deformation energy of the 2D crystal
(isotropic in its plane z = const) can be written in the form

ET =
∫∫ {

1

2
λsε

2
αα + μsε

2
αβ + 1

2
D11

(
∂2w

∂x2
+ ∂2w

∂y2

)2

+ 2D66

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]

+ 1

2
KB(kx, ky)w2

}
dxdy, (2)

where α, β = 1, 2; λs and μs are the 2D Lamé coefficients,
which determine the 2D elastic modulus tensor hαβγ δ; D11

and D66, D66 ∼ D11, are the diagonal and torsion bending
rigidities of the 2D crystal; and KB(kx, ky) is the positive
coefficient, which describes the coupling of the out-of-plane
displacement w(x, y) of the 2D crystal with the matrix, as-
suming the continuity of w(x, y) and corresponding change
in the surface-projected bulk stress σzz at the 2D plane [see
Eqs. (3) and (4) below]. Equation (2) implies that nonlinear
bending elasticity of the graphene or 2D atomic crystal is
determined by the 2D Lamé coefficients λs and μs and 2D
Young’s modulus Es = h11 = λs + 2μs, which substantially
exceed the corresponding moduli of elasticity of the matrix
(multiplied by interatomic distance). This property results in
the negligible in-plane in comparison with out-of-plane in-
duced 2D crystal displacements in (2), us

α � w, when the
equilibrium bending of the 2D crystal is given by the varia-
tional extremum of ET (2) with respect to w(x, y), δET /δw =
0, under the conditions us

α = 0.
The applicability of the continuum description (2) of

graphene wrinkling is determined by the values of the
wavelengths of the sinusoidal wrinkling modes, λx0(n) =
32 · n1/3 Å and λx0(n) = 40 · n1/3 Å, in single- and few-
layer graphene, n = 1, 2, 3, . . . , embedded in or placed on a
polyethylene crystal (Eqs. (S56) and (S57) of the Supplemen-
tal Material [32]). These wavelengths are much larger than the
carbon-carbon bond length in the graphene layer a = 1.42 Å
and the interchain spacing in (orthorhombic) polyethylene
crystal rmin,CC ≈ 3.8 Å [37]. Similar conditions for the wrin-
kle wavelengths should be fulfilled for the possibility of a
continuum description of a sheet of another 2D atomic crystal
in a compliant matrix.

To find the coefficient KB in Eq. (2) in the generic case of
an anisotropic matrix and find out the origin of the wrinkling
modes’ self-localization, we turn to the description of anoma-
lous FSAW softening in the system. The long-wavelength
elastodynamic properties of the 2D atomic crystal can be
taken into account with the use of dynamic boundary condi-
tions for the displacements u(1,2)

i and surface-projected bulk
elastic stresses σ

(1,2)
ni in the contacting continuous media 1

and 2 at the plane of the embedded 2D crystal; see, e.g.,
Refs. [38–40]. The following six linear dynamic boundary
conditions are consistent with the deformation energy (2) with
KB = 0:

u(1)
i (0) = u(2)

i (0) ≡ us
i , us

α = 0, us
z ≡ w, (3)

σ (1)
nz (0) − σ (2)

nz (0) = gαβ∇α∇βw − Ds�2
αw − ρs

∂2w

∂t2
, (4)
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where σni = σiknk , nk is a unit vector of the normal to the
interface directed from medium 1 into medium 2, i = 1, 2, 3,
gαβ = hαβγ δε

0
γ δ is the external-strain-induced surface stress,

Ds = D11, and ρs is the 2D mass density of the layer. More
general dynamic boundary conditions, from which Eqs. (3)
and (4) and FSAW dispersion equations (S2) and (S4) of the
Supplemental Material [32] can be obtained in the limit of
very high 2D moduli of elasticity hαβγ δ and not very small
wave numbers, will be discussed elsewhere.

