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Transitions from Abelian composite fermion to non-Abelian parton fractional quantum Hall states
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The electron-electron interaction in the Landau levels of bilayer graphene is markedly different from that
of conventional semiconductors such as GaAs. We show that in the zeroth Landau level of bilayer graphene,
in the orbital which is dominated by the nonrelativistic second Landau level wave function, by tuning the
magnetic field, a topological quantum phase transition from an Abelian composite fermion to a non-Abelian
parton fractional quantum Hall state can be induced at filling factors 1/2, 2/5, and 3/7. The parton states host
exotic anyons that can potentially be utilized to store and process quantum information. Intriguingly, some of
these transitions may have been observed in a recent experiment (K. Huang et al., arXiv:2105.07058).
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Traditionally, semiconductor quantum wells such as those
in GaAs/AlGaAs have been the system of choice to experi-
mentally study fractional quantum Hall effect (FQHE) physics
[1,2]. Graphene, with its relativistic dispersion and the pres-
ence of multiple components such as spins, valleys, orbitals,
and layers adds to the richness of the FQHE phenomenology
[3–10]. Aside from these features, in multilayer graphene sys-
tems the interactions between electrons can be controlled by
parameters such as perpendicular magnetic and electric fields
which can assist in stabilizing exotic FQHE states.

Robust even-denominator FQHE states with gaps of the
order of a few degrees Kelvin have been observed in the
zeroth Landau level (ZLL) of Bernal-stacked bilayer graphene
(BLG) [11,12]. When the LL with N = 0 orbitals is partially
filled, the Jain sequence of odd-denominator Abelian FQHE
states described in terms of composite fermions (CFs) [13]
is seen. On the other hand, in the LL with N = 1 orbitals,
only the states at filling factors ν = 1/3, 2/3, and 1/2 are
well established while at some other fractions signatures of
FQHE were observed. More recently, Huang et al. [14] have
observed extensive FQHE in the ZLL of BLG. Furthermore,
they showed that transitions between FQHE states at ν = 2/5,
3/7, and 1/2 can be induced by varying the magnetic field or
applying an electric field. The primary result of our work is to
show that the transitions they observed are likely from Abelian
CF to non-Abelian “parton” states. Encouragingly, these re-
sults suggest that BLG could potentially serve as a platform
to host Fibonacci anyons which can perhaps form the building
blocks of a universal fault-tolerant quantum computer.

Zeroth Landau level of bilayer graphene. The zero-energy
manifold in BLG has eight LLs in it with two each com-
ing from the spin (|↑〉, |↓〉), valley (|+〉, |−〉), and orbital
(N = 0, 1) degrees of freedom [15]. The ordering of these
single-particle states and their orbital character can be varied
by an interlayer electric field and a magnetic field, respec-
tively [14,16–20]. The N = 0 LLs are identical to the n = 0

LL [lowest LL (LLL)] of GaAs (n denotes the LL index of
conventional semiconductors while N refers to the LL index
for graphene). However, the N = 1 LLs have an admixture of
n = 0 and n = 1 [second LL (SLL)] orbitals; at small (large)
magnetic fields, their orbital nature is more n = 1 (n = 0) like.

We model the single-particle spinor wave function for the
N = 1 LLs as [sin(θ )φ1, cos(θ )φ0] [17], where φn is the wave
function of a nonrelativistic electron in the LL indexed by
n and θ is a tunable parameter called the mixing angle. The
mixing angle is related to the magnetic field B as tan(θ ) =
t�/(

√
2h̄vF ), where t is the hopping integral (estimated to

be ≈350 meV from calculations at zero magnetic field [21]),
vF is the Fermi velocity (typically 106 m/s in graphene),
and � = √

h̄c/(eB) is the magnetic length. There are three
special values of θ that are of particular interest: (a) θ = 0
corresponds to the LLL, (b) θ = π/4 corresponds to the first
excited N = 1 LL of monolayer graphene (MLG1) [22], and
(c) θ = π/2 corresponds to the SLL of GaAs. Therefore, for
FQHE physics, this simplified model suffices to cover all eight
LLs since θ = 0 recovers the N = 0 LLs.