In the case of uniaxial external compressive strain ε0
αβ =

ε0
xx < 0, the value of the critical negative surface stress g(cr.)

xx =
Esε

(cr.)
xx and the wave number kx0, at which the anomalous soft-

ening of the FSAW occurs, can be found from the following
two conditions [17–20]:

ω(kx0) = 0,
∂ω(kx0)

∂kx
= 0. (5)

In general, we assume the orthorhombic symmetry of the
compliant matrix, which can be a polyethylene crystal [37].
With the use of Eqs. (3)–(5) and of Eqs. (S1) and (S2) of the
Supplemental Material [32], we find the kx0 and critical com-
pressive strain along the [100] direction in the (001) crystal
plane:

kx0 =
[

Bbulk,subs

2Ds

]1/3

,
∣∣ε (cr.)

xx

∣∣ = 3D1/3
s

Es

[
Bbulk,subs

2

]2/3

, (6)

Bbulk = 2Bsubs = 2C44C33G

C44 + √
C11C33

, (7)

G =

√√√√2

√
C11

C33
+ C11

C44
+ C44

C33
− (C13 + C44)2

C33C44
, (8)

where Bbulk or Bsubs is the effective elastic modulus, which
determines the parameter KB(kx, ky ) = B|kx0| [7] in Eq. (2).
As follows from Eqs. (6)–(8), the anisotropic matrix or sub-
strate can result in anisotropy of the wrinkle wave number
and critical strain in macroscopically isotropic graphene or 2D
atomic crystal under uniaxial strain.

Expressions (7) and (8) are simplified for the isotropic (or
transversally isotropic in the xz plane) matrix, when C11 =
C33, C11 − C13 = 2C44 ≡ 2μ, and G = 2:

Bbulk = 2Bsubs = 8μ(1 − σ )

3 − 4σ
= 4Eb(1 − σ )

(1 + σ )(3 − 4σ )
, (9)

where μ, Eb, and σ are the shear modulus, Young’s mod-
ulus, and Poisson’s ratio of the bulk matrix. These values
of Bbulk,subs coincide with those obtained from purely static
calculations; see, e.g., Refs. [12,41,42]. For the graphene at
the interface between two fluids in a gravitational field, the
FSAW dispersion, the critical negative surface stress g(cr.)

xx , and
the wave number kx0 of the FSAW anomalous softening are
given by Eqs. (S6)–(S8) of the Supplemental Material [32].

As follows from Eqs. (6)–(9), the critical compressive
strain and wrinkle wave number of the graphene or 2D atomic
crystal under compression depend on the substrate moduli of
elasticity but do not depend on the parameter of the van der
Waals (vdW) interaction between the 2D crystal and substrate
(or matrix). As is shown in Ref. [39], in the low-frequency
(quasistatic) limit the regime of equal joint out-of-plane

displacements w of the 2D layer and substrate is realized for
any nonzero coupling of the layer to the deformable substrate,
while the magnitude of such coupling determines the frequen-
cies of the gapped resonances of the physisorbed atoms or
graphene sheet on the substrate; see also Refs. [40,43–46].
When applied to the 2D crystal wrinkling, this property leads
to the conclusion that the vdW interaction with the deformable
substrate determines the threshold for the delamination of the
wrinkled 2D crystal from the substrate but does not affect the
wrinkling below the delamination threshold, which is consid-
ered in this Research Letter.

The origin of self-localization of the extended sinusoidal
wrinkling modes we relate with the combination of the re-
pulsive (hard) bending nonlinearity of the graphene or 2D
atomic crystal sheet, given by the quartic positive term
(1/8)Es(∂w/∂x)4 in Eq. (S9) of the Supplemental Mate-
rial [32] for 1D patterns and by the term (1/8)Es[(∂w/∂x)2 +
(∂w/∂x)2]2 in Eq. (S31) of the Supplemental Material [32]
for 2D patterns, and the negative effective mass (NEM) of the
soft FSAW, given by the negative inverse second derivative
of the FSAW dispersion (∂2ω/∂k2