Throughout this Letter, we shall neglect the effects of
screening by gates, rotation between the layers, valley-
symmetry breaking, and disorder. We also neglect the effects
of LL mixing and thus states related by particle-hole symme-
try are considered on an equal footing. Furthermore, we shall
restrict ourselves to only one-component states. In the case
of two components, where the components can be considered
as spins residing in the n = 0 LL [therefore the interaction
is SU(2) invariant], the spin-phase diagram of many FQHE
states has been studied in detail in the past [22–29]. Re-
cently, a detailed phase diagram of two-component states in
the n = 0 LL of double-layer graphene [two graphene layers
separated by an insulator, such as hexagonal boron nitride
(hBN), which breaks the SU(2) symmetry of the interaction]
has been worked out both experimentally [30,31] and theoret-
ically [32]. Under appropriate settings, these two-component
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states could also be stabilized in BLG. We leave out an explo-
ration of multicomponent FQHE states in BLG for the future.
Our attention will be solely focused on the single-component
FQHE states that could arise in any of the LLs with N = 1
(denoted by the pseudospins |1,↑,±〉 and |1,↓,±〉). We refer
to any of these LLs with N = 1 as the ZLL of BLG.

Parton states. The parton theory [33] was introduced by
Jain as a generalization of his CF theory. In the parton theory,
one imagines dividing the electron into q fictitious entities
called partons. To construct a gapped state of the electrons,
each of the partons is placed in an integer quantum Hall effect
(IQHE) state at filling nα , where α = 1, 2, . . . , q labels the
various species of the partons. The resulting electronic state,
denoted as “n1n2n3· · ·,” is described by the wave function

�n1n2n3···
ν = PLLL

q∏

α=1

	nα
({z j}), (1)

where the coordinate of the jth electron is given by the com-
plex number z j = x j − iy j , 	n is the Slater determinant wave
function for n-filled LLs of nonrelativistic electrons, and PLLL

denotes projection into the LLL. We allow the parton fillings
to be negative, which we denote by n̄, with 	n̄ = 	−n = 	∗

n.
In these states, the partons see a magnetic field that is antipar-
allel to that seen by the electrons. The parton theory can also
capture compressible states. In particular, when n→∞, the
wave function 	n describes the gapless Fermi sea (FS).

As the partons are unphysical objects they have to be glued
back together to recover the physical electrons. This gluing
procedure is already implemented in the wave function given
in Eq. (1) since the different parton species coordinates zα

j are
all set equal to the electron coordinate z j , i.e., zα

j = z j for all
α. Each 	nα

in Eq. (1) is made up of all the electronic coor-
dinates {z j}. The density of each parton species is the same as
the electronic density and all the partons see the same mag-
netic field that the electrons experience. Thus, the charge of
the α parton species eα = −eν/nα , where −e is the electronic
charge. The parton charges add up to that of the electron,
which results in the constraint ν = [

∑q
α=1 n−1

α ]−1. A parton
state with a repeated factor of n, with |n| � 2, hosts excitations
that carry non-Abelian braiding statistics [34].

The ν = 1/r Laughlin state [35], described by the wave
function �

Laughlin
ν=1/r = 	r

1, can be reinterpreted as the r-parton
state where all the partons form a ν = 1 IQHE state. The ν =
s/(2ps ± 1) Jain/CF state, described by the wave function
�Jain

ν=s/(2ps±1) = PLLL	
2p
1 	±s, can be viewed as a (2p + 1)-

parton state where one parton forms a ν = ±s IQHE state
and rest of the 2p partons form a ν = 1 IQHE state. The
Rezayi-Read [36] wave function for the CF Fermi sea (CFFS)
at ν = 1/2 can be interpreted as a “FS11” state, where one
parton forms a Fermi sea and two partons form a ν = 1 IQHE
state. Several parton states, beyond the Abelian Laughlin and
Jain states, have been proposed as feasible candidates to de-
scribe FQHE plateaus that arise in the LLL [37–39], SLL
[40–46], LLL of wide quantum wells [47], and in the LLs of
graphene [10,44,46,48,49]. Furthermore, recently some very
high-energy excited states have also been described in terms
of partons [50].