x )−1 at kx 	 kx0 beyond the
softening; see the blue lines in Fig. 1 and the Supplemental
Material [32] for the parameters of the system. These two fea-
tures of the considered system result in the effective wrinkle’s
attraction as a tendency to self-localization. The emergence of
the solitonlike envelope of the extended sinusoidal wrinkling
mode is similar to the emergence of the envelope solitons and
intrinsic localized modes (ILMs or discrete breathers) of the
symmetric and antisymmetric type in the Fermi-Pasta-Ulam
(FPU) chain with repulsive quartic nonlinearity [47–51],
which in the small-amplitude limit are described by the
nonlinear Schrödinger equation with hard nonlinearity and
negative dispersion, caused by the NEM of short-wavelength
acoustic phonons in a monatomic lattice [52,53].

For |ε0
xx| > |ε (cr.)

xx |, we have ω2(kx0) = −�2(kx0) < 0, and
the sinusoidal wrinkles w ∝ sin(kxx) exp[�(kx )t] grow in time
with the maximal growth rate �(kx0) at kx = kx0, which pre-
cisely determines the wrinkle wave number kx0 [see the inset
in Fig. 1(a); the very similar feature in Fig. 1(b) is not shown].
During the exponential growth of w [54], until the satu-
ration imposed by the bending nonlinearity in deformation
energy (2) and (S9) in the Supplemental Material [32], the
NEM of the soft FSAW and the effective wrinkle’s attraction
come into play.

1D wrinkling patterns. First we consider the case of one-
component external strain in the the x direction, ε0

αβ = ε0
xx <

0, when the problem reduces to a 1D one with w = w(x).
In our main assumption, the out-of-plane displacement w

has the form of a static bending sinusoidal mode with the
modulated amplitude, w = A(x) sin(kx0x). Substituting this
ansatz into Eq. (2) with KB(kx, ky) = B|kx0| and averaging
over the sinusoidal functions, we get the bending deforma-
tion energy per unit area of the 2D atomic crystal Edef ; see
Eq. (S10) of the Supplemental Material [32]. The equilibrium
form A(x) and kx0 > 0 can be found from the extremum
conditions of the bending deformation energy Edef with re-
spect to A, δEdef/δA = 0, and kx0, ∂Edef/∂kx0 = 0. The latter
partial derivative should be taken under the conditions of the
unmodulated sinusoidal mode, A′ = A′′ = A(4) = 0, because
kx0 is the wave number of the extended soft sinusoidal FSAW
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with maximal growth rate; see Fig. 1(a) and the Supplemental
Material [32]. From the extremum conditions in the weakly
modulated limit |A′| � kx0A, we find the wrinkle wave num-
ber kx0 = (B/2Ds)1/3 and the critical in-plane surface stress
and strain, g(cr.)

xx = Esε
(cr.)
xx = −3Dsk2

x0 (see Eqs. (6)–(8) and
Eqs. (S11) and (S12) of the Supplemental Material [32]) and
obtain the Ginzburg-Landau-type equation for the external-
strain-driven inhomogeneous scalar order parameter A(x),

3
8 k4

x0A3 − (∣∣ε0
xx

∣∣ − ∣∣ε (cr.)
xx

∣∣)k2
x0A + (

2
∣∣ε (cr.)

xx

∣∣ − ∣∣ε0
xx

∣∣)A′′ = 0,

(10)

in which the dispersive term is negative for weakly overcritical
external strain |ε (cr.)

xx | � |ε0
xx| < 2|ε (cr.)

xx |. Essentially, the non-
linear envelope-function equation (10) for the 1D pattern and
the corresponding equation (15) for the 2D pattern underlie
the proposed model of the wrinkle’s effective attraction and
self-localization: The negative dispersive terms in Eqs. (10)
and (15) are the consequence of the NEM of the soft FSAW
beyond the softening, which is shown by the blue lines in
Fig. 1. The nonlinear envelope-function equation (S24), which
is similar to Eq. (10), is also derived for the graphene or 2D
atomic crystal placed on a dense fluid in a gravitational field,
see Supplemental Material [32].

For the weakly overcritical strain, Eq. (10) describes the
two types of self-localized sinusoidal wrinkling modes with
the solitonlike envelope, centered at x = 0:

ws,a = F
( cos(kx0x), sin(kx0x))

cosh(px)
, (11)

F = 4

kx0
√

3

√∣∣ε0
xx

∣∣ − ∣∣ε (cr.)
xx

∣∣, (12)

p = kx0

√√√√ ∣∣ε0
xx

∣∣ − ∣∣ε (cr.)
xx

∣∣
2
∣∣ε (cr.)

xx

∣∣ − ∣∣ε0
xx

∣∣ � kx0, (13)

where ws and wa describe wrinkling modes that are symmetric
and antisymmetric in the 2D crystal, respectively. The profile
given by 1/ cosh(px) in Eq. (11) is typical for 1D solitons in
the nonlinear Schrödinger equation [52,55].

As follows from Eqs. (11)–(13), the amplitude F of
the broken-symmetry mode increases while the localization
length 1/p of the solitonlike envelope decreases with the in-
crease in the overcritical external strain |ε0

xx|. For large enough
|ε0

xx|, but still less than 2|ε (cr.)
xx |, when p ∼ kx0, the modes

with solitonlike envelopes (11) transform continuously into
strongly localized modes with approximately one-period sinu-
soidal profiles and external-strain-independent spatial widths;
cf. Refs. [50,56,57]. For the symmetric and antisymmetric
strongly localized modes, we assume the following ansatz for
the profiles:

ws,a = (
F (s) cos

(
k(s)

x0 x
)
, F (a) sin

(
k(a)

x0 x
))

cos2 (
k(s,a)

x0 x/2
)
, (14)

for −π/k(s,a)
x0 < x < π/k(s,a)

x0 , and w = 0 in the rest of the 2D
crystal. Substituting this ansatz into Eq. (2) and assuming the
same form of the coefficient KB = B(s,a)|k(s,a)

x0 |, we find the
deformation energy E (s,a)

def as a function of F (s,a) and k(s,a)
x0 [32].

From the extremum conditions of E (s,a)
def with respect

to F (s,a) and k(s,a)
x0 , we obtain the wrinkle wave number

k(s,a)
x0 = κ (s,a)(B(s,a)/Ds)1/3, κ (s) = 0.56, κ (a) = 0.50; the crit-

ical compressive strain ε (cr. s,a)
xx = ε(s,a)D1/3

s B(s,a)2/3/Es, ε(s) =
2.35, ε(a) = 1.88; and the expression for the localized

modes’ amplitudes F (s,a) = (1.89/k(s,a)
x0 )

√
|ε0

xx| − |ε (cr. s,a)
xx |

(see Supplemental Material [32]). In the first approxima-
tion B(s) = B(a) = B, we get ε (cr. s)

xx = 1.24ε (cr. small)
xx , ε (cr. a)

xx =
0.99ε (cr. small)

xx , where ε (cr. small)
xx is determined in the small-

strain limit, described by Eqs. (6)–(8). However, taking into
account that B(s,a) � B because of the presence of higher
spatial harmonics in the profiles (14), we conclude that the
transition from the solitonlike envelope to the strongly local-
ized wrinkling modes in the 2D crystal occurs continuously
for relatively small overcritical strains, with |ε (cr. small)

xx | <

|ε (cr. s,a)
xx | < 2|ε (cr. small)

xx |, for which Eqs. (10)–(13) are also
valid. This is also clear from the comparison of the profiles
of solitonlike solutions (11) with relatively large p ∼ kx0 with
the profiles of strongly localized solutions (14); see Figs. 2(b)
and 2(c).