Motivated by a recent experiment [14] we consider FQHE
at ν = 2/5, 3/7, and 1/2 in the ZLL of BLG. The parton states

that are relevant to these fillings are as follows: (a) ν = 2/5:
(a1) 211, and (a2) 2̄314 [42], which lies in the same univer-
sality class as the particle-hole conjugate of the three-cluster
Read-Rezayi state [51] which supports Fibonacci anyons; (b)
ν = 3/7: (b1) 311 and (b2) 3̄213 [49], whose excitations, such
as those of the 2̄314, are also parafermionic; and (c) ν = 1/2:
(c1) FS11 and (c2) 2̄213 [40], which lies in the same topo-
logical phase as the anti-Pfaffian state [52,53]. The 2̄213 state
can be interpreted as a topological p-wave superconductor of
CFs [40,54]. The aforementioned noninteracting CF states are
known to be stabilized in the LLL [25] and MLG1 [9,10]
while the non-Abelian parton states likely prevail in the SLL
[32,40,42]. In the SLL of GaAs, FQHE has been observed at
2/5 and 1/2 [2,55–59] and some signatures of it have been
seen at 3/7 [57].

Numerical results. All our calculations are carried out on
the Haldane sphere [60]. In this geometry, N electrons move
on the spherical surface in the presence of a radial magnetic
flux of 2Qhc/e (2Q is an integer) which is generated by a
magnetic monopole placed at the center of the sphere. In the
LL indexed by N , the total number of single-particle orbitals
is 2l + 1, where l = Q + N is the shell-angular momentum.
FQHE ground states on the sphere occur when 2l = N/ν − S ,
where S is a rational number called the shift [61]. The shift
can often differentiate between candidate states occurring at
the same filling. The shift of the parton state described by
the wave function of Eq. (1) is Sn1n2···nq = ∑q

α=1 nα . Due to
the rotational symmetry, the total orbital angular momentum
L and its z component are good quantum numbers on the
sphere. FQHE ground states are uniform, i.e., they have L = 0
while excitations generically have L > 0. Although the sphere
is not the best geometry to study the gapless CFFS, in this
work we will consider filled-shell CF states on the sphere that
have previously been shown to serve as representatives of the
uniform CFFS [29,36,62,63].

An important feature of an FQHE state is that it is
incompressible, i.e., it has a nonzero gap to charge and neu-
tral excitations. The charge gap, which can be accessed in
transport experiments, gives the energy cost to create a far-
separated pair of fundamental (smallest magnitude charge)
quasiparticle and quasihole. From exact diagonalization (ED),
the charge gap for a system in which the ground state of N
electrons occurs at shell-angular momentum 2l can be ob-
tained as 
c = [E (2l − 1) + E (2l + 1) − 2E (2l )]/nq, where
E (2l ) = E0(2l ) − N2C(2l )/2. Here, E0(2l ) is the Coulomb
energy of the ground state of N electrons at 2l , C(2l ) is
the average charging energy at 2l which accounts for the
contribution of the background [43], and nq is the number
of fundamental quasiparticles (quasiholes) created upon the
removal (insertion) of a flux quantum in the ground state.
The neutral gap 
n = E1(2l ) − E0(2l ) is the difference in
energies of the two lowest-lying states at the N and 2l cor-
responding to the ground state. All the gaps are quoted in
units of e2/(ε�), where ε is the dielectric constant of the
host. We map the FQHE problem in the ZLL of BLG to a
problem of electrons in the LLL interacting with a set of
pseudopotentials {Vm} [60], where Vm is the energy penalty
for placing two electrons in a relative angular momentum
m state in the ZLL of BLG. To allow for some variation
in the interaction we shall carry out ED using the spherical
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FIG. 1. Overlaps with the exact Coulomb ground state in the zeroth Landau level of bilayer graphene [(a), (d), and (g)], neutral gaps [(b),
(e), and (h)], and charge gaps [(c), (f), and (i)] as a function of the mixing angle θ that parametrized the magnetic field for candidate states
at ν = 1/2 [(a)–(c)], 2/5 [(d)–(f)], and 3/7 [(g)–(i)] evaluated using the spherical (solid symbols) and disk (open) pseudopotentials for N
electrons residing on the surface of a sphere. The gaps are only shown when they are positive and the corresponding ground state is uniform.

and planar disk pseudopotentials [see Supplemental Material
(SM) [64]].