We should underline that the symmetric (antisymmetric)
solutions (11) and (14) break (do not break) the up-down
symmetry of the wrinkling mode. Therefore the antisymmetric
modes are presumably realized in the graphene or 2D atomic
crystal embedded in the bulk of a compliant matrix when the
up-down symmetry is clearly conserved in the defect-free sys-
tem, while the symmetric modes are realized in the 2D atomic
crystal, placed at the crystal-vacuum interface or on a dense
fluid in a gravitational field. In the former case, the outward
morphology of the symmetric wrinkling mode is governed
by the additional weak nonlinear cubic term in Eq. (2), ∝
(−k2

x0w
3), which is provided by the nonlinear solid substrate

with realistic interatomic potentials that are softer for the out-
ward than for the inward surface displacements. In the latter
case, the inward direction of the symmetric sheet deformation
is determined by the term ρsgw in Eq. (S18) due to the gravita-
tional field, which does not enter the extremum conditions for
the wrinkling of the infinite sheet [28,32]. These conclusions,
together with the displacement profiles and symmetry of the
wrinkling modes shown in Figs. 2(a)–2(c), are consistent
with the observation in recent molecular dynamics simula-
tions of the outward symmetric (antisymmetric) wrinkling of
a graphene nanoribbon under compression placed on (in) a
polyethylene crystal [58]. Significantly, due to the lack of
delamination the strongly localized antisymmetric wrinkling
modes in the embedded graphene or 2D atomic crystal are not
equivalent to the ripplocations in layered solids [59,60].

It is important to emphasize that the proposed model
of wrinkling modes’ localization in 2D atomic crystal is
based on the assumption that the repulsive quartic non-
linear term (1/8)Es(∂w/∂x)4 in Eq. (S9) and the term
(1/8)Es[(∂w/∂x)2 + (∂w/∂x)2]2 in Eq. (S30) of the Sup-
plemental Material [32] are larger than the aforementioned
cubic nonlinear term, ∝ (−k2

x0w
3), provided by the substrate,

because of the very high 2D Young’s modulus Es of the
2D atomic crystal, graphene first of all, in comparison with
the moduli of elasticity of the compliant substrate (multi-
plied by the interatomic distance). The proposed model does
not include the period-doubling bifurcation in the wrinkling
morphology that was described in the model of wrinkle fo-
calization in a linear stiff polymer membrane on a nonlinear
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(a)

(b)

(c)

FIG. 2. Normalized by
√

|ε (cr.)
xx | displacement profiles of sym-

metric “s” and antisymmetric “a” wrinkling modes with solitonlike
envelopes (11), for (a) |ε0

xx| = 1.05|ε (cr.)
xx | and (b) |ε0

xx| = 1.4|ε (cr.)
xx |,

and of strongly localized modes (14) for (c) |ε0
xx| = 1.9|ε (cr.)

xx |. Pro-
files of the symmetric wrinkling modes correspond to outward or
inward deflection of the graphene or 2D atomic crystal placed on soft
solid substrate or on dense fluid in a gravitational field, respectively.

elastomer substrate in Ref. [61], which is based on the op-
posite assumption of the dominance of the nonlinear cubic
term over the quartic one in the considered system. It is
also worth noting that ILMs can exist in FPU lattices only
with a relatively small cubic term in comparison with the
repulsive quartic term in the interatomic potential [47], and
the existence of ILMs in such lattices is not related with the
period-doubling instability of the zone-boundary mode [62].
These facts provide yet another piece of evidence for the
similarity of the nonlinear governing potentials and of the nec-
essary condition for the existence of self-localized wrinkling
modes in 2D atomic crystals and of ILMs in FPU lattices:
the dominance of the repulsive quartic nonlinearity in the
corresponding system.

For the graphene or 2D atomic crystal with n layers, when
both Ds(n) and Es(n) increasing with n, Eqs. (6)–(8) pre-

dict the decrease with n in the wrinkle wave number kx0

and modulus of the critical compressive strain |ε (cr.)
xx | [14,20],

which demonstrates the non-Eulerian nature of the bending
instability of the 2D elastic layer embedded in or placed on a
compliant matrix [14]. In the case of weak interlayer coupling
in the few-layer graphene or 2D atomic crystal, the individual
layers are prone to relative sliding, and the bending stiffness
of the multilayer Ds(n) can be taken as a sum of the bending
stiffnesses of each layer Ds(1) [14,20,63,64], Ds(n) = nDs(1),
and Es(n) = nEs(1), when Eqs. (6)–(8) predict kx0 ∝ n−1/3

and |ε (cr.)
xx | ∝ n−2/3; see Supplemental Material [32].