We obtain the Jain and CFFS states for small systems using
a brute-force projection to the LLL. The parton states are
constructed by evaluating all the L = 0 states for the corre-
sponding system and expanding the parton wave function on
the basis of all L = 0 states [44,64,65]. In Fig. 1 we show
the overlaps of the exact Coulomb ground state in the ZLL of
BLG with different candidate states and the charge and neutral
gaps at ν = 2/5, 3/7, and 1/2. From the high overlaps, as
well as the nonzero charge gaps, we see that at low magnetic
fields, i.e., in the vicinity of the SLL point, the non-Abelian
parton states 2̄314, 3̄213, and 2̄213 could be stabilized. On the
other hand, at higher magnetic fields the CF states prevail. The
charge and neutral gaps of the parton state at 3/7 are quite
small, indicating that it is quite fragile (gaps also decrease
with decreasing B). Strong finite-size effects are seen near
the SLL point as can be deduced from the fact that we find

c<
n while in the thermodynamic limit we expect 
c�
n.
In summary, at ν = 2/5, 3/7, and 1/2 in the ZLL of BLG,
in the vicinity of the SLL point the ground state is likely a
non-Abelian parton state while in the rest of the parameter
space, which includes LLL and MLG1 points, the ground state
is a CF state.

Discussion. In a recent experiment [14] strong signatures
of FQHE states at ν = 1/2, 2/5, and 3/7 have been reported
in the N = 1 LLs of ultrahigh-quality BLG devices. Owing
to the FQHE observed at half filling and a concomitant ab-
sence of it at many of the Jain fractions near ν = 1/2, we
propose that these plateaus could be described by the parton
states considered in this work. From Fig. 1 we estimate the
critical mixing angle at which the transition from an Abelian

CF state to a non-Abelian parton state occurs at all three
fillings to be in the vicinity of θc = 5π/12. For typical pa-
rameters of graphene, this critical mixing angle corresponds
to a magnetic field of Bc ≈ 7 T. Since we have considered a
simplified model and made several assumptions, this value
of the critical field should only be viewed as a ballpark
estimate.

TABLE I. The table gives some experimentally measurable prop-
erties of the various states that can arise at filling factors ν = 1/2,
3/7, and 2/5 in the zeroth Landau level (ZLL) of bilayer graphene
(BLG) as the magnetic field B is varied. The states are labeled
using the notation given in Eq. (1). Using a simplified model for the
interaction in the ZLL of BLG we estimate the critical value of the
magnetic field Bc at which a transition from an Abelian composite
fermion (CF) to a non-Abelian parton state is Bc ≈ 7 T at all three
fillings. The shift S on the sphere is related to the Hall viscosity
ηH = h̄νS/(8π�2), κxy is the thermal Hall conductance in units of
[π 2k2

B/(3h)]T (filled LLs provide an additional integral contribu-
tion), and Qqp is the charge of the fundamental (smallest charged in
magnitude) quasiparticle in units of the electron charge. The thermal
Hall conductance of the CF Fermi sea (CFFS) is not expected to be
quantized to a universal value since its bulk is gapless.

B field ν State Nature of state S κxy Qqp

[0, Bc ) 2/5 2̄314 Non-Abelian −2 −4/5 1/5
(Bc, ∞) 2/5 211 ≡ 2/5 Jain Abelian 4 2 1/5
[0, Bc ) 3/7 3̄213 Non-Abelian −3 −11/5 1/7
(Bc, ∞) 3/7 311 ≡ 3/7 Jain Abelian 5 3 1/7
[0, Bc ) 1/2 2̄213 Non-Abelian −1 −1/2 1/4
(Bc, ∞) 1/2 FS11, CFFS Abelian 2 0
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FIG. 2. Schematic representation of the candidate fractional
quantum Hall phases that can arise at filling ν = 2/5 in the zeroth
Landau level of bilayer graphene as a function of the magnetic
field. The circle and arrows together denote a composite fermion
(CF) which is a bound state of an electron (circle) and two vortices
(arrows). The partonic substructure is shown by the various partons
filling different numbers of Landau levels (lines) inside the electron.
In this work, we consider a single-component system and thereby
focus solely on the transition between the polarized CF and parton
states.