2D wrinkling patterns. First we consider the case of the
equibiaxial external compressive strain ε0

xx = ε0
yy < 0, which

results in gxx = gyy < 0, when the extended checkerboard
wrinkling mode is realized for weak overcritical strain with
w = A sin(κx0x) sin(κy0y), κx0 = κy0; see, e.g., Refs. [65,66].
It is worth noting that the equibiaxial compressive strain can
also be realized by cooling the system of graphene or another
hexagonal 2D atomic crystal embedded in or placed on a soft
isotropic matrix. The dispersion equations of the FSAW with
three-component displacement fields in this case are given
by Eqs. (S3) and (S4) of the Supplemental Material [32].
From the conditions of the anomalous FSAW softening (5) for
ω(κx ) given by Eqs. (S3) and (S4), we get the wrinkle wave

FIG. 3. Normalized by
√

|g(cr.)
xx |/h11 displacement profiles of

(a) symmetric and (b) antisymmetric strongly localized wrinkling
modes in 2D patterns for overcritical equibiaxial external compres-
sive surface stress.
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number κx0 = kx0/
√

2 [65] and the critical in-plane surface
stress and strain g(cr.)

xx = (h11 + h12)ε (cr. 2D)
xx = h11ε

(cr. 1D)
xx =

−6Dsκ
2
x0, ε (cr. 2D)

xx = ε (cr. 2D)
yy , where kx0 and ε (cr. 1D)

xx are the
corresponding parameters in the 1D wrinkling pattern, Eq. (6).
These parameters enter the Ginzburg-Landau-type equa-
tion for the envelope A(x, y) of the modulated checkerboard
wrinkling mode in 2D patterns [32],

1

32
(10h11 − h66)κ4

x0A3 − (|gxx| − |g(cr.)
xx

∣∣)κ2
x0A

+ 1

2

(
4

3

∣∣g(cr.)
xx

∣∣ − |gxx|
)

(A,xx + A,yy) = 0, (15)

in which the dispersive term is negative for weakly overcriti-
cal surface stress |g(cr.)

xx | < |gxx| < (4/3)|g(cr.)
xx |. Since Eq. (15)

does not have a simple analytical solution, we describe the
ansatz for the symmetric and antisymmetric strongly localized
wrinkling modes in 2D patterns; see Eqs. (S38)–(S45) of
the Supplemental Material [32] and Figs. 3(a) and 3(b) for
the normalized profiles of two types of strongly localized
wrinkling modes in 2D patterns for overcritical equibiaxial
external compressive surface stress.

We also consider the case of the radial and polar
cylindrically-symmetrical external compressive strain ε0

rr =
ε0
φφ = const < 0, applied to the circular graphene or 2D

atomic crystal sheet embedded in or placed on a cylindrical
soft matrix. The corresponding symmetric and antisymmet-
ric strongly localized wrinkling modes are described by the
combinations of the Bessel and modified Bessel functions of
the radial coordinate and are confined in the circular areas of
the radius r (s,a)

loc ∼ 6/κ
(s,a)
x0 with effectively “clamped” edges;

see Eqs. (S50) and (S51) and Fig. S1 of the Supplemental
Material [32].

In summary, we demonstrate with an analytical model the
phenomenon of self-localization of the sinusoidal wrinkling
mode of single- and few-layer graphene or another 2D atomic
crystal under compression, embedded in or placed on a com-
pliant matrix, or on a dense fluid in a gravitational field.
Self-localization is caused by hard bending nonlinearity of
the 2D crystal and negative effective mass of the soft FSAW
beyond the softening, and results in the formation of strongly
localized wrinkling modes with approximately one-period
sinusoidal profiles and strain-independent wavelengths. The
presented results can be important for possible applications in
flexible electronics and mechatronics.
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