Now we discuss various experimentally measurable prop-
erties that can distinguish the CF and parton states. The
non-Abelian nature of the 3̄213 and 2̄314 states does not cause
a further fractionalization of their quasiparticle charge. This
should be contrasted with the 2̄213 state which does support
a quasiparticle of charge (−e)/4 at ν = 1/2. Therefore, at
ν = 2/5 and 3/7 the fundamental quasiparticles of the parton
and CF states both carry the same charge of (−e)/5 and
(−e)/7, respectively.

Due to the presence of the 2̄ and 3̄ factors the parton states
are expected to host upstream edge modes which can be de-
tected experimentally [66–68]. In contrast, the CF states only
carry downstream edge modes. Assuming a full equilibration
of the edge states, the thermal Hall conductance κxy of an
FQHE state at temperatures T much smaller than the gap is
expected to be quantized as κxy = c−[π2k2

B/(3h)]T , where c−
is the chiral central charge [69]. The chiral central charge of
all the CF states is integral while those of the parton states
we considered fractional (see Table I). Recently, thermal Hall
measurements have been carried out at many filling factors
in GaAs [70,71] and graphene [72,73]. An extension of these
experiments to the ZLL of BLG could help detect the partonic
topological order.

The Hall viscosity, which measures the stress response of
the FQHE state to perturbations of the underlying metric, is
also anticipated to be quantized as [74] ηH = h̄ρS/4, where
ρ = ν/(2π�2) is the electronic density and S is the shift [61].
Since the parton and CF states have different shifts, they carry
different Hall viscosities. In Table I we have summarized these
plausibly experimentally accessible properties of the CF and
parton states at ν = 1/2, 2/5, and 3/7. We note here that
these phase transitions can potentially be studied using field
theoretic techniques [75].

We mention here that in the spinful LLL, the ground state
at ν = 2/5 is a spin-singlet Jain state [28,29]. On the other
hand, even in the spinful N = 1 LL of MLG, the ground state
is fully polarized, i.e., the interactions in the first excited LL
of MLG are such that the CFs spontaneously polarize [22].
Therefore, in a two-component system in the ZLL of BLG,
as the magnetic field is lowered, the FQHE state at ν = 2/5
transitions from a spin-singlet CF state to a fully polarized
one and eventually at low magnetic fields goes to a parton
state. These transitions are schematically depicted in Fig. 2.
Similarly, at ν = 3/7 in the ZLL of BLG, at large magnetic
fields, the ground state would be a partially polarized Jain
state. Likewise, at ν = 1/2, as the interaction is continuously
tuned from the LLL to the SLL points in the half-filled
ZLL of BLG, the unpolarized CFs first polarize, and then
the polarized CFs pair up to form a p-wave superconducting
state [20].

We have not considered ν = 1/3 here since at all three
special points, namely LLL, MLG1, and SLL, the ground
state at one-third filling is believed to be Abelian [45,76–78].
Thus it is unlikely that a non-Abelian state is stabilized in the
ZLL of BLG at ν = 1/3. In the SM [64], we have considered
transitions between different Abelian states at ν = 1/3 in the
ZLL of BLG. The s/(4s ± 1) states, such as at ν = 1/5, 2/7,
and 2/9, reside in the same topological phase as the corre-
sponding Jain state at all three special points [10,44,78,79].
Thus, we expect the topological nature of the ground state at
these fillings does not change as we transition from the very
high to very low magnetic field limits in the ZLL of BLG.

In conjunction with previous works, our results show that
for all the experimentally observed plateaus promising candi-
date parton wave functions can be constructed. Furthermore,
it appears that the parton theory is sufficiently rich to capture
all FQHE orders. More generally, it would be interesting to
explore the possibility that structures inspired by the parton
construction could aid in understanding other strongly corre-
lated systems.
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